Airway Inflammation Mitochondrial Dysfunction Increases Allergic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Información Técnica-Científica Internacional. Relación Del Calostro Bovino Y/O Sus Ingredientes Como Suplemento Alimenticio En Diversas Enfermedades
Información técnica-científica internacional. Relación del calostro bovino y/o sus ingredientes como suplemento alimenticio en diversas enfermedades Nota: El calostro bovino no es un medicamento ni está clasificado como tal, tampoco está demostrado medicamente que cure o alivie ninguna enfermedad. El uso y el consumo de calostro bovino es una decisión personal y es responsabilidad de quien lo recomienda y de quien lo usa. Estos trabajos aquí incluidos son responsabilidad exclusiva de (los) autor(es) y son presentados con la única intención de educar y como tópicos de interés general, no es intención de la compañía presentarlos como consejo o soporte médico por lo tanto la compañía Schutze-Segen no es responsable en ningún sentido de su contenido. Alergias LeFranc-Millot C, Vercaigne-Marko D, Wal J. -M, et al. (1996) Comparison of the IgE titers to bovine colostral G immunoglobulins and the F(ab')2 fragments in sera of patients allergic to milk. Int Arch Allergy Immunol. 110:156-162. Savilahti E, Tainio VM, Salmenpera L, Arjomaa P, Kallio M, Perheentupa J, Siimes MA. (1991) Low colostral IgA associated with cow's milk allergy. Acta Pediatr Scan. 80:1207-1213. Selo I, Clement G, Bernard H, et al. (1999) Allergy to bovine B-lactoglobulin: specificity of human IgE to tryptic peptides. Clinical and Experimental Allergy. 29:1055-1063. Delespesse, G. Polypeptide factors from colostrum. US Patent #5,371,073 (1994). IgE (the immunoglobulin involved in allergic response) binding factors (IgE-bf) and IgE suppressor activity (IgE-SF) obtained from colostrum have been successfully used to treat allergies. Collins, AM, et al. -
Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father. -
Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion. -
Effects of Transfer Factor Supplementation on Immune
Journal of Nutrition and Health Sciences Volume 6 | Issue 3 ISSN: 2393-9060 Research Article Open Access Effects of Transfer Factor Supplementation on Immune Reactions in Mice Vetvicka V* and Vetvickova J University of Louisville, Department of Pathology, Louisville, KY, USA *Corresponding author: Vetvicka V, University of Louisville, Department of Pathology, 511 S. Floyd, Louisville, KY 40202, USA, Tel: 5028521612, E-mail: [email protected] Citation: Vetvicka V, Vetvickova J (2019) Effects of Transfer Factor Supplementation on Immune Reactions in Mice. J Nutr Health Sci 6(3): 301 Received Date: October 7, 2019 Accepted Date: December 17, 2019 Published Date: December 19, 2019 Abstract Colostrum-derived transfer factors are among the highest potential natural immunostimulatory food supplements. In our study, we evaluated the possible effects of supplementation with various compositions that included transfer factors in phagocytosis, TNF-α and IL-2 secretion, antibody formation and NK cells activity. We found significant improvements of all these immune reactions after 7 days of supplementation. Keywords: Transfer Factor; Phagocytosis; IL-2; Cytokines; Antibodies, NK Cells Introduction The term "transfer factor/s" has various unrelated meanings in science. One definition was developed by H. Sherwood Lawrence, originated from human cells and consisted entirely of amino acids. A second use of the term transfer factor applies to a potentially different entity derived from cow colostrum or chicken egg yolk. Recently, transfer factor has been harvested from sources other than blood, and administered orally, as opposed to intravenously. This use of transfer factors from sources other than blood has not been accompanied by the same concerns associated with blood-borne diseases, since no blood is involved. -
Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z. -
UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
TD12339 UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b- c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c (By similarity). The 2 core subunits UQCRC1/QCR1 and UQCRC2/QCR2 are homologous to the 2 mitochondrial-processing peptidase (MPP) subunits beta-MPP and alpha-MPP respectively, and they seem to have preserved their MPP processing properties (By similarity). May be involved in the in situ processing of UQCRFS1 into the mature Rieske protein and its mitochondrial -
Inherited Variants in Mitochondrial Biogenesis Genes May Influence Epithelial Ovarian Cancer Risk Jennifer Permuth-Wey1,2, Y. An
Author Manuscript Published OnlineFirst on March 29, 2011; DOI: 10.1158/1055-9965.EPI-10-1224 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Inherited Variants in Mitochondrial Biogenesis Genes May Influence Epithelial Ovarian Cancer Risk Jennifer Permuth-Wey1,2, Y. Ann Chen3 ,Ya-Yu Tsai1, Zhihua Chen4, Xiaotao Qu4, Johnathan M. Lancaster5, Heather Stockwell2, Getachew Dagne2, Edwin Iversen6, Harvey Risch7, Jill Barnholtz-Sloan8, Julie M. Cunningham9, Robert A. Vierkant10, Brooke L. Fridley10, Rebecca Sutphen11, John McLaughlin12, Steven A. Narod13, Ellen L. Goode10, Joellen M. Schildkraut14, David Fenstermacher4, Catherine M. Phelan1, and Thomas A. Sellers1 1Department of Cancer Epidemiology, Moffitt Cancer Center, Tampa, FL, USA. 2 Department of Epidemiology and Biostatistics, College of Public Health, University of South Florida, Tampa, FL, USA. 3 Department of Biostatistics, Moffitt Cancer Center, Tampa, FL, USA. 4 Department of Biomedical Informatics, Moffitt Cancer Center, Tampa, FL, USA. 5 Department of Women’s Oncology, Moffitt Cancer Center, Tampa, FL, USA. 6 Department of Statistical Science, Duke University Medical Center, Durham, NC, USA. 7Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT, USA. 8Case Comprehensive Cancer Center, Case School of Medicine, Cleveland, OH, USA. 9 Department of Laboratory Medicine and Pathology, Mayo Clinic College of Medicine, Rochester, MN, USA. 10Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA. 11Pediatrics Epidemiology Center, College of Medicine, University of South Florida, Tampa, FL, USA. 12Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada. 13Center for Research in Women’s Health, Toronto, ON, Canada. 14Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA. -
UQCRFS1N Assembles Mitochondrial Respiratory Complex-III Into an Asymmetric 21-Subunit Dimer
Protein Cell 2018, 9(6):586–591 https://doi.org/10.1007/s13238-018-0515-x Protein & Cell LETTER TO THE EDITOR UQCRFS1N assembles mitochondrial respiratory complex-III into an asymmetric 21-subunit dimer Dear Editor, Although several structures have been solved with very high resolution, the full length N-terminal processed peptide (1– Mitochondrial respiratory chain consists of four multimeric 78 amino acids, UQCRFS1N) of the iron-sulfur Rieske pro- protein complexes, Complex I-IV (CI, NADH dehydroge- tein (UQCRFS1) subunit has not been assigned in all of nase; CII, succinate:ubiquinone oxidoreductase; CIII, cyto- these structures (Table 1). UQCRFS1N is the N-terminal chrome bc1 complex; and CIV, cytochrome c oxidase). Cell mitochondrial targeting sequence of UQCRFS1, and after its These four complexes transfer electrons from NADH or cleavage from the precursor, this small peptide remains & FADH to oxygen and pump protons from mitochondrial 2 bound to CIII with unknown functions. In this letter, we show matrix to intermembrane space, generating electrochemical that one UQCRFS1N links the two 10-subunit CIII protomers gradient across the inner membrane which is harnessed by together to form the intact CIII, which resultantly contains complex V to synthesize ATP, providing the majority of only 21 subunits rather than previously assumed 22 subunits energy acquired by living organisms. Respiratory chain Protein (Fig. 1A and 1B). complexes were reported to interact with each other to form Firstly, we rebuilt the high-resolution crystal structures of supercomplexes, even megacomplex (Guo et al., 2017). bovine CIII (PDB: 2A06) (Huang et al., 2005) and chicken However, despite decades of intensive research, many CIII (PDB:3TGU) (Hao et al., 2012). -
Differential Expression of Multiple Disease-Related Protein Groups
brain sciences Article Differential Expression of Multiple Disease-Related Protein Groups Induced by Valproic Acid in Human SH-SY5Y Neuroblastoma Cells 1,2, 1, 1 1 Tsung-Ming Hu y, Hsiang-Sheng Chung y, Lieh-Yung Ping , Shih-Hsin Hsu , Hsin-Yao Tsai 1, Shaw-Ji Chen 3,4 and Min-Chih Cheng 1,* 1 Department of Psychiatry, Yuli Branch, Taipei Veterans General Hospital, Hualien 98142, Taiwan; [email protected] (T.-M.H.); [email protected] (H.-S.C.); [email protected] (L.-Y.P.); fi[email protected] (S.-H.H.); [email protected] (H.-Y.T.) 2 Department of Future Studies and LOHAS Industry, Fo Guang University, Jiaosi, Yilan County 26247, Taiwan 3 Department of Psychiatry, Mackay Medical College, New Taipei City 25245, Taiwan; [email protected] 4 Department of Psychiatry, Taitung Mackay Memorial Hospital, Taitung County 95064, Taiwan * Correspondence: [email protected]; Tel.: +886-3888-3141 (ext. 475) These authors contributed equally to this work. y Received: 10 July 2020; Accepted: 8 August 2020; Published: 12 August 2020 Abstract: Valproic acid (VPA) is a multifunctional medication used for the treatment of epilepsy, mania associated with bipolar disorder, and migraine. The pharmacological effects of VPA involve a variety of neurotransmitter and cell signaling systems, but the molecular mechanisms underlying its clinical efficacy is to date largely unknown. In this study, we used the isobaric tags for relative and absolute quantitation shotgun proteomic analysis to screen differentially expressed proteins in VPA-treated SH-SY5Y cells. We identified changes in the expression levels of multiple proteins involved in Alzheimer’s disease, Parkinson’s disease, chromatin remodeling, controlling gene expression via the vitamin D receptor, ribosome biogenesis, ubiquitin-mediated proteolysis, and the mitochondrial oxidative phosphorylation and electron transport chain. -
UQCRC2 Antibody
Efficient Professional Protein and Antibody Platforms UQCRC2 Antibody Basic information: Catalog No.: UPA60311 Source: Rabbit Size: 50ul/100ul Clonality: Polyclonal Concentration: 1mg/ml Isotype: Rabbit IgG Purification: Protein affinity purified. Useful Information: WB:1:1000-2000 ICC:1:50-1:200 Applications: IHC:1:50-1:200 FC:1:50-1:100 Reactivity: Human, Mouse, Rat Specificity: This antibody recognizes UQCRC2 protein. Immunogen: Recombinant protein within human UQCRC2 aa 100-350. Cytochrome c is a well characterized, mobile electron transport protein that is essential to energy conversion in all aerobic organisms. Cytochrome b as- sociates with cytochrome c subunit 1 and the Rieske protein to form com- plex III (also designated cytochrome bc1 complex), which is involved in cel- lular respiration. Ubiquinol cytochrome c reductase (UQCRFS1), also re- ferred to as Rieske iron-sulfur protein, represents an important subunit of Description: complex III of the mitochondrial respiratory chain that transfers electrons from ubiquinol to cytochrome c. The UQCRFS1 complex is made up of 3 res- piratory subunits (cytochrome b, cytochrome c1, Rieske protein), 2 core proteins, and 6 low-molecular weight proteins. Ubiquinol cytochrome-c re- ductase complex core protein 2 (UQCRC2) represents one of the core pro- teins of UQCRFS1, and it is required for the assembly of the complex. Uniprot: P22695(Human) Q9DB77(Mouse) P32551(Rat) BiowMW: 48 kDa Buffer: 1*TBS (pH7.4), 0.5%BSA, 50%Glycerol. Preservative: 0.05% Sodium Azide. Storage: Store at 4°C short term and -20°C long term. Avoid freeze-thaw cycles. Note: For research use only, not for use in diagnostic procedure. -
Pharmacological Activities and Potential Use of Bovine Colostrum
Pharmacia 68(2): 471–477 DOI 10.3897/pharmacia.68.e65537 Review Article Pharmacological activities and potential use of bovine colostrum for peptide-based radiopharmaceuticals: A review Crhisterra Ellen Kusumaningrum1, Eva Maria Widyasari1, Maula Eka Sriyani1, Hendris Wongso1 1 Labelled Compound and Radiometry Division, Center for Applied Nuclear Science and Technology, National Nuclear Energy Agency, Jl. Tamansari 71 Bandung, West Java 40132, Indonesia Corresponding author: Hendris Wongso ([email protected]) Received 5 March 2021 ♦ Accepted 23 April 2021 ♦ Published 7 June 2021 Citation: Kusumaningrum CE, Widyasari EM, Sriyani ME, Wongso H (2021) Pharmacological activities and potential use of bovine colostrum for peptide-based radiopharmaceuticals: A review. Pharmacia 68(2): 471–477. https://doi.org/10.3897/pharmacia.68.e65537 Abstract Bovine colostrum (BC) is the initial milk produced by cows after giving birth. It has been used to treat human diseases, such as infections, inflammations, and cancers. Accumulating evidence suggests that bovine lactoferrin and bovine antibodies seem to be the most important bioactive constituents in BC. Thus, BC has also been reviewed for its potential to deliver short-term protection against coronavirus disease 2019 (COVID-19). In addition, it can potentially be explored as a precursor for peptide-based radiophar- maceuticals. To date, several bioactive peptides have been isolated from BC, including casocidin-1, casecidin 15 and 17, isracidin, caseicin A, B, and C. Like other peptides, bioactive peptides derived from BC could be used as a valuable precursor for radiopharma- ceuticals either for diagnosis or therapy purposes. This review provides bovine colostrum’s biological activities and a perspective on the potential use of peptides from BC for developing radiopharmaceuticals in nuclear medicine. -
Mrna-Binding Protein Tristetraprolin Is Essential for Cardiac Response To
mRNA-binding protein tristetraprolin is essential for PNAS PLUS cardiac response to iron deficiency by regulating mitochondrial function Tatsuya Satoa,1, Hsiang-Chun Changa,1, Marina Bayevaa, Jason S. Shapiroa, Lucia Ramos-Alonsob, Hidemichi Kouzua, Xinghang Jianga, Ting Liua, Sumeyye Yara, Konrad T. Sawickia, Chunlei Chena, María Teresa Martínez-Pastorc, Deborah J. Stumpod, Paul T. Schumackere, Perry J. Blacksheard, Issam Ben-Sahraf, Sergi Puigb, and Hossein Ardehalia,2 aFeinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; bDepartamento de Biotecnología, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, 46980 Paterna, Valencia, Spain; cDepartamento de Bioquímica y Biología Molecular, Universitat de València, 46100 Burjassot, Valencia, Spain; dSignal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; eDepartment of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; and fDepartment of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 Edited by J. G. Seidman, Harvard Medical School, Boston, MA, and approved May 23, 2018 (received for review March 23, 2018) Cells respond to iron deficiency by activating iron-regulatory electron transport chain (ETC) (11). However, energy pro- proteins to increase cellular iron uptake and availability. However, duction by oxidative phosphorylation in mitochondria is non- it is not clear how cells adapt to conditions when cellular iron essential for survival, at least in the short term, as demonstrated uptake does not fully match iron demand. Here, we show that the by a switch to anaerobic respiration and heavy reliance on gly- mRNA-binding protein tristetraprolin (TTP) is induced by iron colysis in muscle during vigorous exercise, when oxygen demand deficiency and degrades mRNAs of mitochondrial Fe/S-cluster- outmatches its supply (12).