Alzheimer's Disease Is Associated with Reduced Expression of Energy

Total Page:16

File Type:pdf, Size:1020Kb

Alzheimer's Disease Is Associated with Reduced Expression of Energy Alzheimer’s disease is associated with reduced expression of energy metabolism genes in posterior cingulate neurons Winnie S. Liang*†, Eric M. Reiman*†‡§, Jon Valla†¶, Travis Dunckley*†, Thomas G. Beach†ʈ, Andrew Grover†ʈ, Tracey L. Niedzielko†¶, Lonnie E. Schneider†¶, Diego Mastroeni†ʈ, Richard Caselli†**, Walter Kukull††, John C. Morris‡‡, Christine M. Hulette§§, Donald Schmechel§§, Joseph Rogers†ʈ, and Dietrich A. Stephan*†¶¶ *Neurogenomics Division, Translational Genomics Research Institute, 445 North Fifth Street, Phoenix, AZ 85004; †Arizona Alzheimer’s Consortium, 901 East Willetta Street, Phoenix, AZ 85006; ‡Banner Alzheimer’s Institute, 901 East Willetta Street Phoenix, AZ 85006; §Department of Psychiatry and Evelyn F. McKnight Brain Institute, University of Arizona, 1501 North Campbell Avenue, Tucson, AZ 85724; ¶Barrow Neurological Institute, 350 West Thomas Road, Phoenix, AZ 85013; ʈSun Health Research Institute, 10515 West Santa Fe Drive, Sun City, AZ 85351; **Department of Neurology, Mayo Clinic, 13400 East Shea Boulevard, Scottsdale, AZ 85259; ††National Alzheimer’s Coordinating Center, 4311 11th Avenue NE, No. 300, Seattle, WA 98105; ‡‡Washington University Alzheimer’s Disease Research Center, Washington University School of Medicine, 4488 Forest Park Avenue, Suite 101, St. Louis, MO 63108; and §§Bryan Alzheimer’s Disease Research Center, Duke University Medical Center, 2200 West Main Street, Suite A200, Durham, NC 27705 Edited by Marcus E. Raichle, Washington University School of Medicine, St. Louis, MO, and approved January 15, 2008 (received for review September 28, 2007) Alzheimer’s disease (AD) is associated with regional reductions in of genetic risk for AD) and were progressive in late-middle-aged fluorodeoxyglucose positron emission tomography (FDG PET) mea- persons (19). These reductions were also apparent in young adult surements of the cerebral metabolic rate for glucose, which may APOE ␧4 heterozygotes (13), more than four decades before the begin long before the onset of histopathological or clinical fea- anticipated median onset of dementia, years before the expected tures, especially in carriers of a common AD susceptibility gene. onset of the major histopathological features of AD (neurofi- Molecular evaluation of cells from metabolically affected brain brillary tangles and amyloid plaques), and, indeed, in anticipat- regions could provide new information about the pathogenesis of ing the initial regional appearance of fibrillar amyloid deposi- AD and new targets at which to aim disease-slowing and preven- tion. (20, 21). tion therapies. Data from a genome-wide transcriptomic study AD-related CMRgl reductions could reflect reductions in the were used to compare the expression of 80 metabolically relevant density or activity of terminal neuronal fields or peri-synaptic nuclear genes from laser-capture microdissected non-tangle-bear- glial cells (22, 23), a metabolic dysfunction in neurons or glial ing neurons from autopsy brains of AD cases and normal controls cells not related to neuronal activity (24, 25), or a combination in posterior cingulate cortex, which is metabolically affected in the of these factors. These changes do not appear to be solely earliest stages; other brain regions metabolically affected in PET attributable to the combined effects of atrophy and partial- studies of AD or normal aging; and visual cortex, which is relatively volume averaging (26). In a postmortem histochemistry study, spared. Compared with controls, AD cases had significantly lower we previously found that AD cases had lower cytochrome c expression of 70% of the nuclear genes encoding subunits of the oxidase activity than controls in the PCC, and that this reduction mitochondrial electron transport chain in posterior cingulate cor- was significantly greater than that in primary motor cortex (27), tex, 65% of those in the middle temporal gyrus, 61% of those in another region that is relatively spared. Based on this observa- hippocampal CA1, 23% of those in entorhinal cortex, 16% of those tion, we proposed that AD might be related to an impairment in in visual cortex, and 5% of those in the superior frontal gyrus. neuronal metabolism. Western blots confirmed underexpression of those complex I–V Molecular evaluation of the cells from metabolically affected subunits assessed at the protein level. Cerebral metabolic rate for brain regions could provide new information about the patho- glucose abnormalities in FDG PET studies of AD may be associated genesis of AD and new targets at which to aim disease-slowing with reduced neuronal expression of nuclear genes encoding and prevention therapies. Data from a genome-wide transcrip- subunits of the mitochondrial electron transport chain. tomic study were used to compare, in each of our sampled brain regions, the expression of metabolically relevant nuclear genes gene expression ͉ Affymetrix microarrays ͉ laser capture micro-dissection from laser-capture microdissected non-tangle-bearing neurons of expired cases with clinically characterized and histopatholog- lzheimer’s disease (AD) is associated with characteristic ically verified AD and expired controls who did meet clinical NEUROSCIENCE Aand progressive reductions in regional positron emission criteria for dementia and histopathological criteria for AD. tomography (PET) measurements of the cerebral metabolic rate In particular, the data were used to compare cases and for glucose (CMRgl). These CMRgl reductions have been controls in the expression of 80 nuclear genes encoding mito- reported in the posterior cingulate, parietal, and temporal chondrial electron transport chain (ETC) subunits along with cortex, and in the frontal cortex and whole brain in more severely translocases of the inner and outer mitochondrial membranes affected patients (1–5). Other studies have reported CMRgl reductions in anatomically well characterized hippocampal and Author contributions: D.A.S. designed research; W.S.L., J.V., T.D., T.G.B., T.L.N., and L.E.S. entorhinal cortical regions of interest (6–10). The posterior performed research; A.G., D.M., R.C., W.K., J.C.M., C.M.H., D.S., and J.R. contributed new cingulate cortex (PCC) and the neighboring precuneus are reagents/analytic tools; W.S.L. and J.V. analyzed data; and W.S.L., E.M.R., and J.V. wrote the metabolically affected in the earliest clinical and preclinical paper. stages of AD (4, 11), and the primary visual cortex is relatively The authors declare no conflict of interest. spared (4, 11). In an ongoing series of studies, we have detected This article is a PNAS Direct Submission. CMRgl reductions in cognitively normal carriers of the apoli- Data deposition: The data reported in this paper have been deposited in the Gene poprotein E (APOE) ␧4 allele (11–15), a common late-onset AD Expression Omnibus (GEO) database, www.ncbi.nlm.nih.gov/geo (accession no. GSE5281). susceptibility gene (16–18). CMRgl reductions in AD-affected ¶¶To whom correspondence should be addressed at the * address. E-mail: [email protected]. areas were correlated with APOE ␧4 gene dose (i.e., three levels © 2008 by The National Academy of Sciences of the USA www.pnas.org͞cgi͞doi͞10.1073͞pnas.0709259105 PNAS ͉ March 18, 2008 ͉ vol. 105 ͉ no. 11 ͉ 4441–4446 Downloaded by guest on September 26, 2021 Fig. 1. Altered expression of mitochondrial energy metabolism elements. Energy metabolism-relevant elements showing statistically significant underex- pression in the PCC are shown. These elements include the five complexes of the ETC and TIMMs and TOMMs. OM, outer mitochondrial membrane; IMS, intermembrane space; IM, inner mitochondrial membrane. (TIMMs and TOMMs, respectively), in six brain regions. These orodeoxyglucose positron emission tomography (FDG PET) nuclear genes included 39 complex I genes coding for NADH studies of AD. dehydrogenase, all 4 nuclear-encoded complex II genes coding for succinate dehydrogenase, 9 complex III genes coding for Results ubiquinol-cytochrome c reductase, 13 complex IV genes coding Fold change values and P values for the 80 ETC and translocase for cytochrome c oxidase, and 15 complex V genes coding for genes in each of the sampled regions are posted at www.tgen.org/ ATP synthase, as well as 11 TIMMs and 6 TOMMs, which neurogenomics/pcc, and additional expression results have been regulate the transport of nuclear-encoded electron transport reported in ref. 54. The proportion of significantly underex- subunits into the mitochondria. These ETC complexes and pressed ETC and translocase genes in each of the sampled brain translocases are illustrated in Fig. 1. The six brain regions regions (P Ͻ 0.01 after correction for multiple comparisons) is included the PCC, which is associated with unusually early shown in Table 1. In comparison with controls, AD cases had CMRgl reductions in AD (4, 28); the middle temporal gyrus significantly lower expression of 70% of the nuclear genes (MTG); the hippocampal field CA1 (HIP) and entorhinal cortex encoding mitochondrial ETC subunits in PCC pyramidal neu- (EC), which are also metabolically affected in AD (1, 20); the rons, 65% of those in MTG neurons, 61% in HIP neurons, 23% superior frontal gyrus (SFG), which is associated with prefer- in EC layer II stellate neurons, 16% in VC neurons, and 5% in ential CMRgl reductions in normal aging (29–33); and the SFG neurons. By comparison, AD cases had significantly higher primary visual cortex (VC), which is relatively spared from expression of only 4% of the nuclear genes encoding mitochon- CMRgl reductions in both aging and AD (4, 11). drial ETC subunits in PCC pyramidal neurons, 13% of those in We initially tested the hypothesis that AD would be associated MTG neurons, 8% of HIP neurons, 1% of EC neurons, 4% of with reduced neuronal expression of metabolically relevant VC neurons, and 0% of SFG neurons (data for these genes are nuclear genes in the PCC and that these AD-related reductions listed on the supplementary data site). Additional factors that would be significantly greater than those in VC. (Findings from displayed statistically significant underexpression in the PCC, our survey of 55,000 neuronal transcripts have been published in and which may influence mitochondrial energy metabolism, ref.
Recommended publications
  • Role of Tomm40'523 – Apoe Haplotypes in Alzheimer's Disease Etiology
    ROLE OF TOMM40’523 – APOE HAPLOTYPES IN ALZHEIMER’S DISEASE ETIOLOGY – FROM CLINICS TO MITOCHONDRIA RÈMY CARDOSO Tese para obtenção do grau de Doutor em EnvelHecimento e Doenças Crónicas Doutoramento em associação entre: Universidade NOVA de Lisboa (Faculdade de Ciências Médicas | NOVA Medical ScHool - FCM|NMS/UNL) Universidade de Coimbra (Faculdade de Medicina - FM/UC) Universidade do MinHo (Escola de Medicina - EMed/UM) Novembro, 2020 ROLE OF TOMM40’523 – APOE HAPLOTYPES IN ALZHEIMER’S DISEASE ETIOLOGY – FROM CLINICS TO MITOCHONDRIA Rèmy Cardoso Professora Doutora Catarina Resende Oliveira, Professora Catedrática Jubilada da FM/UC Professor Doutor Duarte Barral, Professor Associado da FCM|NMS/UNL Tese para obtenção do grau de Doutor em EnvelHecimento e Doenças Crónicas Doutoramento em associação entre: Universidade NOVA de Lisboa (Faculdade de Ciências Médicas | NOVA Medical ScHool - FCM|NMS/UNL) Universidade de Coimbra (Faculdade de Medicina - FM/UC) Universidade do MinHo (Escola de Medicina - EMed/UM) Novembro, 2020 This thesis was conducted at the Center for Neuroscience and Cell Biology (CNC.CIBB) of University of Coimbra and Coimbra University Hospital (CHUC) and was a collaboration of the following laboratories and departments with the supervision of Catarina Resende Oliveira MD, PhD, Full Professor of FM/UC and the co-supervision of Duarte Barral PhD, Associated professor of Nova Medical School, Universidade Nova de Lisboa: • Neurogenetics laboratory (CNC.CIBB) headed by Maria Rosário Almeida PhD • Neurochemistry laboratory (CHUC)
    [Show full text]
  • Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach
    Mafalda Rita Avó Bacalhau Establishing the Pathogenicity of Novel Mitochondrial DNA Sequence Variations: a Cell and Molecular Biology Approach Tese de doutoramento do Programa de Doutoramento em Ciências da Saúde, ramo de Ciências Biomédicas, orientada pela Professora Doutora Maria Manuela Monteiro Grazina e co-orientada pelo Professor Doutor Henrique Manuel Paixão dos Santos Girão e pela Professora Doutora Lee-Jun C. Wong e apresentada à Faculdade de Medicina da Universidade de Coimbra Julho 2017 Faculty of Medicine Establishing the pathogenicity of novel mitochondrial DNA sequence variations: a cell and molecular biology approach Mafalda Rita Avó Bacalhau Tese de doutoramento do programa em Ciências da Saúde, ramo de Ciências Biomédicas, realizada sob a orientação científica da Professora Doutora Maria Manuela Monteiro Grazina; e co-orientação do Professor Doutor Henrique Manuel Paixão dos Santos Girão e da Professora Doutora Lee-Jun C. Wong, apresentada à Faculdade de Medicina da Universidade de Coimbra. Julho, 2017 Copyright© Mafalda Bacalhau e Manuela Grazina, 2017 Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os direitos de autor são pertença do autor da tese e do orientador científico e que nenhuma citação ou informação obtida a partir dela pode ser publicada sem a referência apropriada e autorização. This copy of the thesis has been supplied on the condition that anyone who consults it recognizes that its copyright belongs to its author and scientific supervisor and that no quotation from the
    [Show full text]
  • Mff Regulation of Mitochondrial Cell Death Is a Therapeutic
    Author Manuscript Published OnlineFirst on October 3, 2019; DOI: 10.1158/0008-5472.CAN-19-1982 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Rev. Ms. CAN-19-1982 MFF REGULATION OF MITOCHONDRIAL CELL DEATH IS A THERAPEUTIC TARGET IN CANCER Jae Ho Seo1,2, Young Chan Chae1,2,3*, Andrew V. Kossenkov4, Yu Geon Lee3, Hsin-Yao Tang4, Ekta Agarwal1,2, Dmitry I. Gabrilovich1,2, Lucia R. Languino1,5, David W. Speicher1,4,6, Prashanth K. Shastrula7, Alessandra M. Storaci8,9, Stefano Ferrero8,10, Gabriella Gaudioso8, Manuela Caroli11, Davide Tosi12, Massimo Giroda13, Valentina Vaira8,9, Vito W. Rebecca6, Meenhard Herlyn6, Min Xiao6, Dylan Fingerman6, Alessandra Martorella6, Emmanuel Skordalakes7 and Dario C. Altieri1,2* 1Prostate Cancer Discovery and Development Program 2Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104 USA 3School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea 4Center for Systems and Computational Biology, The Wistar Institute, Philadelphia, PA 19104, USA 5Department of Cancer Biology, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107 USA 6Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA 19104, USA 7Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA 1 Downloaded from cancerres.aacrjournals.org on September 29, 2021. © 2019 American Association for Cancer Research. Author Manuscript
    [Show full text]
  • Autism Multiplex Family with 16P11.2P12.2 Microduplication Syndrome in Monozygotic Twins and Distal 16P11.2 Deletion in Their Brother
    European Journal of Human Genetics (2012) 20, 540–546 & 2012 Macmillan Publishers Limited All rights reserved 1018-4813/12 www.nature.com/ejhg ARTICLE Autism multiplex family with 16p11.2p12.2 microduplication syndrome in monozygotic twins and distal 16p11.2 deletion in their brother Anne-Claude Tabet1,2,3,4, Marion Pilorge2,3,4, Richard Delorme5,6,Fre´de´rique Amsellem5,6, Jean-Marc Pinard7, Marion Leboyer6,8,9, Alain Verloes10, Brigitte Benzacken1,11,12 and Catalina Betancur*,2,3,4 The pericentromeric region of chromosome 16p is rich in segmental duplications that predispose to rearrangements through non-allelic homologous recombination. Several recurrent copy number variations have been described recently in chromosome 16p. 16p11.2 rearrangements (29.5–30.1 Mb) are associated with autism, intellectual disability (ID) and other neurodevelopmental disorders. Another recognizable but less common microdeletion syndrome in 16p11.2p12.2 (21.4 to 28.5–30.1 Mb) has been described in six individuals with ID, whereas apparently reciprocal duplications, studied by standard cytogenetic and fluorescence in situ hybridization techniques, have been reported in three patients with autism spectrum disorders. Here, we report a multiplex family with three boys affected with autism, including two monozygotic twins carrying a de novo 16p11.2p12.2 duplication of 8.95 Mb (21.28–30.23 Mb) characterized by single-nucleotide polymorphism array, encompassing both the 16p11.2 and 16p11.2p12.2 regions. The twins exhibited autism, severe ID, and dysmorphic features, including a triangular face, deep-set eyes, large and prominent nasal bridge, and tall, slender build. The eldest brother presented with autism, mild ID, early-onset obesity and normal craniofacial features, and carried a smaller, overlapping 16p11.2 microdeletion of 847 kb (28.40–29.25 Mb), inherited from his apparently healthy father.
    [Show full text]
  • Airway Inflammation Mitochondrial Dysfunction Increases Allergic
    Mitochondrial Dysfunction Increases Allergic Airway Inflammation Leopoldo Aguilera-Aguirre, Attila Bacsi, Alfredo Saavedra-Molina, Alexander Kurosky, Sanjiv Sur and Istvan This information is current as Boldogh of October 1, 2021. J Immunol 2009; 183:5379-5387; Prepublished online 28 September 2009; doi: 10.4049/jimmunol.0900228 http://www.jimmunol.org/content/183/8/5379 Downloaded from References This article cites 61 articles, 11 of which you can access for free at: http://www.jimmunol.org/content/183/8/5379.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on October 1, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2009 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Mitochondrial Dysfunction Increases Allergic Airway Inflammation1 Leopoldo Aguilera-Aguirre,*§ Attila Bacsi,*¶ Alfredo Saavedra-Molina,§ Alexander Kurosky,† Sanjiv Sur,‡ and Istvan Boldogh*2 The prevalence of allergies and asthma among the world’s population has been steadily increasing due to environmental factors.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Mitochondria Cat. no. 330231 PAHS-087ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Mitochondria RT² Profiler PCR Array profiles the expression of 84 genes involved in the biogenesis and function of the cell's powerhouse organelle. The genes monitored by this array include regulators and mediators of mitochondrial molecular transport of not only the metabolites needed for the electron transport chain and oxidative phosphorylation, but also the ions required for maintaining the mitochondrial membrane polarization and potential important for ATP synthesis. Metabolism and energy production are not the only functions of mitochondria.
    [Show full text]
  • Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(Methacrylic Acid-Co-Methyl Methacrylate) Beads
    Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads by Lindsay Elizabeth Fitzpatrick A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto © Copyright by Lindsay Elizabeth Fitzpatrick 2012 Molecular and Cellular Mechanisms of the Angiogenic Effect of Poly(methacrylic acid-co-methyl methacrylate) Beads Lindsay Elizabeth Fitzpatrick Doctorate of Philosophy Institute of Biomaterials and Biomedical Engineering University of Toronto 2012 Abstract Poly(methacrylic acid -co- methyl methacrylate) beads were previously shown to have a therapeutic effect on wound closure through the promotion of angiogenesis. However, it was unclear how this polymer elicited its beneficial properties. The goal of this thesis was to characterize the host response to MAA beads by identifying molecules of interest involved in MAA-mediated angiogenesis (in comparison to poly(methyl methacrylate) beads, PMMA). Using a model of diabetic wound healing and a macrophage-like cell line (dTHP-1), eight molecules of interest were identified in the host response to MAA beads. Gene and/or protein expression analysis showed that MAA beads increased the expression of Shh, IL-1β, IL-6, TNF- α and Spry2, but decreased the expression of CXCL10 and CXCL12, compared to PMMA and no beads. MAA beads also appeared to modulate the expression of OPN. In vivo, the global gene expression of OPN was increased in wounds treated with MAA beads, compared to PMMA and no beads. In contrast, dTHP-1 decreased OPN gene expression compared to PMMA and no beads, but expressed the same amount of secreted OPN, suggesting that the cells decreased the expression of the intracellular isoform of OPN.
    [Show full text]
  • Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol
    Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol Danie¨lle M. P. H. J. Boesten1*., Alvin Berger2.¤, Peter de Cock3, Hua Dong4, Bruce D. Hammock4, Gertjan J. M. den Hartog1, Aalt Bast1 1 Department of Toxicology, Maastricht University, Maastricht, The Netherlands, 2 Global Food Research, Cargill, Wayzata, Minnesota, United States of America, 3 Cargill RandD Center Europe, Vilvoorde, Belgium, 4 Department of Entomology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America Abstract Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets.
    [Show full text]
  • Identification of P.A684V Missense Mutation in the WFS1 Gene As a Frequent Cause of Autosomal Dominant Optic Atrophy and Hearing
    RESEARCH ARTICLE Identification of p.A684V Missense Mutation in the WFS1 Gene as a Frequent Cause of Autosomal Dominant Optic Atrophy and Hearing Impairment Nanna D. Rendtorff,1 Marianne Lodahl,1 Houda Boulahbel,2 Ida R. Johansen,1 Arti Pandya,3 Katherine O. Welch,4 Virginia W. Norris,4 Kathleen S. Arnos,4 Maria Bitner-Glindzicz,5 Sarah B. Emery,6 Marilyn B. Mets,7 Toril Fagerheim,8 Kristina Eriksson,9 Lars Hansen,1 Helene Bruhn,10 Claes M€oller,11 Sture Lindholm,12 Stefan Ensgaard,13 Marci M. Lesperance,6 and Lisbeth Tranebjaerg1,14*,† 1Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine (ICMM), The Panum Institute, University of Copenhagen, Copenhagen, Denmark 2Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark 3Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 4Department of Biology, Gallaudet University, Washington DC 5UCL Institute of Child Health, London, UK 6Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, UniversityofMichiganHealthSystem,AnnArbor,Michigan 7Departments of Ophthalmology and Surgery, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 8Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway 9Department of Ophthalmology, Lundby Hospital, Gothenburg, Sweden 10Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden 11Department of Audiology/Disability Research (SIDR), O¨rebro University, Sweden 12Department of Audiology, County Hospital, Kalmar, Sweden 13Department of Psychiatrics, Stockholm, Sweden 14Department of Audiology, Bispebjerg Hospital, Copenhagen, Denmark Received 19 July 2010; Accepted 2 February 2011 Optic atrophy (OA) and sensorineural hearing loss (SNHL) are these additional eight families.
    [Show full text]
  • Dominant Optic Atrophy
    Lenaers et al. Orphanet Journal of Rare Diseases 2012, 7:46 http://www.ojrd.com/content/7/1/46 REVIEW Open Access Dominant optic atrophy Guy Lenaers1*, Christian Hamel1,2, Cécile Delettre1, Patrizia Amati-Bonneau3,4,5, Vincent Procaccio3,4,5, Dominique Bonneau3,4,5, Pascal Reynier3,4,5 and Dan Milea3,4,5,6 Abstract Definition of the disease: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology: The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description: DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology: Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy.
    [Show full text]
  • TIMM8A Gene Translocase of Inner Mitochondrial Membrane 8A
    TIMM8A gene translocase of inner mitochondrial membrane 8A Normal Function The TIMM8A gene provides instructions for making a protein that is found inside mitochondria, which are structures within cells that convert the energy from food into a form that cells can use. Mitochondria have two membranes, an outer membrane and an inner membrane, which are separated by a fluid-filled area called the intermembrane space. The TIMM8A protein is found in the intermembrane space, where it forms a complex (a group of proteins that work together) with a very similar protein called TIMM13. This complex transports other proteins across the intermembrane space to the mitochondrial inner membrane. Health Conditions Related to Genetic Changes Deafness-dystonia-optic neuronopathy syndrome At least 20 mutations in the TIMM8A gene have been found to cause deafness-dystonia- optic neuronopathy (DDON) syndrome. Most of these mutations result in the absence of functional TIMM8A protein inside the mitochondria, which prevents the formation of the TIMM8A/TIMM13 complex. Researchers believe that the lack of this complex leads to abnormal transport of proteins across the intermembrane space, although it is unclear how abnormal protein transport affects the function of the mitochondria and causes the signs and symptoms of DDON syndrome. Some people with DDON syndrome have large DNA deletions that remove the entire TIMM8A gene and one end of a neighboring gene known as BTK. Mutations in the BTK gene cause X-linked agammaglobulinemia (XLA), which is characterized by an increased susceptibility to infections. Individuals with large DNA deletions that include the TIMM8A gene and the BTK gene have the signs and symptoms of both DDON syndrome and XLA.
    [Show full text]