Mutations in CYC1, Encoding Cytochrome C1 Subunit Of

Total Page:16

File Type:pdf, Size:1020Kb

Mutations in CYC1, Encoding Cytochrome C1 Subunit Of View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT CYC1 c Mutations in , Encoding Cytochrome 1 Subunit of Respiratory Chain Complex III, Cause Insulin-Responsive Hyperglycemia Pauline Gaignard,1,21 Minal Menezes,2,21 Manuel Schiff,3,4,5 Aure´lien Bayot,3,4 Malgorzata Rak,3,4 He´le`ne Ogier de Baulny,5 Chen-Hsien Su,6 Mylene Gilleron,7,8 Anne Lombes,7,8 Heni Abida,6 Alexander Tzagoloff,6 Lisa Riley,9 Sandra T. Cooper,2,10 Kym Mina,11,12 Padma Sivadorai,13 Mark R. Davis,13 Richard J.N. Allcock,14,15 Nina Kresoje,14 Nigel G. Laing,16,17 David R. Thorburn,18,19 Abdelhamid Slama,1 John Christodoulou,2,9,20 and Pierre Rustin3,4,* Many individuals with abnormalities of mitochondrial respiratory chain complex III remain genetically undefined. Here, we report > > CYC1 c mutations (c.288G T [p.Trp96Cys] and c.643C T [p.Leu215Phe]) in , encoding the cytochrome 1 subunit of complex III, in two unrelated children presenting with recurrent episodes of ketoacidosis and insulin-responsive hyperglycemia. Cytochrome c1, the heme-containing component of complex III, mediates the transfer of electrons from the Rieske iron-sulfur protein to cytochrome c c . Cytochrome 1 is present at reduced levels in the skeletal muscle and skin fibroblasts of affected individuals. Moreover, studies on yeast mutants and affected individuals’ fibroblasts have shown that exogenous expression of wild-type CYC1 rescues complex III activity, demonstrating the deleterious effect of each mutation on cytochrome c1 stability and complex III activity. Complex III (CIII) of the mitochondrial respiratory chain tor retardation and extrapyramidal signs, dystonia, atheto- contains 11 subunits, one of which (cytochrome b)is sis, and ataxia (from UQCRQ [MIM 615159] mutations);5 encoded by mitochondrial DNA. CIII conveys electrons mitochondrial encephalopathy (from BCS1L, TTC19 from ubiquinol to cytochrome c. It associates with com- [MIM 613814], CYTB [MIM 516020] mutations);6 pili torti plexes I (CI) and IV (CIV) to form the respirasome.1 Cyto- and sensorineural hearing loss, known as Bjo¨rnstad 7 chrome c1 (Cyt c1), cytochrome b, and the Rieske protein syndrome (from BCS1L mutations); optic neuropathy, are the three CIII redox components. The heme moiety exercise intolerance, and/or cardiomyopathy (from CYTB c 8 of Cyt 1 is in the N-terminal domain, located in the inter- mutations); and transient episodes of hypoglycemia and membrane space, where it accepts electrons from the lactic acidosis (from UQCRB [MIM 191330] and UQCRC2 9,10 Rieske protein. Cyt c1 is anchored to the phospholipid [MIM 191329] mutations). bilayer by a single C-proximal transmembrane segment.2 We first carried out respiratory chain (RC) enzyme Primary CIII deficiencies, although infrequent, have analysis of muscle, liver, and fibroblasts of two children strikingly different clinical presentations. Mutations in (from unrelated consanguineous families) presenting mitochondrial CYTB or in the nuclear genes encoding with unexplained ketoacidosis and recurrent hyperlactaci- CIII subunits or assembly factors elicit a wide range of demia. All investigations were carried out according to the tissue-specific defects in affected individuals; they include recommendations of the relevant local ethical committees encephalopathy with renal involvement or lethal infantile and with the informed consent of affected individuals hepatic failure (from BCS1L [MIM 124000] mutations in and/or their families. The study revealed an isolated CIII GRACILE syndrome [MIM 603358]);3,4 severe psychomo- deficiency in the two children (Table S1, available online). 1Laboratoire de Biochimie, Hoˆpital de Biceˆtre, Assistance Publique – Hoˆpitaux de Paris, 78 Rue du Ge´ne´ral Leclerc, 94275 Le Kremlin Biceˆtre Cedex, France; 2Discipline of Paediatrics, Sydney Medical School, University of Sydney, Camperdown NSW 2006, Australia,; 3Institut National de la Sante´ et de la Re- cherche Me´dicale Unite´ Mixte de Recherche 676, Hoˆpital Robert Debre´, 48 Boulevard Se´rurier, 75019 Paris, France; 4Faculte´ de Me´decine Denis Diderot, Universite´ Paris Diderot – Paris 7, Site Robert Debre´, 48 Boulevard Se´rurier, 75019 Paris, France; 5Reference Center for Inherited Metabolic Diseases, Hoˆpital Robert Debre´, Assistance Publique – Hoˆpitaux de Paris, 48 Boulevard Se´rurier, 75019 Paris, France; 6Department of Biological Sciences, Columbia University, New York, NY 10027, USA; 7Institut National de la Sante´ et de la Recherche Me´dicale Unite´ Mixte de Recherche 1016, Institut Cochin, 75014 Paris, France; 8Service de Biochimie Me´tabolique et Centre de Ge´ne´tique Mole´culaire et Chromosomique, Hoˆpital de La Salpeˆtrie`re, Assistance Publique – Hoˆpitaux de Paris, 75651 Paris, France; 9Genetic Metabolic Disorders Research Unit, Kids Research Institute, Children’s Hospital at Westmead, Sydney, Westmead NSW 2145, Australia; 10Institute for Neuroscience and Muscle Research, Children’s Hospital at Westmead, Sydney, Westmead NSW 2145, Australia; 11Department of Molecular Genetics, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, WA 6000, Australia; 12School of Pathology and Laboratory Medicine, The University of Western Australia, Nedlands, WA 6009, Australia; 13Neurogenetic Laboratory, Department of Anatomical Pathology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, WA 6000, Australia; 14Lotterywest State Biomedical Facility Genomics and School of Pathology and Laboratory Medicine, University of Western Australia, Nedlands, WA 6009, Australia; 15Department of Clinical Immunology, PathWest Laboratory Medicine WA, Royal Perth Hospital, Perth, WA 6000, Australia; 16Centre for Medical Research, University of Western Australia, Nedlands, WA 6009, Australia; 17Western Australian Institute for Medical Research, Queen Elizabeth II Medical Centre, Nedlands, WA 6009, Australia; 18Victorian Clinical Genetics Services, Murdoch Childrens Research Institute and Royal Children’s Hospital, Flemington Road, Parkville, Melbourne, VIC 3052, Australia; 19Department of Paediatrics, University of Melbourne, Melbourne, VIC 3010, Australia; 20Child Health and Genetic Medicine, Sydney Medical School, University of Sydney, Camperdown, NSW 2006, Australia 21These authors contributed equally to this work *Correspondence: [email protected] http://dx.doi.org/10.1016/j.ajhg.2013.06.015. Ó2013 by The American Society of Human Genetics. All rights reserved. 384 The American Journal of Human Genetics 93, 384–389, August 8, 2013 Figure 1. Gene Analysis in Families Affected by CYC1 Mutations (A) Pedigrees of the Lebanese (with P1) and Sri Lankan (with P2) families. Affected individuals (dark symbols) harbor homozygous (À/À) mutations. Unaffected individuals are either heterozygous (À/þ) or wild-type (þ/þ). (B) Analysis of CYC1 genomic DNA. For P1, a single candidate disease-causing homozygous missense variant in CYC1 was identified by exome sequencing. For P2, who has defective CIII activity, a candidate-gene strategy resulted in sequencing cDNA obtained from total RNA of cultured fibroblasts and revealed a missense mutation (c.643C>T) in CYC1. c (C and D) Cyt 1 structures (C) and alignment (D). The first child (P1; II-3, Lebanese family in Figure 1)is episodes of fulminant lactic acidemia with intercurrent the son of first-cousin parents of Lebanese background. illnesses; his lactate-to-pyruvate ratio was as high as 66, An older brother has autism and intellectual disability, and his blood glucose was labile (it fluctuated from 3 to and an older sister and a younger brother exhibit normal 30 mmol/l) and required insulin therapy. This prompted growth and development. The proband was born at us to investigate RC enzyme in muscle, liver, and skin 36 weeks of gestation (Table S2) after a pregnancy compli- biopsies, which revealed a severe and consistent isolated cated by gestational diabetes, for which his mother needed CIII defect (the ratio of CIII to citrate synthase activity insulin therapy. His birth weight was 2,300 g (10–50th was 4%, 24,% and 25% of the mean control values in liver, percentile), his length was 46 cm (10–50th percentile), muscle, and skin fibroblasts, respectively) (Table S1). At and his head circumference was 32 cm (50–90th percen- 34 months of age, he was exhibiting normal development tile). He had normal early development. He first presented and was assessed to have normal cardiac, ophthalmolog- at 5 months of age with severe metabolic ketoacidosis (pH ical, and audiological functions. His weight was 11.2 kg 7.04) after a 24 hr history of a febrile illness causing (first percentile), and his length was 86.5 cm (first percen- vomiting (Table S1). His initial blood lactate was tile). His head circumference 6 months earlier was 48.0 cm 13 mmol/l (normal range ¼ 0.7–2.0 mmol/l), and he also (23rd percentile). had hyperammonemia (260 mmol/l; normal range ¼ 10– The second affected child (P2; II-3, Sri Lankan family in 50 mmol/l). He was treated with fluid resuscitation, sodium Figure 1) is a girl (third child) born to first-cousin parents benzoate, and arginine, and over the next few days his of Sri Lankan background. After an uneventful pregnancy biochemistry corrected. He went on to have recurrent and delivery, she presented with mild growth retardation The American Journal of Human Genetics 93, 384–389, August 8, 2013 385 and congenital left ptosis. She was admitted at 2.5 years of of For the Sri Lankan girl (P2), who has low CIII activity in age for acute vomiting with
Recommended publications
  • Dual Mutations Reveal Interactions Between Components of Oxidative Phosphorylation in Kluyveromyces Lactis
    Copyright 2001 by the Genetics Society of America Dual Mutations Reveal Interactions Between Components of Oxidative Phosphorylation in Kluyveromyces lactis G. D. Clark-Walker and X. J. Chen Molecular Genetics and Evolution Group, Research School of Biological Sciences, The Australian National University, Canberra, ACT, 2601, Australia Manuscript received April 10, 2001 Accepted for publication August 3, 2001 ABSTRACT Loss of mtDNA or mitochondrial protein synthesis cannot be tolerated by wild-type Kluyveromyces lactis. The mitochondrial function responsible for ␳0-lethality has been identified by disruption of nuclear genes encoding electron transport and F0-ATP synthase components of oxidative phosphorylation. Sporulation of diploid strains heterozygous for disruptions in genes for the two components of oxidative phosphoryla- tion results in the formation of nonviable spores inferred to contain both disruptions. Lethality of spores is thought to result from absence of a transmembrane potential, ⌬⌿, across the mitochondrial inner membrane due to lack of proton pumping by the electron transport chain or reversal of F1F0-ATP synthase. Synergistic lethality, caused by disruption of nuclear genes, or ␳0-lethality can be suppressed by the atp2.1 ␤ mutation in the -subunit of F1-ATPase. Suppression is viewed as occurring by an increased hydrolysis of ATP by mutant F1, allowing sufficient electrogenic exchange by the translocase of ADP in the matrix for ATP in the cytosol to maintain ⌬⌿. In addition, lethality of haploid strains with a disruption of AAC encoding the ADP/ATP translocase can be suppressed by atp2.1. In this case suppression is considered to occur by mutant F1 acting in the forward direction to partially uncouple ATP production, thereby stimulating respiration and relieving detrimental hyperpolarization of the inner membrane.
    [Show full text]
  • Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector REPORT Mitochondrial Complex III Deficiency Associated with a Homozygous Mutation in UQCRQ Ortal Barel,1 Zamir Shorer,2 Hagit Flusser,2 Rivka Ofir,1 Ginat Narkis,1 Gal Finer,1 Hanah Shalev,2 Ahmad Nasasra,2 Ann Saada,3 and Ohad S. Birk1,4,* A consanguineous Israeli Bedouin kindred presented with an autosomal-recessive nonlethal phenotype of severe psychomotor retarda- tion and extrapyramidal signs, dystonia, athetosis and ataxia, mild axial hypotonia, and marked global dementia with defects in verbal and expressive communication skills. Metabolic workup was normal except for mildly elevated blood lactate levels. Brain magnetic resonance imaging (MRI) showed increased density in the putamen, with decreased density and size of the caudate and lentiform nuclei. Reduced activity specifically of mitochondrial complex III and variable decrease in complex I activity were evident in muscle biopsies. Homozygosity of affected individuals to UQCRB and to BCSIL, previously associated with isolated complex III deficiency, was ruled out. Genome-wide linkage analysis identified a homozygosity locus of approximately 9 cM on chromosome 5q31 that was further narrowed down to 2.14 cM, harboring 30 genes (logarithm of the odds [LOD] score 8.82 at q ¼ 0). All 30 genes were sequenced, revealing a single missense (p.Ser45Phe) mutation in UQCRQ (encoding ubiquinol-cytochrome c reductase, complex III subunit VII, 9.5 kDa), one of the ten nuclear
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • Airway Inflammation Mitochondrial Dysfunction Increases Allergic
    Mitochondrial Dysfunction Increases Allergic Airway Inflammation Leopoldo Aguilera-Aguirre, Attila Bacsi, Alfredo Saavedra-Molina, Alexander Kurosky, Sanjiv Sur and Istvan This information is current as Boldogh of October 1, 2021. J Immunol 2009; 183:5379-5387; Prepublished online 28 September 2009; doi: 10.4049/jimmunol.0900228 http://www.jimmunol.org/content/183/8/5379 Downloaded from References This article cites 61 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/183/8/5379.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mitochondrial Dysfunction Increases Allergic Airway Inflammation1 Leopoldo Aguilera-Aguirre,*§ Attila Bacsi,*¶ Alfredo Saavedra-Molina,§ Alexander Kurosky,† Sanjiv Sur,‡ and Istvan Boldogh*2 The prevalence of allergies and asthma among the world’s population has been steadily increasing due to environmental factors.
    [Show full text]
  • Snps) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2018/07/06/dmd.118.082164.DC1 1521-009X/46/9/1372–1381$35.00 https://doi.org/10.1124/dmd.118.082164 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 46:1372–1381, September 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Single Nucleotide Polymorphisms (SNPs) Distant from Xenobiotic Response Elements Can Modulate Aryl Hydrocarbon Receptor Function: SNP-Dependent CYP1A1 Induction s Duan Liu, Sisi Qin, Balmiki Ray,1 Krishna R. Kalari, Liewei Wang, and Richard M. Weinshilboum Division of Clinical Pharmacology, Department of Molecular Pharmacology and Experimental Therapeutics (D.L., S.Q., B.R., L.W., R.M.W.) and Division of Biomedical Statistics and Informatics, Department of Health Sciences Research (K.R.K.), Mayo Clinic, Rochester, Minnesota Received April 22, 2018; accepted June 28, 2018 ABSTRACT Downloaded from CYP1A1 expression can be upregulated by the ligand-activated aryl fashion. LCLs with the AA genotype displayed significantly higher hydrocarbon receptor (AHR). Based on prior observations with AHR-XRE binding and CYP1A1 mRNA expression after 3MC estrogen receptors and estrogen response elements, we tested treatment than did those with the GG genotype. Electrophoretic the hypothesis that single-nucleotide polymorphisms (SNPs) map- mobility shift assay (EMSA) showed that oligonucleotides with the ping hundreds of base pairs (bp) from xenobiotic response elements AA genotype displayed higher LCL nuclear extract binding after (XREs) might influence AHR binding and subsequent gene expres- 3MC treatment than did those with the GG genotype, and mass dmd.aspetjournals.org sion.
    [Show full text]
  • Molecular Characterization of Acute Myeloid Leukemia by Next Generation Sequencing: Identification of Novel Biomarkers and Targets of Personalized Therapies
    Alma Mater Studiorum – Università di Bologna Dipartimento di Medicina Specialistica, Diagnostica e Sperimentale Dottorato di Ricerca in Oncologia, Ematologia e Patologia XXX Ciclo Settore Scientifico Disciplinare: MED/15 Settore Concorsuale:06/D3 Molecular characterization of acute myeloid leukemia by Next Generation Sequencing: identification of novel biomarkers and targets of personalized therapies Presentata da: Antonella Padella Coordinatore Prof. Pier-Luigi Lollini Supervisore: Prof. Giovanni Martinelli Esame finale anno 2018 Abstract Acute myeloid leukemia (AML) is a hematopoietic neoplasm that affects myeloid progenitor cells and it is one of the malignancies best studied by next generation sequencing (NGS), showing a highly heterogeneous genetic background. The aim of the study was to characterize the molecular landscape of 2 subgroups of AML patients carrying either chromosomal number alterations (i.e. aneuploidy) or rare fusion genes. We performed whole exome sequencing and we integrated the mutational data with transcriptomic and copy number analysis. We identified the cell cycle, the protein degradation, response to reactive oxygen species, energy metabolism and biosynthetic process as the pathways mostly targeted by alterations in aneuploid AML. Moreover, we identified a 3-gene expression signature including RAD50, PLK1 and CDC20 that characterize this subgroup. Taking advantage of RNA sequencing we aimed at the discovery of novel and rare gene fusions. We detected 9 rare chimeric transcripts, of which partner genes were transcription factors (ZEB2, BCL11B and MAFK) or tumor suppressors (SAV1 and PUF60) rarely translocated across cancer types. Moreover, we detected cryptic events hiding the loss of NF1 and WT1, two recurrently altered genes in AML. Finally, we explored the oncogenic potential of the ZEB2-BCL11B fusion, which revealed no transforming ability in vitro.
    [Show full text]
  • Original Article Bioinformatic Analysis of Gene Expression Profile in Prostate Epithelial Cells Exposed to Low-Dose Cadmium
    Int J Clin Exp Med 2018;11(3):1669-1678 www.ijcem.com /ISSN:1940-5901/IJCEM0062792 Original Article Bioinformatic analysis of gene expression profile in prostate epithelial cells exposed to low-dose cadmium Qiling Liu1,2*, Rongqiang Zhang2*, Xiang Wang1, Peili Wang2, Xiaomei Ren2, Na Sun2, Xiangwen Li2, Xinhui Li2, Chunxu Hai1 1Department of Toxicology, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Op- erational Environment, Shaanxi Provincial Key Lab of Free Radical Biology and Medicine, School of Public Health, Medical University of The Air Force, Xi’an, Shaanxi 710032, China; 2Department of Epidemic and Health Statis- tics, The College of Public Health for The Shaanxi University of Chinese Medicine, Shaanxi 712046, China. *Equal contributors. Received July 25, 2017; Accepted February 5, 2018; Epub March 15, 2018; Published March 30, 2018 Abstract: Objective: This study was to identify key genes and biological pathways involved in responses of prostate epithelial cells after low-dose Cd exposure by using bioinformatic analysis. Methods: The gene chip data of prostate epithelial cells after low-dose Cd exposure were collected from public databases Gene Expression Omnibus. After identification of differentially expressed genes (DEGs), data were input into Qlucore Omics Explorer, Network Analyst, String, and Genclip for further analysis of gene expression profiles, protein-protein interactions (PPI) and protein- chemicals interactions, and critical molecular pathways. Results: A total of 384 DEGs were identified in Cd treated group compared with control group. The number of DEGs gradually decreased over time, with the largest number at 0 h. Furthermore, NDUFB5 (A, S), CYC1, UQCRB, ETFA (B), SNRPD2, and LSM3 (5, 6) were the hub proteins in the PPI network.
    [Show full text]
  • Low Abundance of the Matrix Arm of Complex I in Mitochondria Predicts Longevity in Mice
    ARTICLE Received 24 Jan 2014 | Accepted 9 Apr 2014 | Published 12 May 2014 DOI: 10.1038/ncomms4837 OPEN Low abundance of the matrix arm of complex I in mitochondria predicts longevity in mice Satomi Miwa1, Howsun Jow2, Karen Baty3, Amy Johnson1, Rafal Czapiewski1, Gabriele Saretzki1, Achim Treumann3 & Thomas von Zglinicki1 Mitochondrial function is an important determinant of the ageing process; however, the mitochondrial properties that enable longevity are not well understood. Here we show that optimal assembly of mitochondrial complex I predicts longevity in mice. Using an unbiased high-coverage high-confidence approach, we demonstrate that electron transport chain proteins, especially the matrix arm subunits of complex I, are decreased in young long-living mice, which is associated with improved complex I assembly, higher complex I-linked state 3 oxygen consumption rates and decreased superoxide production, whereas the opposite is seen in old mice. Disruption of complex I assembly reduces oxidative metabolism with concomitant increase in mitochondrial superoxide production. This is rescued by knockdown of the mitochondrial chaperone, prohibitin. Disrupted complex I assembly causes premature senescence in primary cells. We propose that lower abundance of free catalytic complex I components supports complex I assembly, efficacy of substrate utilization and minimal ROS production, enabling enhanced longevity. 1 Institute for Ageing and Health, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 2 Centre for Integrated Systems Biology of Ageing and Nutrition, Newcastle University, Newcastle upon Tyne NE4 5PL, UK. 3 Newcastle University Protein and Proteome Analysis, Devonshire Building, Devonshire Terrace, Newcastle upon Tyne NE1 7RU, UK. Correspondence and requests for materials should be addressed to T.v.Z.
    [Show full text]
  • UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50Ul [email protected] 100 Ul √ √ Web
    TD12339 UQCRC2 Antibody Order 021-34695924 [email protected] Support 400-6123-828 50ul [email protected] 100 uL √ √ Web www.ab-mart.com.cn Description: Component of the ubiquinol-cytochrome c oxidoreductase, a multisubunit transmembrane complex that is part of the mitochondrial electron transport chain which drives oxidative phosphorylation. The respiratory chain contains 3 multisubunit complexes succinate dehydrogenase (complex II, CII), ubiquinol-cytochrome c oxidoreductase (cytochrome b- c1 complex, complex III, CIII) and cytochrome c oxidase (complex IV, CIV), that cooperate to transfer electrons derived from NADH and succinate to molecular oxygen, creating an electrochemical gradient over the inner membrane that drives transmembrane transport and the ATP synthase. The cytochrome b-c1 complex catalyzes electron transfer from ubiquinol to cytochrome c, linking this redox reaction to translocation of protons across the mitochondrial inner membrane, with protons being carried across the membrane as hydrogens on the quinol. In the process called Q cycle, 2 protons are consumed from the matrix, 4 protons are released into the intermembrane space and 2 electrons are passed to cytochrome c (By similarity). The 2 core subunits UQCRC1/QCR1 and UQCRC2/QCR2 are homologous to the 2 mitochondrial-processing peptidase (MPP) subunits beta-MPP and alpha-MPP respectively, and they seem to have preserved their MPP processing properties (By similarity). May be involved in the in situ processing of UQCRFS1 into the mature Rieske protein and its mitochondrial
    [Show full text]
  • The Landscape of Genomic Imprinting Across Diverse Adult Human Tissues
    Downloaded from genome.cshlp.org on September 30, 2021 - Published by Cold Spring Harbor Laboratory Press Research The landscape of genomic imprinting across diverse adult human tissues Yael Baran,1 Meena Subramaniam,2 Anne Biton,2 Taru Tukiainen,3,4 Emily K. Tsang,5,6 Manuel A. Rivas,7 Matti Pirinen,8 Maria Gutierrez-Arcelus,9 Kevin S. Smith,5,10 Kim R. Kukurba,5,10 Rui Zhang,10 Celeste Eng,2 Dara G. Torgerson,2 Cydney Urbanek,11 the GTEx Consortium, Jin Billy Li,10 Jose R. Rodriguez-Santana,12 Esteban G. Burchard,2,13 Max A. Seibold,11,14,15 Daniel G. MacArthur,3,4,16 Stephen B. Montgomery,5,10 Noah A. Zaitlen,2,19 and Tuuli Lappalainen17,18,19 1The Blavatnik School of Computer Science, Tel-Aviv University, Tel Aviv 69978, Israel; 2Department of Medicine, University of California San Francisco, San Francisco, California 94158, USA; 3Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA; 4Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, Massachusetts 02142, USA; 5Department of Pathology, Stanford University, Stanford, California 94305, USA; 6Biomedical Informatics Program, Stanford University, Stanford, California 94305, USA; 7Wellcome Trust Center for Human Genetics, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7BN, United Kingdom; 8Institute for Molecular Medicine Finland, University of Helsinki, 00014 Helsinki, Finland; 9Department of Genetic Medicine and Development, University of Geneva, 1211 Geneva, Switzerland;
    [Show full text]
  • Supplement for TWO-SIGMA-G S1 Additional Type-I Error and Power Results
    Supplement for TWO-SIGMA-G Eric Van Buren, Ming Hu, Liang Chen, John Wrobel, Kirk Wilhelmsen, Lishan Su, Yun Li, Di Wu S1 Additional Type-I Error and Power Results Independent Genes (No IGC) Genes Simulated with IGC (A) No Gene-Level Random Effects (B) No Gene-Level Random Effects Test Size = 30, Ref. Size = 30 Test Size = 30, Ref. Size = 30 0.03 0.03 0.02 0.02 0.01 0.01 Type-I Error Type-I Error Observed Set-Level Observed Set-Level 0.00 0.00 0.0000 0.0025 0.0050 0.0075 0.0100 0.0000 0.0025 0.0050 0.0075 0.0100 Significance Threshold Significance Threshold CAMERA MAST TWO-SIGMA-G CAMERA MAST TWO-SIGMA-G Genes Simulated with IGC Genes Simulated with IGC (C) Gene-Level Random Effects Present (D) Gene-Level Random Effects Test Size = 30, Ref. Size = 30 Incorrectly Absent 0.03 Test Size = 30, Ref. Size = 30 0.03 0.02 0.02 0.01 0.01 Type-I Error Type-I Error Observed Set-Level 0.00 Observed Set-Level 0.00 0.0000 0.0025 0.0050 0.0075 0.0100 0.0000 0.0025 0.0050 0.0075 0.0100 Significance Threshold Significance Threshold CAMERA MAST TWO-SIGMA-G CAMERA MAST TWO-SIGMA-G Supplementary Figure S1: Type-I error performance of CAMERA, MAST, and TWO-SIGMA-G as significance threshold varies from 0 to .01. Each panel varies the existence of IGC between genes in the test set and the presence of gene-level random effect terms in gene-level model (CAMERA never includes gene-level random effect terms).
    [Show full text]
  • Molecular and Biochemical Characterisation of the Electron Transport Chain of Plasmodium Falciparum
    Molecular and biochemical characterisation of the electron transport chain of Plasmodium falciparum Thomas ANTOINE Ph.D. February 2012 Molecular and biochemical characterisation of the electron transport chain of Plasmodium falciparum Thesis is submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor of Philosophy By Thomas ANTOINE February 2012 Declaration This thesis is the result of my own work. The material contained in the thesis has not been presented, nor is currently being presented, either wholly or as a part, for any other degree or other qualification. The research work was carried out in the Liverpool School of Tropical Medicine, University of Liverpool, United Kingdom. ……………………………………….. Thomas ANTOINE (2012) i Acknowledgments First of all, I would like to express my gratitude to my supervisors Pr. Steve Ward, Dr. Giancarlo Biagini and Dr. Nick Fisher for their supervision, continued support and constant encouragement throughout my PhD. A special thank goes to the InterMal PhD program and the Marie Curie Fellowship for providing the generous funding which allowed me to undertake this research, but also for giving me the opportunity to attend conferences and workshops as well as meet so many interesting people. I am grateful to Prof. Alister Craig and Prof. Sylke Muller for accepting to be the two members of my oral defense committee. The members of the Ward's research group have contributed immensely to my personal and professional time at Liverpool. I am very grateful to Ashley Warman for insightful comments in my work, for reviewing my thesis and providing valuable feedback as well as for many motivating discussions.
    [Show full text]