Plants for Pollinators in Oregon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Technical Note 30: Ability of Pacific Northwest Shrubs to Root From
TECHNICAL NOTES _____________________________________________________________________________________________ U.S. DEPT. OF AGRICULTURE NATURAL RESOURCES CONSERVATION SERVICE PORTLAND, OREGON DATE: September 2002 PLANT MATERIALS TECHNICAL NOTE NO. 30 Ability of Pacific Northwest Native Shrubs to Root from Hardwood Cuttings (with Summary of Propagation Methods for 22 Species) Dale C. Darris Conservation Agronomist Corvallis Plant Materials Center SUMMARY There is a need for additional information on how well native shrubs root from hardwood cuttings. First, nurseries are seeking to refine vegetative propagation techniques. Second, practitioners in the fields of riparian/wetland restoration and streambank stabilization are looking for species that are easy to root from unrooted dormant material that will provide cost competitive alternatives to native willows (Salix spp.) and redosier dogwood (Cornus sericea) for direct sticking of cuttings and soil bioengineering practices. The purpose of this work was to screen 15 shrubs indigenous to the Pacific Northwest USA for their ability to root from hardwood cuttings with and without a rooting compound in a greenhouse mist bench, well drained field, nursery bed, and saturated substrate (artificial pond). If a species roots easily, it has greater potential for planting as dormant cuttings, live stakes, or whips directly on a revegetation site, and may warrant further evaluation for fascines, brush mattresses, or other soil bioengineering practices. Based on the rooting ability of hardwood cuttings made from 1 (or 2) year old wood, those species with good potential include black twinberry (Lonicera involucrata), salmonberry (Rubus spectabilis), common snowberry (Symphoricarpos albus), and Pacific ninebark (Physocarpus capitatus). Coyote brush (Baccharis pilularis) and red elderberry (Sambucus racemosa) have fair potential. Indian plum (Oemlaria cerasiformis), mock orange (Philadelphus lewisii), and red flowering currant (Ribes sanguineum) may apply under limited circumstances, select uses, or ideal conditions. -
Native Habitat Restoration in Eastern Washington Wine Vineyards
NATIVE HABITAT RESTORATION IN EASTERN WASHINGTON WINE VINEYARDS AS A PEST MANAGEMENT STRATEGY By KATHARINE DENISE BUCKLEY A dissertation submitted in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY WASHINGTON STATE UNIVERSITY Department of Entomology MAY 2019 © Copyright by KATHARINE DENISE BUCKLEY, 2019 All Rights Reserved © Copyright by KATHARINE DENISE BUCKLEY, 2019 All Rights Reserved To the Faculty of Washington State University: The members of the Committee appointed to examine the dissertation of KATHARINE DENISE BUCKLEY find it satisfactory and recommend that it be accepted. _______________________________ David James, Ph.D., Chair _______________________________ Elizabeth Beers, Ph.D. _______________________________ Joan Davenport, Ph.D. ii ACKNOWLEDGMENTS I thank Lorraine Seymour and Gerry Lauby for their expertise, their organizational skills, their excellence as sounding boards, and hopefully their ability to pass some of that on to me. I thank Cole Provence and my family who were always supportive. I thank all the people who helped me with my statistics, especially Bernardo Chaves. I thank the computer technician who saved my computer’s data and my life. I thank Michael Aquilino. He knows what he did. Finally, I’d like to thank everyone who served on my committee, as well as Laura Lavine, for their guidance along the way. iii NATIVE HABITAT RESTORATION IN EASTERN WASHINGTON WINE VINEYARDS AS A PEST MANAGEMENT STRATEGY Abstract by Katharine Denise Buckley, Ph.D. Washington State University May 2019 Chair: David James Perennial crop systems such as wine grapes have begun using cover crops and hedgerows to increase beneficial insects and promote sustainable vineyard management in areas such as New Zealand and California. -
Acer Glabrum Var. Douglasii Snowberry
NATIVE PLANTS/SHRUBS: Saskatoon Serviceberry – Amielanchier alnifolia Oceanspray – Holodiscus discolor Blue Elderberry - Sambucus cerulea Erect, loosely branched shrub up to 15’ tall. Found Usually a shrub or small tree from 10’ to 20’ or Vine Maple - Acer circinatum Large shrubs or small trees up to 40’ tall and 6” in diameter. Occurs on moist, well-drained on well drained to dry sites in the sun and shade more tall. Found on moist, well-drained sites in An erect shrub, or more commonly a helter- sites in the sun or partial shade, from southern from south central California northward to British the sun; from British Columbia south to California, skelter arrangement of crooked branches; Alaska to northwestern California, and east- Columbia, eastward to Idaho. east through Idaho, Utah, and Nevada. up to 20’ tall, or less commonly a small tree ward throughout the Rocky Mountains. Elevational range: sea level to 9,000 feet. 30’ to 40’ in height. Common understory Dull Oregon Grape – Mahonia (Berberis) nervosa species in the West side forests of the Red Elderberry – Sambucus racemosa Pacific Northwest also pioneer species on Oregon Grape – Low, evergreen shrub with pinnately Berberis aquifolium (Tall Oregon Grape) A shrub or small tree from 8’ to 20’ tall. Occurs on cutover and burned-over lands. Found compound leaves; seldom over 30” high. moist, well-drained sites in the sun; most Erect evergreen shrub 3’ to 10’ tall, with dark on moist sites in the sun or shade from Grows on moist, well-drained sites in the sun common on the West Side of the Cascade green glossy leaves. -
Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat— Part 3
Prepared in cooperation with U.S. Joint Fire Science Program and National Interagency Fire Center, Bureau of Land Management, Great Northern Landscape Conservation, and Western Association of Fish and Wildlife Agencies Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat— Part 3. Site Level Restoration Decisions Circular 1426 Version 1.1, March 2018 U.S. Department of the Interior U.S. Geological Survey Cover: Photograph showing Wyoming big sagebrush community near Winnemucca, Nevada. (Photograph by David Pyke, U.S. Geological Survey, 2005.) Restoration Handbook for Sagebrush Steppe Ecosystems with Emphasis on Greater Sage-Grouse Habitat— Part 3. Site Level Restoration Decisions By David A. Pyke, Jeanne C. Chambers, Mike Pellant, Richard F. Miller, Jeffrey L. Beck, Paul S. Doescher, Bruce A. Roundy, Eugene W. Schupp, Steven T. Knick, Mark Brunson, and James D. McIver Prepared in cooperation with U.S. Joint Fire Science Program and National Interagency Fire Center, Bureau of Land Management, Great Northern Landscape Conservation, and Western Association of Fish and Wildlife Agencies Circular 1426 Version 1.1, March 2018 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2017 First release: 2017 Revised: March 2018 (ver. 1.1) For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. -
KALMIOPSIS Journal of the Native Plant Society of Oregon
KALMIOPSIS Journal of the Native Plant Society of Oregon Kalmiopsis leachiana ISSN 1055-419X Volume 20, 2013 &ôùĄÿĂùñü KALMIOPSIS (irteen years, fourteen issues; that is the measure of how long Journal of the Native Plant Society of Oregon, ©2013 I’ve been editing Kalmiopsis. (is is longer than I’ve lived in any given house or worked for any employer. I attribute this longevity to the lack of deadlines and time clocks and the almost total freedom to create a journal that is a showcase for our state and society. (ose fourteen issues contained 60 articles, 50 book reviews, and 25 tributes to Fellows, for a total of 536 pages. I estimate about 350,000 words, an accumulation that records the stories of Oregon’s botanists, native )ora, and plant communities. No one knows how many hours, but who counts the hours for time spent doing what one enjoys? All in all, this editing gig has been quite an education for me. I can’t think of a more e*ective and enjoyable way to make new friends and learn about Oregon plants and related natural history than to edit the journal of the Native Plant Society of Oregon. Now it is time for me to move on, but +rst I o*er thanks to those before me who started the journal and those who worked with me: the FEJUPSJBMCPBSENFNCFST UIFBVUIPSTXIPTIBSFEUIFJSFYQFSUJTF UIFSFWJFXFST BOEUIF4UBUF#PBSETXIPTVQQPSUFENZXPSL* especially thank those who will follow me to keep this journal &ôùĄÿĂ$JOEZ3PDIÏ 1I% in print, to whom I also o*er my +les of pending manuscripts, UIFTFSWJDFTPGBOFYQFSJFODFEQBHFTFUUFS BSFMJBCMFQSJOUFSBOE &ôùĄÿĂùñü#ÿñĂô mailing service, and the opportunity of a lifetime: editing our +ne journal, Kalmiopsis. -
Alplains 2013 Seed Catalog P.O
ALPLAINS 2013 SEED CATALOG P.O. BOX 489, KIOWA, CO 80117-0489, U.S.A. Three ways to contact us: FAX: (303) 621-2864 (24 HRS.) email: [email protected] website: www.alplains.com Dear Growing Friends: Welcome to our 23rd annual seed catalog! The summer of 2012 was long, hot and brutal, with drought afflicting most of the U.S. Most of my botanical explorations were restricted to Idaho, Wash- ington, Oregon and northern California but even there moisture was below average. In a year like this, seeps, swales, springs, vestigial snowbanks and localized rainstorms became much more important in my search for seeding plants. On the Snake River Plains of southern Idaho and the scab- lands of eastern Washington, early bloomers such as Viola beckwithii, V. trinervata, Ranunculus glaberrimus, Ranunculus andersonii, Fritillaria pudica and Primula cusickiana put on quite a show in mid-April but many populations could not set seed. In northern Idaho, Erythronium idahoense flowered extensively, whole meadows were covered with thousands of the creamy, pendant blossoms. One of my most satisfying finds in the Hells Canyon area had to be Sedum valens. The tiny glaucous rosettes, surround- ed by a ring of red leaves, are a succulent connoisseur’s dream. Higher up, the brilliant blue spikes of Synthyris missurica punctuated the canyon walls. In southern Oregon, the brilliant red spikes of Pedicularis densiflora lit up the Siskiyou forest floor. Further north in Oregon, large populations of Erythronium elegans, Erythronium oregonum ssp. leucandrum, Erythro- nium revolutum, trilliums and sedums provided wonderful picture-taking opportunities. Eriogonum species did well despite the drought, many of them true xerics. -
Wildflowers Near Boise Cascade (Wenas) Campground (In the Upper
Wildflowers Near Boise Cascade (Wenas) Campground (in the upper Wenas Valley) Boise Cascade Lands Yakima County, WA from a trip held May 24, 2019 T16N R16E S3; T17N R16E S34, S35 Updated: December 13, 2019 Common Name Scientific Name Family Ferns and Horsetails ____ Fragile Fern Cystopteris fragilis Cystopteridaceae Monocots - Sedges, Rushes, Grasses & Herbaceous Wildflowers ____ Tapertip Onion Allium accuminatum Amaryllidaceae ____ Common Camas Camassia quamash (ssp. maxima ?) Asparagaceae ____ Douglas' Brodiaea Triteleia grandiflora v. grandiflora Asparagaceae ____ Elk Sedge Carex geyeri Cyperaceae ____ Grass Widows Olsynium douglasii v. douglasii Iridaceae ____ Sagebrush Mariposa Calochortus macrocarpus ssp. macrocarpus Liliaceae ____ Yellow Bells Fritillaria pudica Liliaceae ____ Panicled Deathcamas Toxicoscordion paniculatum Melanthiaceae ____ Meadow Deathcamas Toxicosordion venenosum Melanthiaceae ____ Common Western Needlegrass Achnatherum (occidentale ssp. pubescens ?) Poaceae ____ Field Meadow Foxtail Alopecurus pratensis Poaceae ____ Smooth Brome Bromus inermis Poaceae ____ Cheatgrass Bromus tectorum Poaceae ____ Onepike Oatgrass Danthonia unispicata Poaceae ____ Bottlebrush Squirreltail Elymus elymoides Poaceae ____ Bulbous Bluegrass Poa bulbosa Poaceae ____ Bluebunch Wheatgrass Pseudoroegenaria spicata v. spicata Poaceae Trees and Shrubs ____ Blue Elderberry Sambucus cerulea Adoxaceae ____ Stiff Sagebrush Artemisia rigida Asteraceae ____ Gray Rabbitbrush Ericameria nauseosa v. speciosa Asteraceae ____ Shining Oregon Grape Berberis aquifolium Berberidaceae ____ Mountain Alder Alnus incana ssp. tenuifolia Betulaceae ____ Common Snowberry Symphoricarpos albus v. laevigatus Caprifoliaceae ____ Kinnikinnik Arctostaphylos nevadensis ssp. nevadensis Ericaceae ____ Wax Currant Ribes cereum v. cereum Grossulariaceae ____ Fir Abies amabilis or A. grandis Pinaceae ____ Ponderosa Pine Pinus ponderosa v. ponderosa Pinaceae ____ Douglas Fir Pseudotsuga menziesii v. menziesii Pinaceae ____ Snowbrush Ceanothus velutinus v. -
2021 Award Recipients
2021 Charles Redd Center Award Recipients Notification and instruction emails will be sent out to all applicants with specifics Annaley Naegle Redd Assistantship Phil S. Allen, Plant and Wildlife Sciences, Brigham Young University, “Sub-alpine Wildflower Meadows as a Template for Water-Conserving Landscape Design” Richard A. Gill, Biology, Brigham Young University, “Biocrust Controls over Regional Carbon Cycling on the Colorado Plateau” Randy Larsen, Plant and Wildlife Sciences, Brigham Young University, “Mountain Lions (Puma concolor), Human Recreation, and the Wildland-Urban Interface: Improving Conservation of an Iconic Species Native to the West” Riley Nelson, Biology, Brigham Young University, “The Bee-Killers: Taxonomy and Phylogenetics of the Robber Fly Genus Proctacanthus (Insecta: Diptera: Asilidae) with Special Reference to Those of Western North America” Sam St. Clair, Plant and Wildlife Sciences, Brigham Young University, “Wildfire and Drought Impacts on Plant Invasions in the Western United States” Annaley Naegle Redd Student Award in Women’s History Amy Griffin, Interdisciplinary (Communications), Brigham Young University, “The Impact of Female Role Models in Television Media on the Perceived Electability of Women” Emily Larsen, History, University of Utah, “Artistic Frontiers: Women and the Making of the Utah Art Scene, 1880– 1950” Charles Redd Fellowship Award in Western American History David R M Beck, Native American Studies, University of Montana, “‘Bribed with Our Own Money,’ Federal Misuse of Tribal Funds in the Termination -
Idaho PM Technical Note 2B (Revise): Plants for Pollinators in the Inland Northwest
TECHNICAL NOTE USDA – Natural Resources Conservation Service Boise, Idaho - Spokane, Washington ______________________________________________________________________________ TN PLANT MATERIALS NO. 2B OCTOBER 2011 REVISION Plants for Pollinators in the Inland Northwest Dan Ogle, Plant Materials Specialist, NRCS, Boise, Idaho Pamela Pavek, Agronomist, NRCS Plant Materials Center, Pullman, Washington Richard Fleenor, Plant Materials Specialist, NRCS, Spokane, Washington Mark Stannard, Manager, NRCS Plant Materials Center, Pullman, Washington Tim Dring, State Biologist, NRCS, Spokane, Washington Jim Cane, Bee Biology and Systematics Lab, ARS, Logan, Utah Karen Fullen, State Biologist, NRCS, Boise, Idaho Loren St. John, Manager, NRCS Plant Materials Center, Aberdeen, Idaho Derek Tilley, Agronomist, NRCS Plant Materials Center, Aberdeen, Idaho Brownbelted bumble bee (Bombus griseocollis) visiting a blanketflower (Gaillardia aristata). Pamela Pavek The purpose of this Technical Note is to provide guidance for the design and implementation of conservation plantings to enhance habitat for pollinators including: bees, wasps, butterflies, moths and hummingbirds. Plant species included in this document are adapted to the Inland Northwest, which encompasses northern Idaho, northeastern Oregon and eastern Washington. For species adapted to southern Idaho, southeastern Oregon, northern Nevada and northern Utah, refer to Idaho Plant Materials Technical Note 2A. For lists of species adapted to western Washington and western Oregon, refer to the Oregon -
Special Status Species List
APPENDIX J SPECIAL STATUS SPECIES LIST SPECIAL STATUS SPECIES LIST APPENDIX J SPECIAL STATUS SPECIES LIST Common Name Scientific Name State Class Status1 A Caddisfly Farula constricta OR Insect BS Adder’s-tongue Ophioglossum pusillum OR Plant BS Agave, Arizona Agave arizonica AZ Plant FE Agave, Murphey Agave murpheyi AZ Plant BS Agave, Santa Cruz Striped Agave parviflora AZ Plant BS Agoseris, Pink Agoseris lackschewitzii ID Plant BS Albatross, Short-tailed Phoebastris albatrus AK, CA Bird FE Alkaligrass, Howell’s Puccinellia howelli CA Plant BS Alkaligrass, Lemon’s Puccinellia lemmonii CA Plant BS Alkaligrass, Parish’s Puccinellia parishii CA, MT Plant BS Alpine-aster, Tall Oreostemma elatum CA Plant BS Alpine-parsley, Trotter’s Oreoxis trotteri UT Plant BS Alumroot, Duran’s Heuchera duranii CA Plant BS Amaranth, California Amaranthus californicus MT Plant BS Ambersnail, Kanab Oxyloma haydeni kanabensis AZ, UT Snail FE Ambrosia, San Diego Ambrosia pumila CA Plant FE Chlorogalum purpureum var. Amole, Purple CA Plant FT purpureum Amphipod, Malheur Cave Stygobromus hubbsi OR Crustacean BS Amphipod, Noel’s Gammarus desperatus NM Crustacean PE Angelica, King’s Angelica kingii ID Plant BS Angelica, Rough Angelica scabrida NV Plant BS Apachebush Apacheria chircahuensis NM Plant BS Apple, Indian Peraphyllum ramosissimum ID Plant BS Arrowhead, Sanford’s Sagittaria sanfordii CA Plant BS Aster, Gorman’s Eucephalus gormanii OR Plant BS Aster, Pygmy Eurybia pygmaea AK Plant BS Aster, Red Rock Canyon Ionactis caelestis NV Plant BS Avens, Mountain Senecio moresbiensis AK Plant BS Baccharis, Encinitis Baccharis vanessae CA Plant FT Balloonvine Cardiospermum corindum AZ Plant BS Balsamorhiza macrolepis var. Balsamroot, Big-scale CA Plant BS macrolepis Balsamroot, Large-leaved Balsamorhiza macrophylla MT Plant BS Balsamroot, Silky Balsamorhiza sericea CA Plant BS Balsamroot, Woolly Balsamorhiza hookeri var. -
Riverside State Park
Provisonal Report Rare Plant and Vegetation Survey of Riverside State Park Pacific Biodiversity Institute 2 Provisonal Report Rare Plant and Vegetation Survey of Riverside State Park Peter H. Morrison [email protected] George Wooten [email protected] Juliet Rhodes [email protected] Robin O’Quinn, Ph.D. [email protected] Hans M. Smith IV [email protected] January 2009 Pacific Biodiversity Institute P.O. Box 298 Winthrop, Washington 98862 509-996-2490 Recommended Citation Morrison, P.H., G. Wooten, J. Rhodes, R. O’Quinn and H.M. Smith IV, 2008. Provisional Report: Rare Plant and Vegetation Survey of Riverside State Park. Pacific Biodiversity Institute, Winthrop, Washington. 433 p. Acknowledgements Diana Hackenburg and Alexis Monetta assisted with entering and checking the data we collected into databases. The photographs in this report were taken by Peter Morrison, Robin O’Quinn, Geroge Wooten, and Diana Hackenburg. Project Funding This project was funded by the Washington State Parks and Recreation Commission. 3 Executive Summary Pacific Biodiversity Institute (PBI) conducted a rare plant and vegetation survey of Riverside State Park (RSP) for the Washington State Parks and Recreation Commission (WSPRC). RSP is located in Spokane County, Washington. A large portion of the park is located within the City of Spokane. RSP extends along both sides of the Spokane River and includes upland areas on the basalt plateau above the river terraces. The park also includes the lower portion of the Little Spokane River and adjacent uplands. The park contains numerous trails, campgrounds and other recreational facilities. The park receives a tremendous amount of recreational use from the nearby population. -
Erigeron Linearis (Hook.) Piper Asteraceae – Aster Family Corey L
DESERT YELLOW FLEABANE Erigeron linearis (Hook.) Piper Asteraceae – Aster family Corey L. Gucker & Nancy L. Shaw | 2019 ORGANIZATION NOMENCLATURE Erigeron linearis (Hook.) Piper is commonly Names, subtaxa, chromosome number(s), hybridization. referred to as desert yellow fleabane and belongs to the Osteocaulis section, Conyzinae subtribe, and Astereae tribe within the Asteraceae family (Nesom 2008). Range, habitat, plant associations, elevation, soils. NRCS Plant Code. ERLI (USDA NRCS 2017). Subtaxa. There are no desert yellow fleabane subspecies or varieties recognized. Life form, morphology, distinguishing characteristics, reproduction. Synonyms. Erigeron peucephyllus A. Gray, Diplopappus linearis Hooker (Nesom 2006; Welsh et al. 2016; Hitchcock and Cronquist 2018). Growth rate, successional status, disturbance ecology, importance to animals/people. Common Names. Desert yellow fleabane, desert yellow daisy, linear-leaf daisy, line-leaved fleabane, narrow-leaved fleabane, and yellow daisy Current or potential uses in restoration. (Applegate 1938; Taylor 1992; Ogle et al. 2011; Welsh et al. 2016; Hitchcock and Cronquist 2018). Seed sourcing, wildland seed collection, seed cleaning, storage, Chromosome Number. Chromosome numbers testing and marketing standards. are: 2n = 18, 27, 36, 45 (Solbrig et al. 1969; Strother 1972; Nesom 2006; Welsh et al. 2016). Recommendations/guidelines for producing seed. Hybridization. Desert yellow fleabane occasionally hybridizes with scabland fleabane (E. bloomeri) and blue dwarf fleabane (E. elegantulus) (Cronquist 1947; Cronquist Recommendations/guidelines for producing planting stock. et al. 1994). Recommendations/guidelines, wildland restoration successes/ failures. DISTRIBUTION Desert yellow fleabane is sporadically distributed Primary funding sources, chapter reviewers. from southern British Columbia east to central Montana and Wyoming, south to Yosemite National Park in California, and west to central Oregon and Washington (Cronquist 1947; USDA Bibliography.