Craters of the Moon National Monument and Preserve
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
September 22, 2014 Delinda Robinson Monterey County Resource Management Agency Planning Department 168 W. Alisal Street, 2Nd
September 22, 2014 Delinda Robinson Monterey County Resource Management Agency Planning Department 168 W. Alisal Street, 2nd Floor Salinas, CA 93901 [email protected] Re: California Flats Solar Project – PLN120294; SCH#2013041031 Draft Environmental Impact Report Dear Ms. Robinson: California Flats Solar, LLC (Applicant), a wholly owned subsidiary of First Solar, Inc., hereby provides to the County of Monterey (County) its written comments on the Draft Environmental Impact Report (EIR) for the California Flats Solar Project (Project), issued by the County on August 6, 2014. Our written comments consist of both this letter and the documents contained in the attachments, each of which is incorporated herein by reference. At the outset, we thank County staff and the County’s consultant, Rincon Consultants, Inc. (Rincon), for their hard work in compiling and preparing this Draft EIR in support of the Project. We also appreciate the significant public outreach efforts and agency consultation that has been conducted for the Draft EIR by the County under the California Environmental Quality Act (CEQA). We have provided our comments in the two attached tables, which are organized by chapter and section in the Draft EIR. The first table, “Table 1 – Comments,” contains substantive comments on specific issues in the Draft EIR for the County’s consideration. Please note that we have included three (3) figures as part of our comments that relate to certain comments in Table 1. The second table, “Table 2 – Errata,” contains factual and typographical revisions that should be incorporated in the Final EIR. We have also attached two golden eagle survey reports for 2014 which provide nest surveys and on- going survey data for golden eagle within a ten mile radius of the Project site, and a 2013 scent dog survey report assessing the presence of San Joaquin kit fox on the Project site. -
Table of Contents
TABLE OF CONTENTS INTRODUCTION .....................................................................................................................1 CREATING A WILDLIFE FRIENDLY YARD ......................................................................2 With Plant Variety Comes Wildlife Diversity...............................................................2 Existing Yards....................................................................................................2 Native Plants ......................................................................................................3 Why Choose Organic Fertilizers?......................................................................3 Butterfly Gardens...............................................................................................3 Fall Flower Garden Maintenance.......................................................................3 Water Availability..............................................................................................4 Bird Feeders...................................................................................................................4 Provide Grit to Assist with Digestion ................................................................5 Unwelcome Visitors at Your Feeders? ..............................................................5 Attracting Hummingbirds ..................................................................................5 Cleaning Bird Feeders........................................................................................6 -
Outline of Angiosperm Phylogeny
Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese -
Chapter Vii Table of Contents
CHAPTER VII TABLE OF CONTENTS VII. APPENDICES AND REFERENCES CITED........................................................................1 Appendix 1: Description of Vegetation Databases......................................................................1 Appendix 2: Suggested Stocking Levels......................................................................................8 Appendix 3: Known Plants of the Desolation Watershed.........................................................15 Literature Cited............................................................................................................................25 CHAPTER VII - APPENDICES & REFERENCES - DESOLATION ECOSYSTEM ANALYSIS i VII. APPENDICES AND REFERENCES CITED Appendix 1: Description of Vegetation Databases Vegetation data for the Desolation ecosystem analysis was stored in three different databases. This document serves as a data dictionary for the existing vegetation, historical vegetation, and potential natural vegetation databases, as described below: • Interpretation of aerial photography acquired in 1995, 1996, and 1997 was used to characterize existing (current) conditions. The 1996 and 1997 photography was obtained after cessation of the Bull and Summit wildfires in order to characterize post-fire conditions. The database name is: 97veg. • Interpretation of late-1930s and early-1940s photography was used to characterize historical conditions. The database name is: 39veg. • The potential natural vegetation was determined for each polygon in the analysis -
KALMIOPSIS Journal of the Native Plant Society of Oregon
KALMIOPSIS Journal of the Native Plant Society of Oregon Kalmiopsis leachiana ISSN 1055-419X Volume 20, 2013 &ôùĄÿĂùñü KALMIOPSIS (irteen years, fourteen issues; that is the measure of how long Journal of the Native Plant Society of Oregon, ©2013 I’ve been editing Kalmiopsis. (is is longer than I’ve lived in any given house or worked for any employer. I attribute this longevity to the lack of deadlines and time clocks and the almost total freedom to create a journal that is a showcase for our state and society. (ose fourteen issues contained 60 articles, 50 book reviews, and 25 tributes to Fellows, for a total of 536 pages. I estimate about 350,000 words, an accumulation that records the stories of Oregon’s botanists, native )ora, and plant communities. No one knows how many hours, but who counts the hours for time spent doing what one enjoys? All in all, this editing gig has been quite an education for me. I can’t think of a more e*ective and enjoyable way to make new friends and learn about Oregon plants and related natural history than to edit the journal of the Native Plant Society of Oregon. Now it is time for me to move on, but +rst I o*er thanks to those before me who started the journal and those who worked with me: the FEJUPSJBMCPBSENFNCFST UIFBVUIPSTXIPTIBSFEUIFJSFYQFSUJTF UIFSFWJFXFST BOEUIF4UBUF#PBSETXIPTVQQPSUFENZXPSL* especially thank those who will follow me to keep this journal &ôùĄÿĂ$JOEZ3PDIÏ 1I% in print, to whom I also o*er my +les of pending manuscripts, UIFTFSWJDFTPGBOFYQFSJFODFEQBHFTFUUFS BSFMJBCMFQSJOUFSBOE &ôùĄÿĂùñü#ÿñĂô mailing service, and the opportunity of a lifetime: editing our +ne journal, Kalmiopsis. -
Wildflowers Near Boise Cascade (Wenas) Campground (In the Upper
Wildflowers Near Boise Cascade (Wenas) Campground (in the upper Wenas Valley) Boise Cascade Lands Yakima County, WA from a trip held May 24, 2019 T16N R16E S3; T17N R16E S34, S35 Updated: December 13, 2019 Common Name Scientific Name Family Ferns and Horsetails ____ Fragile Fern Cystopteris fragilis Cystopteridaceae Monocots - Sedges, Rushes, Grasses & Herbaceous Wildflowers ____ Tapertip Onion Allium accuminatum Amaryllidaceae ____ Common Camas Camassia quamash (ssp. maxima ?) Asparagaceae ____ Douglas' Brodiaea Triteleia grandiflora v. grandiflora Asparagaceae ____ Elk Sedge Carex geyeri Cyperaceae ____ Grass Widows Olsynium douglasii v. douglasii Iridaceae ____ Sagebrush Mariposa Calochortus macrocarpus ssp. macrocarpus Liliaceae ____ Yellow Bells Fritillaria pudica Liliaceae ____ Panicled Deathcamas Toxicoscordion paniculatum Melanthiaceae ____ Meadow Deathcamas Toxicosordion venenosum Melanthiaceae ____ Common Western Needlegrass Achnatherum (occidentale ssp. pubescens ?) Poaceae ____ Field Meadow Foxtail Alopecurus pratensis Poaceae ____ Smooth Brome Bromus inermis Poaceae ____ Cheatgrass Bromus tectorum Poaceae ____ Onepike Oatgrass Danthonia unispicata Poaceae ____ Bottlebrush Squirreltail Elymus elymoides Poaceae ____ Bulbous Bluegrass Poa bulbosa Poaceae ____ Bluebunch Wheatgrass Pseudoroegenaria spicata v. spicata Poaceae Trees and Shrubs ____ Blue Elderberry Sambucus cerulea Adoxaceae ____ Stiff Sagebrush Artemisia rigida Asteraceae ____ Gray Rabbitbrush Ericameria nauseosa v. speciosa Asteraceae ____ Shining Oregon Grape Berberis aquifolium Berberidaceae ____ Mountain Alder Alnus incana ssp. tenuifolia Betulaceae ____ Common Snowberry Symphoricarpos albus v. laevigatus Caprifoliaceae ____ Kinnikinnik Arctostaphylos nevadensis ssp. nevadensis Ericaceae ____ Wax Currant Ribes cereum v. cereum Grossulariaceae ____ Fir Abies amabilis or A. grandis Pinaceae ____ Ponderosa Pine Pinus ponderosa v. ponderosa Pinaceae ____ Douglas Fir Pseudotsuga menziesii v. menziesii Pinaceae ____ Snowbrush Ceanothus velutinus v. -
The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014
The Jepson Manual: Vascular Plants of California, Second Edition Supplement II December 2014 In the pages that follow are treatments that have been revised since the publication of the Jepson eFlora, Revision 1 (July 2013). The information in these revisions is intended to supersede that in the second edition of The Jepson Manual (2012). The revised treatments, as well as errata and other small changes not noted here, are included in the Jepson eFlora (http://ucjeps.berkeley.edu/IJM.html). For a list of errata and small changes in treatments that are not included here, please see: http://ucjeps.berkeley.edu/JM12_errata.html Citation for the entire Jepson eFlora: Jepson Flora Project (eds.) [year] Jepson eFlora, http://ucjeps.berkeley.edu/IJM.html [accessed on month, day, year] Citation for an individual treatment in this supplement: [Author of taxon treatment] 2014. [Taxon name], Revision 2, in Jepson Flora Project (eds.) Jepson eFlora, [URL for treatment]. Accessed on [month, day, year]. Copyright © 2014 Regents of the University of California Supplement II, Page 1 Summary of changes made in Revision 2 of the Jepson eFlora, December 2014 PTERIDACEAE *Pteridaceae key to genera: All of the CA members of Cheilanthes transferred to Myriopteris *Cheilanthes: Cheilanthes clevelandii D. C. Eaton changed to Myriopteris clevelandii (D. C. Eaton) Grusz & Windham, as native Cheilanthes cooperae D. C. Eaton changed to Myriopteris cooperae (D. C. Eaton) Grusz & Windham, as native Cheilanthes covillei Maxon changed to Myriopteris covillei (Maxon) Á. Löve & D. Löve, as native Cheilanthes feei T. Moore changed to Myriopteris gracilis Fée, as native Cheilanthes gracillima D. -
2021 Award Recipients
2021 Charles Redd Center Award Recipients Notification and instruction emails will be sent out to all applicants with specifics Annaley Naegle Redd Assistantship Phil S. Allen, Plant and Wildlife Sciences, Brigham Young University, “Sub-alpine Wildflower Meadows as a Template for Water-Conserving Landscape Design” Richard A. Gill, Biology, Brigham Young University, “Biocrust Controls over Regional Carbon Cycling on the Colorado Plateau” Randy Larsen, Plant and Wildlife Sciences, Brigham Young University, “Mountain Lions (Puma concolor), Human Recreation, and the Wildland-Urban Interface: Improving Conservation of an Iconic Species Native to the West” Riley Nelson, Biology, Brigham Young University, “The Bee-Killers: Taxonomy and Phylogenetics of the Robber Fly Genus Proctacanthus (Insecta: Diptera: Asilidae) with Special Reference to Those of Western North America” Sam St. Clair, Plant and Wildlife Sciences, Brigham Young University, “Wildfire and Drought Impacts on Plant Invasions in the Western United States” Annaley Naegle Redd Student Award in Women’s History Amy Griffin, Interdisciplinary (Communications), Brigham Young University, “The Impact of Female Role Models in Television Media on the Perceived Electability of Women” Emily Larsen, History, University of Utah, “Artistic Frontiers: Women and the Making of the Utah Art Scene, 1880– 1950” Charles Redd Fellowship Award in Western American History David R M Beck, Native American Studies, University of Montana, “‘Bribed with Our Own Money,’ Federal Misuse of Tribal Funds in the Termination -
Washington Plant List Douglas County by Scientific Name
The NatureMapping Program Washington Plant List Revised: 9/15/2011 Douglas County by Scientific Name (1) Non- native, (2) ID Scientific Name Common Name Plant Family Invasive √ 763 Acer glabrum Douglas maple Aceraceae 800 Alisma graminium Narrowleaf waterplantain Alismataceae 19 Alisma plantago-aquatica American waterplantain Alismataceae 1087 Rhus glabra Sumac Anacardiaceae 650 Rhus radicans Poison ivy Anacardiaceae 29 Angelica arguta Sharp-tooth angelica Apiaceae 809 Angelica canbyi Canby's angelica Apiaceae 915 Cymopteris terebinthinus Turpentine spring-parsley Apiaceae 167 Heracleum lanatum Cow parsnip Apiaceae 991 Ligusticum grayi Gray's lovage Apiaceae 709 Lomatium ambiguum Swale desert-parsley Apiaceae 997 Lomatium canbyi Canby's desert-parsley Apiaceae 573 Lomatium dissectum Fern-leaf biscuit-root Apiaceae 582 Lomatium geyeri Geyer's desert-parsley Apiaceae 586 Lomatium gormanii Gorman's desert-parsley Apiaceae 998 Lomatium grayi Gray's desert-parsley Apiaceae 999 Lomatium hambleniae Hamblen's desert-parsley Apiaceae 609 Lomatium macrocarpum Large-fruited lomatium Apiaceae 1000 Lomatium nudicaule Pestle parsnip Apiaceae 634 Lomatium triternatum Nine-leaf lomatium Apiaceae 474 Osmorhiza chilensis Sweet-cicely Apiaceae 264 Osmorhiza occidentalis Western sweet-cicely Apiaceae 1044 Osmorhiza purpurea Purple sweet-cicely Apiaceae 492 Sanicula graveolens Northern Sierra) sanicle Apiaceae 699 Apocynum androsaemifolium Spreading dogbane Apocynaceae 813 Apocynum cannabinum Hemp dogbane Apocynaceae 681 Asclepias speciosa Showy milkweed Asclepiadaceae -
References and Appendices
References Ainley, D.G., S.G. Allen, and L.B. Spear. 1995. Off- Arnold, R.A. 1983. Ecological studies on six endan- shore occurrence patterns of marbled murrelets gered butterflies (Lepidoptera: Lycaenidae): in central California. In: C.J. Ralph, G.L. Hunt island biogeography, patch dynamics, and the Jr., M.G. Raphael, and J.F. Piatt, technical edi- design of habitat preserves. University of Cali- tors. Ecology and Conservation of the Marbled fornia Publications in Entomology 99: 1–161. Murrelet. USDA Forest Service, General Techni- Atwood, J.L. 1993. California gnatcatchers and coastal cal Report PSW-152; 361–369. sage scrub: the biological basis for endangered Allen, C.R., R.S. Lutz, S. Demairais. 1995. Red im- species listing. In: J.E. Keeley, editor. Interface ported fire ant impacts on Northern Bobwhite between ecology and land development in Cali- populations. Ecological Applications 5: 632-638. fornia. Southern California Academy of Sciences, Allen, E.B., P.E. Padgett, A. Bytnerowicz, and R.A. Los Angeles; 149–169. Minnich. 1999. Nitrogen deposition effects on Atwood, J.L., P. Bloom, D. Murphy, R. Fisher, T. Scott, coastal sage vegetation of southern California. In T. Smith, R. Wills, P. Zedler. 1996. Principles of A. Bytnerowicz, M.J. Arbaugh, and S. Schilling, reserve design and species conservation for the tech. coords. Proceedings of the international sym- southern Orange County NCCP (Draft of Oc- posium on air pollution and climate change effects tober 21, 1996). Unpublished manuscript. on forest ecosystems, February 5–9, 1996, River- Austin, M. 1903. The Land of Little Rain. University side, CA. -
How Many of Cassini Anagrams Should There Be? Molecular
TAXON 59 (6) • December 2010: 1671–1689 Galbany-Casals & al. • Systematics and phylogeny of the Filago group How many of Cassini anagrams should there be? Molecular systematics and phylogenetic relationships in the Filago group (Asteraceae, Gnaphalieae), with special focus on the genus Filago Mercè Galbany-Casals,1,3 Santiago Andrés-Sánchez,2,3 Núria Garcia-Jacas,1 Alfonso Susanna,1 Enrique Rico2 & M. Montserrat Martínez-Ortega2 1 Institut Botànic de Barcelona (CSIC-ICUB), Pg. del Migdia s.n., 08038 Barcelona, Spain 2 Departamento de Botánica, Facultad de Biología, Universidad de Salamanca, 37007 Salamanca, Spain 3 These authors contributed equally to this publication. Author for correspondence: Mercè Galbany-Casals, [email protected] Abstract The Filago group (Asteraceae, Gnaphalieae) comprises eleven genera, mainly distributed in Eurasia, northern Africa and northern America: Ancistrocarphus, Bombycilaena, Chamaepus, Cymbolaena, Evacidium, Evax, Filago, Logfia, Micropus, Psilocarphus and Stylocline. The main morphological character that defines the group is that the receptacular paleae subtend, and more or less enclose, the female florets. The aims of this work are, with the use of three chloroplast DNA regions (rpl32-trnL intergenic spacer, trnL intron, and trnL-trnF intergenic spacer) and two nuclear DNA regions (ITS, ETS), to test whether the Filago group is monophyletic; to place its members within Gnaphalieae using a broad sampling of the tribe; and to investigate in detail the phylogenetic relationships among the Old World members of the Filago group and provide some new insight into the generic circumscription and infrageneric classification based on natural entities. Our results do not show statistical support for a monophyletic Filago group. -
Plants for Pollinators in Oregon
TECHNICAL NOTES U. S. DEPT. OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE Portland, Oregon March 2008 PLANT MATERIALS No. 13 PLANTS FOR POLLINATORS IN OREGON Kathy Pendergrass, Plant Materials Specialist, NRCS, Portland, Oregon Mace Vaughan, Conservation Director, Xerces Society, Portland, Oregon Joe Williams, Manager, NRCS, Plant Materials Center, Corvallis, Oregon Left – honey bee on camas flower (Pendergrass) Right – bumble bee on rabbit brush (Vaughan) The purpose of this technical note is to provide information about establishing, maintaining and enhancing habitat and food resources for native pollinators, particularly for native bees, in Riparian buffers, Windbreaks, Hedgerows, Alley cropping, Field borders, Filter strips, Waterways, Range plantings and other NRCS practices. We welcome your comments for improving any of the content of this publication for future editions. Please contact us! PLANTS FOR POLLINATORS IN OREGON Native pollinators are a vital part of our environment. Pollinators are essential for the reproduction of native plants, as well as many crops. Pollinators include some bird and bat species and a wide array of insect species, but bees are the most important for our agricultural landscapes. Native bees are becoming more important pollinators for crop plants in light of recent challenges to honey bee keepers across the U.S., namely Colony Collapse Disorder and the variety of other ailments honey bees face. As a group, pollinators are threatened world-wide by habitat loss and fragmentation, pesticides, introduced diseases and parasites. Habitat enhancement for pollinators can also support other beneficial insects. For example, maintaining native sources of nectar and pollen, as well as protecting or establishing nest sites, provides important resources for other insects which might parasitize or predate upon harmful crop pests.