Non-Native and Native Plant Species Distributions and Variability Along an Elevation Gradient in the Wallowa Mountains, Oregon

Total Page:16

File Type:pdf, Size:1020Kb

Non-Native and Native Plant Species Distributions and Variability Along an Elevation Gradient in the Wallowa Mountains, Oregon AN ABSTRACT OF THE THESIS OF Joshua P. Averett for the degree of Master of Science in Rangeland Science presented on June 30, 2014. Title: Non-native and Native Plant Species Distributions and Variability along an Elevation Gradient in the Wallowa Mountains, Oregon. Abstract approved: ______________________________________________________ Timothy DelCurto, Michael M. Borman Invasion by non-native plants into natural areas is an important component of global change that threatens biodiversity and ecosystem structure and function. Mountains are currently among the least invaded ecosystems, however, these biodiversity hotspots are increasingly under threat of exotic plant invasion. Evaluation of plant species distribution patterns in mountain ecosystems can provide insight into dominant processes of plant invasion and inform management to reduce the spread of non-native plants in mountains. The objectives of this study were to: 1) evaluate the main drivers of plant invasions in the Wallowa Mountain Range of northeastern Oregon, and the extent patterns of native species distributions and their causes differed from non-native species along an elevation gradient; and 2) investigate inter- and intra-annual understory vascular plant species variability along an elevation gradient to inform long-term monitoring of plant invasion dynamics in the Wallowa Mountains. We sampled understory vascular plant communities in summer 2012 along three forest roads in the Wallowa Mountains. Transects (n=20) were evenly stratified by elevation (60 meters) along each road. Indicator species analysis (ISA) was used to identify habitat tendencies for non-native species. Non-metric multidimensional scaling (NMS) related community composition to environmental and species trait factors. Predictors of non-native and native species abundance and richness were evaluated using Non-parametric multiplicative regression (NPMR). Canopy openness and elevation niche widths were modeled for all common species and evaluated for evidence of high elevation or closed canopy specialization. Non-native species richness decreased continuously with increasing elevation. In contrast, native species richness displayed a unimodal distribution with maximum richness at the mid-elevations. According to NMS and NPMR, elevation, canopy openness, and disturbance were the strongest correlates of non-native species abundance. Non-native species were concentrated in low elevation bunchgrass, roadside, and open forest habitats with high canopy openness, and moderate to high disturbance intensity. Overlays of species trait factors onto ordinations revealed that the transition into the subalpine community and over-story canopy closure exceeding approximately 60 percent were potential barriers to non-native species establishment. Vegetation sampling was repeated three times (June, July, and August 2013) during the growing season in summer 2013 for a subset (n=10) of our transects. Blocked Multi Response Permutation Procedure (MRBP) was used to test the hypothesis of no change in species composition between years (summer 2012 and summer 2013) and between each sampling period (June, July, and August) within one growing season. NMS related community composition at different times to environmental and trait category factors. Blocked Indicator Species Analysis was used to identify species with tendencies towards specific sampling periods. Important predictors of vegetation change were identified and indicator species distributions were related to NMS axes using NPMR. Vegetation composition changed both between years and between each sampling period within one growing season. Species richness increased with sampling effort, dominant species were consistently found throughout all sampling periods and rare species showed the highest rate of turnover between sampling periods. The highest species richness and greatest number of indicator species were associated with the early summer (June) sampling period. Approximately 25% of all non-native species showed tendencies towards a specific sampling period where greater than half favored the June sampling period within lowland bunchgrass communities. Annual species including the most dominant non-native species within the lowland and montane zones showed the highest inter- and intra-annual variability compared to other trait categories. Total species richness was positively related to turnover and was the most important predictor of relative abundance change between all sampling periods. Species turnover was highest in species rich montane plots; however, trait abundance and richness did not statistically differ in montane plots. These data suggest that elevation, canopy, openness, and disturbance are important factors structuring non-native plant distributions in the Wallowa Mountains. Our findings that non-native species tended to be concentrated in low- elevation, early successional habitats coupled with a lack of high elevation or closed canopy specialization indicates that non-native plants that occurr at the highest elevations are likely generalist species that depend on disturbance (primarily open over-story canopy) for spread into higher elevation sites until they are eventually filtered out by harsh environmental conditions coincident with the subalpine transition zone. Collectively these results suggest that interactions between introduction pathways that favor human assisted dispersal into the low-elevations where ruderal species are favored and environmental filters (elevation, canopy openness, and disturbance) are the dominant factors structuring non-native plant distributions in the Wallowa Mountains. Our results also indicate that long-term monitoring of vegetation change in the Wallowa Mountains will be improved through periodic sampling during each growing season. Sampling once during the spring or early summer and then again coincident with peak biomass should improve estimates of species distributions and diversity patterns by capturing both vernal and late season species. Early season sampling may be particularly important for monitoring non-native plants in the Wallowa Mountains as most non-natives were concentrated in low elevation semi- arid bunchgrass communities where spring and early summer specialization is common. ©Copyright by Joshua P. Averett June 30, 2014 All Rights Reserved Non-native and Native Plant Species Distributions and Variability along an Elevation Gradient in the Wallowa Mountains, Oregon by Joshua P. Averett A THESIS submitted to Oregon State University in partial fulfillment of the requirements for the degree of Master of Science Presented June 30, 2014 Commencement June 2015 Master of Science thesis of Joshua P. Averett presented on June 30, 2014 APPROVED: Co-Major Professor, representing Rangeland Sciences Co-Major Professor, representing Rangeland Sciences Head of the Department of Animal and Rangeland Sciences Dean of the Graduate School I understand that my thesis will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my thesis to any reader upon request. Joshua P. Averett, Author ACKNOWLEDGEMENTS I am grateful to Tim DelCurto and Michael Borman for taking me on as their graduate student and for their guidance through my graduate school experience. I would like to express great thanks to Ricardo Mata-González and Bruce McCune for their excellent mentorship, technical support, and consistent optimism and encouragement throughout my research journey. Thank you to Julia Jones for the great advice and support that helped to steer me back on course whenever I veered. I also extend great thanks to Catherine Parks for her support with the conceptual design of this study and assistance with field sampling and Bridgett Naylor for her support and patience with data extraction and database management. This research would not have been possible without my outstanding field crew. A heart-felt thanks goes out to Kent Coe, Rachel Burton, Regina Thompson, Ryan Limb, and Samantha Pack. I would like to express gratitude to my family for all of their love and support through and leading up to this experience. Thanks to my mother Betty, father Jerry, and brother Jason. Lastly, and most importantly, I would like to thank my wife Adrienne. Without her love and encouragement to follow my passions, none of this would have been possible. CONTRIBUTION OF AUTHORS Dr. Bruce McCune contributed to the entire thesis through guidance and editing. Dr. McCune also provided technical support regarding analytical approaches and implementation of Non-metric multidimensional scaling, Non-parametric multiplicative regression, Blocked Multi-response Permutation Procedures, and Blocked Indicator Species Analysis using HyperNiche 2.0 and PC-Ord 6.0. Dr. Catherine Parks provided guidance regarding research questions, provided edits, and assisted in the development of the sampling protocol for both chapters. Bridgett Naylor contributed to chapters 2 and 3 through support of data extraction, data-base management, and assisted with the development of the sampling protocol. Dr. Ricardo Mata-González provided guidance and editing for the entire thesis. TABLE OF CONTENTS Chapter 1 Introduction .................................................................................................. 1 Objectives ...................................................................................................................................... 11 Chapter 2 Non-native and native plant distributions
Recommended publications
  • Table of Contents
    TABLE OF CONTENTS INTRODUCTION .....................................................................................................................1 CREATING A WILDLIFE FRIENDLY YARD ......................................................................2 With Plant Variety Comes Wildlife Diversity...............................................................2 Existing Yards....................................................................................................2 Native Plants ......................................................................................................3 Why Choose Organic Fertilizers?......................................................................3 Butterfly Gardens...............................................................................................3 Fall Flower Garden Maintenance.......................................................................3 Water Availability..............................................................................................4 Bird Feeders...................................................................................................................4 Provide Grit to Assist with Digestion ................................................................5 Unwelcome Visitors at Your Feeders? ..............................................................5 Attracting Hummingbirds ..................................................................................5 Cleaning Bird Feeders........................................................................................6
    [Show full text]
  • Chapter Vii Table of Contents
    CHAPTER VII TABLE OF CONTENTS VII. APPENDICES AND REFERENCES CITED........................................................................1 Appendix 1: Description of Vegetation Databases......................................................................1 Appendix 2: Suggested Stocking Levels......................................................................................8 Appendix 3: Known Plants of the Desolation Watershed.........................................................15 Literature Cited............................................................................................................................25 CHAPTER VII - APPENDICES & REFERENCES - DESOLATION ECOSYSTEM ANALYSIS i VII. APPENDICES AND REFERENCES CITED Appendix 1: Description of Vegetation Databases Vegetation data for the Desolation ecosystem analysis was stored in three different databases. This document serves as a data dictionary for the existing vegetation, historical vegetation, and potential natural vegetation databases, as described below: • Interpretation of aerial photography acquired in 1995, 1996, and 1997 was used to characterize existing (current) conditions. The 1996 and 1997 photography was obtained after cessation of the Bull and Summit wildfires in order to characterize post-fire conditions. The database name is: 97veg. • Interpretation of late-1930s and early-1940s photography was used to characterize historical conditions. The database name is: 39veg. • The potential natural vegetation was determined for each polygon in the analysis
    [Show full text]
  • Washington Plant List Douglas County by Scientific Name
    The NatureMapping Program Washington Plant List Revised: 9/15/2011 Douglas County by Scientific Name (1) Non- native, (2) ID Scientific Name Common Name Plant Family Invasive √ 763 Acer glabrum Douglas maple Aceraceae 800 Alisma graminium Narrowleaf waterplantain Alismataceae 19 Alisma plantago-aquatica American waterplantain Alismataceae 1087 Rhus glabra Sumac Anacardiaceae 650 Rhus radicans Poison ivy Anacardiaceae 29 Angelica arguta Sharp-tooth angelica Apiaceae 809 Angelica canbyi Canby's angelica Apiaceae 915 Cymopteris terebinthinus Turpentine spring-parsley Apiaceae 167 Heracleum lanatum Cow parsnip Apiaceae 991 Ligusticum grayi Gray's lovage Apiaceae 709 Lomatium ambiguum Swale desert-parsley Apiaceae 997 Lomatium canbyi Canby's desert-parsley Apiaceae 573 Lomatium dissectum Fern-leaf biscuit-root Apiaceae 582 Lomatium geyeri Geyer's desert-parsley Apiaceae 586 Lomatium gormanii Gorman's desert-parsley Apiaceae 998 Lomatium grayi Gray's desert-parsley Apiaceae 999 Lomatium hambleniae Hamblen's desert-parsley Apiaceae 609 Lomatium macrocarpum Large-fruited lomatium Apiaceae 1000 Lomatium nudicaule Pestle parsnip Apiaceae 634 Lomatium triternatum Nine-leaf lomatium Apiaceae 474 Osmorhiza chilensis Sweet-cicely Apiaceae 264 Osmorhiza occidentalis Western sweet-cicely Apiaceae 1044 Osmorhiza purpurea Purple sweet-cicely Apiaceae 492 Sanicula graveolens Northern Sierra) sanicle Apiaceae 699 Apocynum androsaemifolium Spreading dogbane Apocynaceae 813 Apocynum cannabinum Hemp dogbane Apocynaceae 681 Asclepias speciosa Showy milkweed Asclepiadaceae
    [Show full text]
  • Klickitat Trail: Upper Swale Canyon
    Upper Swale Canyon Klickitat Trail Accessed from Harms Road via the Centerville Highway Klickitat County, WA T3N R14E S20, 21, 2227, 28 Compiled by Paul Slichter. Updated May 30, 2010 Flora Northwest- http://science.halleyhosting.com Common Name Scientific Name Family Burr Chervil Anthriscus caucalis Apiaceae Canby's Desert Parsley Lomatium canbyi Apiaceae *Columbia Desert Parsley Lomatium columbianum Apiaceae Fernleaf Desert Parsley Lomatium dissectum v. dissectum Apiaceae Pungent Desert Parsley Lomatium grayi Apiaceae Broadnineleaf Desert Parsley Lomatium triternatum v. anomalum Apiaceae Biscuitroot Lomatium macrocarpum Apiaceae Barestem Desert Parsley Lomatium nudicaule Apiaceae Salt and Pepper Lomatium piperi Apiaceae Nine-leaf Desert Parsley Lomatium triternatum (v. ?) Apiaceae Gairdner's Yampah Perideridia gairdneri ssp. borealis ? Apiaceae Yarrow Achillea millefolium Asteraceae Low Pussytoes Antennaria dimorpha Asteraceae Narrowleaf Pussytoes Antennaria stenophylla Asteraceae Balsamroot Balsamorhiza careyana ? Asteraceae Bachelor's Button Centaurea cyanus Asteraceae Hoary False Yarrow Chaenactis douglasii Asteraceae Chicory Cichorum intybus Asteraceae Canada Thistle Cirsium arvense Asteraceae Hall's Goldenweed Columbiadoria hallii Asteraceae Western Hawksbeard Crepis intermedia Asteraceae Western Hawksbeard Crepis occidentalis ? Asteraceae Gold Stars Crocidium multicaule Asteraceae Gray Rabbitbrush Ericameria nauseosum Asteraceae Oregon Sunshine Eriophyllum integrifolium v. integrifolium Asteraceae Gumweed Grindelia (columbiana?)
    [Show full text]
  • Dwarf Woolly-Heads (Psilocarphus Brevissimus)
    PROPOSED Species at Risk Act Recovery Strategy Series Adopted under Section 44 of SARA Multi-species Recovery Strategy for the Princeton Landscape, including Dwarf Woolly-heads (Psilocarphus brevissimus) Southern Mountain Population, Slender Collomia (Collomia tenella), and Stoloniferous Pussytoes (Antennaria flagellaris) in Canada Princeton Landscape: Dwarf Woolly-heads Southern Mountain Population, Slender Collomia, and Stoloniferous Pussytoes 2013 Recommended citation Environment Canada. 2013. Multi-species Recovery Strategy for the Princeton Landscape, including Dwarf Woolly-heads (Psilocarphus brevissimus) Southern Mountain Population, Slender Collomia (Collomia tenella), and Stoloniferous Pussytoes (Antennaria flagellaris) in Canada [Proposed]. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. 20 pp. + Appendix. For copies of the recovery strategy, or for additional information on species at risk, including COSEWIC Status Reports, residence descriptions, action plans, and other related recovery documents, please visit the Species at Risk Public Registry (www.sararegistry.gc.ca). Cover illustration: Terry T. McIntosh Également disponible en français sous le titre « Programme de rétablissement plurispécifique pour le paysage de Princeton visant le psilocarphe nain (Psilocarphus brevissimus) - population des montagnes du Sud, le collomia délicat (Collomia tenella) et l'antennaire stolonifère (Antennaria flagellaris) au Canada [Proposition] » © Her Majesty the Queen in Right of Canada, represented by the Minister
    [Show full text]
  • Biological Evaluation for Pacific Southwest Region (R5) Sensitive Botanical Species For
    BIOLOGICAL EVALUATION FOR PACIFIC SOUTHWEST REGION (R5) SENSITIVE BOTANICAL SPECIES FOR JOSEPH CREEK FOREST HEALTH PROJECT MODOC NATIONAL FOREST WARNER MOUNTAIN RANGER DISTRICT September 14, 2017 Prepared by: Heidi Guenther 9.14.2017 Heidi Guenther, Forest Botanist Date Modoc National Forest BOTANY BIOLOGICAL EVALUATION JOSEPH CREEK FOREST HEALTH PROJECT TABLE OF CONTENTS 1 Executive Summary .............................................................................................................. 1 2 Introduction ........................................................................................................................... 2 3 Proposed Project and Description ....................................................................................... 2 3.1 Purpose and Need ........................................................................................................... 2 3.2 Proposed Action.............................................................................................................. 2 3.3 Environmental Setting ................................................................................................... 2 4 Species Considered and Species Evaluated ........................................................................ 4 5 Analysis Process and Affected Environment ...................................................................... 4 5.1 Analysis Process.............................................................................................................. 4 6 Consultation..........................................................................................................................
    [Show full text]
  • Rock, Cherry Creek, Nannie Creek
    Rock, Cherry and Narmie r-teks 3rhw t ;MeA o;- Watershed Analysis A 13.2: R 6 2/2x Winema National Forest - / TABLE OF CONTENTS Page I. INTRODUCTION 1 II. DESCRIPTION OF THE WATERSHED AREA 1 A. Location and Land Management 1 B. Geology 7 C. Climate 9 D. Soils 9 E. Hydrology 10 F. Potential Vegetation 10 III. BENEFICIAL USES AND VALUES 12 A. Biodiversity 12 B. Wilderness/Research Natural Area 12 C. Recreation 12 D. Cultural Resources 13 E. Timber and Roads 14 F. Agriculture and Water Source 14 G. Mineral Resources 15 H. Aesthetic/Scenic Values 15 IV. ISSUES TO BE EVALUATED 16 V. ANALYSIS OF ISSUES 17 A. Forest Health Decline 17 B. Wildlife and Plant Habitat Alteration 22 C. Fish Stocking in Subalpine Lakes 29 D. Impact to Native Fish Populations 31 E. Fish Habitat Degradation 36 F. Channel Condition Alteration 41 G. Hydrograph Change 45 H. Increased Sediment Loading 56 VI. MANAGEMENT RECOMMENDATIONS AND RESTORATION OPPORTUNITIES 63 A. Upland Forests 63 B. Low Elevation Wetlands 63 C. Fish/Aquatic Habitats 64 D. Roads and Channel Morphology 64 E. Trails 67 F. Riparian Reserves 67 G. Geomorphological Reserves 69 H. Soils 69 VII. REFERENCES 70 VIII. APPENDICES A. List of People Consulted 74 B. Wildlife Species 75 C. Plant and Fungi Species 80 D. Source of Vegetation Data 89 |&j0hERN OflEGOX~@NUND~IVEAQ UORARY WATERSHED ANALYSIS REPORT FOR THE ROCK, CHERRY. AND NANNIE CREEK WATERSHED AREA I. INTRODUCTION This report documents an analysis of the Rock, Cherry, and Nannie Watershed Area. The purpose of the analysis is to develop a scientifically-based understanding of the processes and interactions occurring within the watershed area and the effects of management practices.
    [Show full text]
  • Washington Windplant #1 Botanical Resources Field Survey Prepared for Klickitat County Planning Department Bonneville Power Admi
    WASHINGTON WINDPLANT #1 BOTANICAL RESOURCES FIELD SURVEY PREPARED FOR KLICKITAT COUNTY PLANNING DEPARTMENT BONNEVILLE POWER ADMINISTRATION APPENDIX B to Washington Windplant #1 EIS DECEMBER 1994 I I Table of Contents I 1.0 Introduction . 1 2.0 Study Methods . 1 I 2.1 Study Objectives and Pre-Survey Investigations . 1 2.1.1 Pre-survey Investigations . 2 2.1.2 Special Status Plant Species . 2 I 2.1.3 Native Plant Communities . 2 2.1.4 Plant Species of Potential Cultural Importance . 3 2.1.5 Habitat Types . 3 I 2.2 Field Survey Methodology . 5 3.0 Field Survey Results . 5 I 3.1 Habitat Types in the Project Area . 5 3.2 Special-Status Plant Species in Surveyed Corridors . 7 3.3 High-Quality Native Plant Communities in Surveyed Corridors . 7 3.3.1 Douglas' buckwheat/Sandberg's bluegrass (Eriogonum douglasii/ I Poa secunda) Community . 7 3.3.2 Bluebunch wheatgrass-Sandberg's bluegrass (Agropyron spicatum- Poa secunda) Lithosolic Phase Community . 7 I 3.3.3 Bluebunch wheatgrass-Idaho fescue (Agropyron spicatum-Festuca idahoensis Community . 8 3.3.4 Oregon white oak (Quercus garryana)and Oregon white oak-ponderosa I pine (Q. garryana-Pinus ponderosa) Woodland Communities . 8 3.3.5 Other Communities . 8 3.4 Plant Species of Potential Cultural Importance . 9 I 3.5 Wetlands . 10 4.0 Project Impacts . 10 I 4.1 Impacts on Plant Communities . 10 4.1.1 Overview . 10 4.1.2 Douglas' buckwheat/Sandberg' s bluegrass (Eriogonum douglasii/ I Poa secunda) Community . 12 4.1.3 Bluebunch wheatgrass-Sandberg' s bluegrass (Agropyron spicatum- Poa secunda and bluebunch wheatgrass-Idaho fescue (A.
    [Show full text]
  • Common Native Forbs of the Northern Great Basin Important for Greater Sage-Grouse Tara Luna • Mark R
    United States Department of Agriculture Common Native Forbs of the Northern Great Basin Important for Greater Sage-Grouse Tara Luna • Mark R. Mousseaux • R. Kasten Dumroese Forest Rocky Mountain General Technical Report November Service Research Station RMRS-GTR-387 2018 Luna, T.; Mousseaux, M.R.; Dumroese, R.K. 2018. Common native forbs of the northern Great Basin important for Greater Sage-grouse. Gen. Tech. Rep. RMRS-GTR-387. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station; Portland, OR: U.S. Department of the Interior, Bureau of Land Management, Oregon–Washington Region. 76p. Abstract: is eld guide is a tool for the identication of 119 common forbs found in the sagebrush rangelands and grasslands of the northern Great Basin. ese forbs are important because they are either browsed directly by Greater Sage-grouse or support invertebrates that are also consumed by the birds. Species are arranged alphabetically by genus and species within families. Each species has a botanical description and one or more color photographs to assist the user. Most descriptions mention the importance of the plant and how it is used by Greater Sage-grouse. A glossary and indices with common and scientic names are provided to facilitate use of the guide. is guide is not intended to be either an inclusive list of species found in the northern Great Basin or a list of species used by Greater Sage-grouse; some other important genera are presented in an appendix. Keywords: diet, forbs, Great Basin, Greater Sage-grouse, identication guide Cover photos: Upper le: Balsamorhiza sagittata, R.
    [Show full text]
  • Appendix 6 Biological Report (PDF)
    Biological Constraints Analysis Tahoe Donner 5-Year Trail Implementation Plan Truckee, Nevada County, CA Nevada County File Number ___ Prepared for: Tahoe Donner Association Forrest Huisman, Director of Capital Projects 11509 Northwoods Boulevard Truckee, California 96161 530-587-9487 Prepared by: Micki Kelly Kelly Biological Consulting PO Box 1625 Truckee, CA 96160 530-582-9713 June 2015, Revised December 2015 Biological Constraints Report, Tahoe Donner Trails 5-Year Implementation Plan December 2015 Table of Contents 1.0 INFORMATION SUMMARY ..................................................................................................................................... 1 2.0 PROJECT AND PROPERTY DESCRIPTION ................................................................................................................. 4 2.1 SITE OVERVIEW ............................................................................................................................................................ 4 2.2 REGULATORY FRAMEWORK ............................................................................................................................................. 4 2.2.1 Special-Status Species ...................................................................................................................................... 5 2.2.2 Wetlands and Waters of the U.S. ..................................................................................................................... 6 2.2.3 Waters of the State .........................................................................................................................................
    [Show full text]
  • Eastern Washington Plant List
    The NatureMapping Program Revised: 9/15/2011 Eastern Washington Plant List - Scientific Name 1- Non- native, 2- ID Scientific Name Common Name Plant Family Invasive √ 1141 Abies amabilis Pacific silver fir Pinaceae 1 Abies grandis Grand fir Pinaceae 1142 Abies lasiocarpa Sub-alpine fir Pinaceae 762 Abronia mellifera White sand verbena Nyctaginaceae 1143 Abronia umbellata Pink sandverbena Nyctaginaceae 763 Acer glabrum Douglas maple Aceraceae 3 Acer macrophyllum Big-leaf maple Aceraceae 470 Acer platinoides* Norway maple Aceraceae 1 5 Achillea millifolium Yarrow Asteraceae 1144 Aconitum columbianum Monkshood Ranunculaceae 8 Actaea rubra Baneberry Ranunculaceae 9 Adenocaulon bicolor Pathfinder Asteraceae 10 Adiantum pedatum Maidenhair fern Polypodiaceae 764 Agastache urticifolia Nettle-leaf horse-mint Lamiaceae 1145 Agoseris aurantiaca Orange agoseris Asteraceae 1146 Agoseris elata Tall agoseris Asteraceae 705 Agoseris glauca Mountain agoseris Asteraceae 608 Agoseris grandiflora Large-flowered agoseris Asteraceae 716 Agoseris heterophylla Annual agoseris Asteraceae 11 Agropyron caninum Bearded wheatgrass Poaceae 560 Agropyron cristatum* Crested wheatgrass Poaceae 1 1147 Agropyron dasytachyum Thickspike wheatgrass Poaceae 739 Agropyron intermedium* Intermediate ryegrass Poaceae 1 12 Agropyron repens* Quack grass Poaceae 1 744 Agropyron smithii Bluestem Poaceae 523 Agropyron spicatum Blue-bunch wheatgrass Poaceae 687 Agropyron trachycaulum Slender wheatgrass Poaceae 13 Agrostis alba* Red top Poaceae 1 799 Agrostis exarata* Spike bentgrass
    [Show full text]
  • Craters of the Moon National Monument and Preserve
    Arco, Idaho, USA Craters of the Moon National Monument and Preserve Organized by Family 793 Taxa Checklist of Vascular Plants Family Scientific Name Park Status Park Abundance Park Nativity Aceraceae Acer glabrum var. glabrum Present in Park Uncommon Native Amaranthaceae Amaranthus albus Present in Park Uncommon Native Amaranthaceae Amaranthus californicus Present in Park Uncommon Native Amaranthaceae Amaranthus retroflexus Present in Park Uncommon Non-native Apiaceae Angelica pinnata Present in Park Uncommon Native Apiaceae Cymopterus acaulis var. acaulis Present in Park Uncommon Native Apiaceae Cymopterus glaucus Present in Park Uncommon Native Apiaceae Cymopterus longipes Present in Park Uncommon Native Apiaceae Cymopterus petraeus Present in Park Unknown Native Apiaceae Cymopterus terebinthinus var. foeniculaceus Present in Park Common Native Apiaceae Heracleum lanatum Present in Park Uncommon Native Apiaceae Lomatium dissectum var. eatonii Present in Park Common Native Apiaceae Lomatium dissectum var. multifidum Present in Park Common Native Apiaceae Lomatium foeniculaceum var. macdougalii Present in Park Common Native Apiaceae Lomatium grayi Unconfirmed NA Native Apiaceae Lomatium nudicaule Present in Park Rare Native Apiaceae Lomatium triternatum ssp. platycarpum Present in Park Common Native Apiaceae Lomatium triternatum ssp. triternatum var. triternatum Present in Park Common Native Apiaceae Orogenia linearifolia Present in Park Uncommon Native Apiaceae Osmorhiza chilensis Present in Park Uncommon Native Apiaceae Osmorhiza occidentalis Present in Park Uncommon Native Apiaceae Perideridia gairdneri Present in Park Uncommon Native Apocynaceae Apocynum androsaemifolium Present in Park Uncommon Native Apocynaceae Apocynum cannabinum Present in Park Uncommon Native Apocynaceae Apocynum medium Present in Park Uncommon Native Asclepiadaceae Asclepias fascicularis Present in Park Rare Native Asclepiadaceae Asclepias speciosa Present in Park Uncommon Native Asclepiadaceae Asclepias subverticillata Present in Park Rare Native Asteraceae Achillea millefolium ssp.
    [Show full text]