Paradox in the Teaching of Mathematics a Pythagorean Problem

Total Page:16

File Type:pdf, Size:1020Kb

Paradox in the Teaching of Mathematics a Pythagorean Problem Paradox in the Teaching of Mathematics Larry G. Blaine Plymouth State University Plymouth, New Hampshire, USA [email protected] Abstract: This paper presents an argument for the use of paradoxes in the teaching of mathematics, as a means of raising interest and sharpening reasoning skills. Based on the author’s experience in and out of the classroom, four representative examples of contrasting types have been selected and analyzed. A distinction is made between problems whose solutions violate intuition but are not otherwise questionable (not true paradoxes, in the logical sense) and those that are deeply enigmatic. This will be a talk about two subjects, which we refer to temporarily as S1 and S2, and how they are regarded by students and by the public at large. S1 is useful sometimes, but it is dull and even painful to study. Many would avoid it altogether if given the choice. Not a few regard forced study of S1 as a form of torment. S2, on the other hand, is dazzling and delightful, sometimes magical. No one is ever forced to learn S2. I am speaking of course about two faces of the same subject- mathematics. We, as teachers and practitioners, are painfully aware of how familiar our students, friends, and acquaintances are with S1. Reflection and experience, though, reveal that most people are quite susceptible to the charms of S2, if introduced properly. I make no attempt here to be systematic. I mean merely to display a few paradoxical problems that I have found to be fascinating to curious but mathematically unsophisticated people, inside and outside the classroom. The level of technical skill required to understand them is for the most part low. Except for the first example, they have been written about at length. Nevertheless, my experience has been that most of them are unfamiliar to most teachers. They are offered in a spirit of seduction, for use in drawing students and others into a love for our noble art. Now a few words about terminology. A paradox in mathematics or logic may be regarded as a question or problem for which the application of correct reasoning leads to a self-evidently absurd conclusion, or to two or more contradictory conclusions. More whimsically, paradox has been defined as “truth standing on its head to attract attention.” For this note we adopt the following classification: (i) Puzzle Paradoxes are problems with solutions that are certainly correct, but that nevertheless violate our intuition. (ii) Pseudo-Paradoxes may seem enigmatic at first, but on examination turn out to be trivial or ambiguously posed. (They still may be very much worth thinking about.) (iii) True paradoxes are described above. Two examples of type (i) are given, and one each of (ii) and (iii). Note, though, that experts sometimes disagree violently as to which of (ii) or (iii) applies. That includes two of the problems below- caveat lector! A Pythagorean Problem This first problem gives an example of an easy computation that leads to a startling result. You are to build a bridge that goes horizontally from point A to point B. A and B are exactly one kilometer apart. This bridge is to be very simple, consisting of one perfectly straight, perfectly thin steel rod. Unfortunately, the rod you have is 10 cm. too long, and you cannot cut it. You decide to bend it slightly at its midpoint, so that the bridge consists of two linear segments. In crossing from A to B, one ascends to the middle, then descends to B. How high above the horizontal is the middle of the bridge? Having posed the question, the teacher should do two things immediately, before any calculations are started. First, emphasize how utterly tiny the extra 10 cm. is. “If this blackboard were 1 kilometer long, the extra 10 cm. would be the thickness of four pieces of paper” or something of the sort. Second, ask for an estimate. Almost all students expect the height to be quite small- typically about 5 or 6 cm. The Pythagorean Theorem tells a different story. Call the height h, and consider the right triangle formed by half the bridge, the horizontal line, and a vertical line at the middle. With meters as the unit, we have h2 + 5002 = 500.052, or h = 500.052 5002 . At this point, a calculator is convenient, but not essential. The familiar factorization of the difference of two squares gives h = .051000.05 = 50.0025 , and we conclude that the height exceeds 7 meters! There is nothing special about 10 cm; a similar calculation may be carried out for any excess length. If the rod is only one millimeter too long, the height is, unbelievably, about 70 cm. It is of course absurd to speak of an actual bridge here, but this type of problem is common in surveying, astronomy, etc. Before leaving our bridge, let us mention in passing a few related problems that are beyond the scope of this paper but may interest teachers of elementary analysis. It is a nice exercise to write a formula for h(x), height as a function of excess length x, and to examine the behavior of the derivative h’(x) as x → 0+. Even nicer is to approximate the height the bridge reaches, if it makes a circular arc from A to B. Approximate, because no exact solution is possible- Some rootfinding algorithm must be used at the end. A Card Problem This is a classic problem, or rather class of problems, with an interesting history. The oldest version known to me is described by J. E. Littlewood [4]. It is: East and West are partners at bridge. East’s hand contains no aces. It is known, however, that West has at least one ace. What is the probability p that West has more than one ace? This problem is slightly complicated, requiring knowledge of the game of bridge, and some skill in manipulating combinations. We will come back to it. First, we give a much simpler variant that illustrates the same principles. A deck consists of four cards- two aces and two others. We may suppose it is {A♠, A♣, 2♣, 2♠}. You are to be dealt two of these cards. What is the probability p that you will get both aces, assuming you get at least one ace? What is the probability q that you will get both aces, assuming you get A♠? It is obvious (is it not?) that the two probabilities are the same. After all, if we assume you get an ace, we may as well suppose it to be A♠ for purposes of calculation. So, all hands being equally likely, we just list them. There are six: {A♠, A♣}, {A♠, 2♣}, {A♠, 2♠}, {A♣, 2♣}, {A♣, 2♠}, and {2♣, 2♠}. Five contain at least one ace, one of those five contains both aces, and thus p = 1/5. Three contain A♠, one of those three contains both aces, and thus q = 1/3. With our intuition thus outraged, let us return to Littlewood’s version. He writes that it was proposed as an examination problem at Cambridge around 1911, but that two mathematicians who reviewed it came to different conclusions. One of them found the probability p for the problem as stated, but the other found the probability q that West has more than one ace, assuming he has A♠. Littlewood shows that p must be smaller than q, but does not give the actual numbers. Here they are. In the spirit of 1911, all calculations were done at first by hand, an hour’s plodding work. To find p, we must consider a deck of 39 cards, 4 of which are aces. (East already has 13 cards, none of which are aces.) Of C(39, 13) possible hands for West, C(35, 13) contain no ace at all, so C(39, 13) – C(35, 13) is the number of hands containing at least one ace. Of those, 4×C(35, 12) contain exactly one ace, and the rest contain two or more aces. Assuming all hands to be equally likely, calculation shows that p ≈ 49.8% . Finding q is easier. Consider a deck of 38 cards, 3 of which are aces, and see how hands of 12 of them may be distributed to West. (West already has A♠.) There are C(38, 12) such hands, C(35, 12) of which contain no ace. The probability of A♠ being West’s only ace is thus C(35, 12)/C(38, 12) = 650/2109, and it follows that q = 1459/2105 ≈ 69.2%. I confesses that, despite knowing in advance that p ≠ q, it was shocking at first to see how much they differ! A good discussion of problems of this general kind may be found in [3]. The Thompson Lamp Most, including this writer, who have thought about the Thompson Lamp have decided that it does not present a true paradox. We thus classify it as type (ii). This discussion will be brief. The interested reader may consult [3] and [5] for more details and other opinions. The lamp behaves like this. (It is unnecessary to stress that it is not a real object, and that what follows is a pure thought experiment.) It has only two states, on and off, and the states are controlled by a single switch. It is turned on. After half a minute it is turned off. After another quarter-minute it is turned on again, and an eighth of a minute after that, it is turned back off. This process continues in the obvious way, each time interval half as long as the previous one.
Recommended publications
  • False Dilemma Wikipedia Contents
    False dilemma Wikipedia Contents 1 False dilemma 1 1.1 Examples ............................................... 1 1.1.1 Morton's fork ......................................... 1 1.1.2 False choice .......................................... 2 1.1.3 Black-and-white thinking ................................... 2 1.2 See also ................................................ 2 1.3 References ............................................... 3 1.4 External links ............................................. 3 2 Affirmative action 4 2.1 Origins ................................................. 4 2.2 Women ................................................ 4 2.3 Quotas ................................................. 5 2.4 National approaches .......................................... 5 2.4.1 Africa ............................................ 5 2.4.2 Asia .............................................. 7 2.4.3 Europe ............................................ 8 2.4.4 North America ........................................ 10 2.4.5 Oceania ............................................ 11 2.4.6 South America ........................................ 11 2.5 International organizations ...................................... 11 2.5.1 United Nations ........................................ 12 2.6 Support ................................................ 12 2.6.1 Polls .............................................. 12 2.7 Criticism ............................................... 12 2.7.1 Mismatching ......................................... 13 2.8 See also
    [Show full text]
  • Unexpected Hanging Paradox - Wikip… Unexpected Hanging Paradox from Wikipedia, the Free Encyclopedia
    2-12-2010 Unexpected hanging paradox - Wikip… Unexpected hanging paradox From Wikipedia, the free encyclopedia The unexpected hanging paradox, hangman paradox, unexpected exam paradox, surprise test paradox or prediction paradox is a paradox about a person's expectations about the timing of a future event (e.g. a prisoner's hanging, or a school test) which he is told will occur at an unexpected time. Despite significant academic interest, no consensus on its correct resolution has yet been established.[1] One approach, offered by the logical school of thought, suggests that the problem arises in a self-contradictory self- referencing statement at the heart of the judge's sentence. Another approach, offered by the epistemological school of thought, suggests the unexpected hanging paradox is an example of an epistemic paradox because it turns on our concept of knowledge.[2] Even though it is apparently simple, the paradox's underlying complexities have even led to it being called a "significant problem" for philosophy.[3] Contents 1 Description of the paradox 2 The logical school 2.1 Objections 2.2 Leaky inductive argument 2.3 Additivity of surprise 3 The epistemological school 4 See also 5 References 6 External links Description of the paradox The paradox has been described as follows:[4] A judge tells a condemned prisoner that he will be hanged at noon on one weekday in the following week but that the execution will be a surprise to the prisoner. He will not know the day of the hanging until the executioner knocks on his cell door at noon that day.
    [Show full text]
  • The Development of Mathematical Logic from Russell to Tarski: 1900–1935
    The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu Richard Zach Calixto Badesa The Development of Mathematical Logic from Russell to Tarski: 1900–1935 Paolo Mancosu (University of California, Berkeley) Richard Zach (University of Calgary) Calixto Badesa (Universitat de Barcelona) Final Draft—May 2004 To appear in: Leila Haaparanta, ed., The Development of Modern Logic. New York and Oxford: Oxford University Press, 2004 Contents Contents i Introduction 1 1 Itinerary I: Metatheoretical Properties of Axiomatic Systems 3 1.1 Introduction . 3 1.2 Peano’s school on the logical structure of theories . 4 1.3 Hilbert on axiomatization . 8 1.4 Completeness and categoricity in the work of Veblen and Huntington . 10 1.5 Truth in a structure . 12 2 Itinerary II: Bertrand Russell’s Mathematical Logic 15 2.1 From the Paris congress to the Principles of Mathematics 1900–1903 . 15 2.2 Russell and Poincar´e on predicativity . 19 2.3 On Denoting . 21 2.4 Russell’s ramified type theory . 22 2.5 The logic of Principia ......................... 25 2.6 Further developments . 26 3 Itinerary III: Zermelo’s Axiomatization of Set Theory and Re- lated Foundational Issues 29 3.1 The debate on the axiom of choice . 29 3.2 Zermelo’s axiomatization of set theory . 32 3.3 The discussion on the notion of “definit” . 35 3.4 Metatheoretical studies of Zermelo’s axiomatization . 38 4 Itinerary IV: The Theory of Relatives and Lowenheim’s¨ Theorem 41 4.1 Theory of relatives and model theory . 41 4.2 The logic of relatives .
    [Show full text]
  • Reflexivity and Self-Referentiality 0.8Em in Inverse Monoids and Categories
    Reflexivity and Self-Referentiality In Inverse Monoids and Categories Peter M. Hines York – Mathematics – 2019 www.peterhines.info Reflexivity and Self-Referentiality Some motivation ... This talk is about some inverse category theory closely associated with logic and theoretical computer science. The general topic is models of self-referentiality. We aim to: 1 Describe the historical context & importance. 2 Give concrete axioms & examples. 3 Do all this in the reversible (inverse monoid) setting. www.peterhines.info Reflexivity and Self-Referentiality Historical Context (I) — Foundations & Logic Scenes from the frog-mouse wars www.peterhines.info Reflexivity and Self-Referentiality The historical setting The late 19th and early to mid 20th century saw some- thing of a crisis in the foundations of mathematics. This can be compared to the controversy caused by the introduction of calculus that was resolved by rigorous no- tions of limit & convergence. However, it was more profound, and less easily resolved. Its aftermath is still relevant today. www.peterhines.info Reflexivity and Self-Referentiality The problems of infinity Georg Cantor lit the fuse, and stepped back to a safe distance ... His work was not always appreciated: A ”scientific charlatan”, a ”renegade” and a ”corrupter of youth” — Leopold Kroenecker Mathematics is ”ridden through and through with the per- nicious idioms of set theory”, which is ”utter nonsense” that is ”laughable” and ”wrong” — Ludwig Wittgenstein www.peterhines.info Reflexivity and Self-Referentiality A more balanced approach A very readable contemporaneous account: Mathematical Rigor, past and present – J. Pierpont (1928) The Mengenlehre of Cantor [Set Theory] has brought to light a number of paradoxes which have profoundly disturbed the mathematical community for a quarter of a century.
    [Show full text]
  • Paradoxes Situations That Seems to Defy Intuition
    Paradoxes Situations that seems to defy intuition PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Tue, 08 Jul 2014 07:26:17 UTC Contents Articles Introduction 1 Paradox 1 List of paradoxes 4 Paradoxical laughter 16 Decision theory 17 Abilene paradox 17 Chainstore paradox 19 Exchange paradox 22 Kavka's toxin puzzle 34 Necktie paradox 36 Economy 38 Allais paradox 38 Arrow's impossibility theorem 41 Bertrand paradox 52 Demographic-economic paradox 53 Dollar auction 56 Downs–Thomson paradox 57 Easterlin paradox 58 Ellsberg paradox 59 Green paradox 62 Icarus paradox 65 Jevons paradox 65 Leontief paradox 70 Lucas paradox 71 Metzler paradox 72 Paradox of thrift 73 Paradox of value 77 Productivity paradox 80 St. Petersburg paradox 85 Logic 92 All horses are the same color 92 Barbershop paradox 93 Carroll's paradox 96 Crocodile Dilemma 97 Drinker paradox 98 Infinite regress 101 Lottery paradox 102 Paradoxes of material implication 104 Raven paradox 107 Unexpected hanging paradox 119 What the Tortoise Said to Achilles 123 Mathematics 127 Accuracy paradox 127 Apportionment paradox 129 Banach–Tarski paradox 131 Berkson's paradox 139 Bertrand's box paradox 141 Bertrand paradox 146 Birthday problem 149 Borel–Kolmogorov paradox 163 Boy or Girl paradox 166 Burali-Forti paradox 172 Cantor's paradox 173 Coastline paradox 174 Cramer's paradox 178 Elevator paradox 179 False positive paradox 181 Gabriel's Horn 184 Galileo's paradox 187 Gambler's fallacy 188 Gödel's incompleteness theorems
    [Show full text]
  • Discontinuous Particle Dynamics Beyond Relativity
    From relativistic to quantum universe: Observation of a spatially- discontinuous particle dynamics beyond relativity Sergey A. Emelyanov Ioffe Institute, 194021 St. Petersburg, Russia Correspondence: [email protected] Abstract. We perform an experimental test where we directly observe light-induced electron transitions with a macroscopic spatial discontinuity. The effect is related to the fundamental indivisibility of macroscopic orbit-like quantum states reminiscent of so-called extended states in the integer quantum Hall system. The test has become realizable due to the discovering of a quantum phase with spontaneous pervasive quantum ordering reminiscent of that of a single atom. The observed transitions may be regarded as a peculiar quantum dynamics beyond relativity, which implies that the current relativistic model of universe should be replaced by a deeper quantum model. It is the Bohm’s model of undivided universe which now should involve a deeper-than-classical concept of absolute simultaneity and a deeper- than-relativistic concept of space and time. Ultimately, our test thus establishes a new hierarchy of fundamental physical theories where the de Broglie-Bohm realistic quantum theory is the deepest theory which does not contradict either classical physics or relativity but rather is beyond both. This is because the fact that quantum theory is dealing with a deeper reality where physical objects are not self-sufficient entities and therefore their discontinuous transitions are possible within an overall quantum system which may well be macroscopic. Keywords: atom-like macroscopic quantum ordering, spatially-discontinuous particle dynamics, Bohm’s undivided universe I. Introduction 1.1. The current view of the universe: why the Minkowski model of spacetime As it follows from the history of science, our view of universe is not unchangeable but determined by the physical theory which is regarded as being the most fundamental in a given historical period.
    [Show full text]
  • List of Paradoxes 1 List of Paradoxes
    List of paradoxes 1 List of paradoxes This is a list of paradoxes, grouped thematically. The grouping is approximate: Paradoxes may fit into more than one category. Because of varying definitions of the term paradox, some of the following are not considered to be paradoxes by everyone. This list collects only those instances that have been termed paradox by at least one source and which have their own article. Although considered paradoxes, some of these are based on fallacious reasoning, or incomplete/faulty analysis. Logic • Barbershop paradox: The supposition that if one of two simultaneous assumptions leads to a contradiction, the other assumption is also disproved leads to paradoxical consequences. • What the Tortoise Said to Achilles "Whatever Logic is good enough to tell me is worth writing down...," also known as Carroll's paradox, not to be confused with the physical paradox of the same name. • Crocodile Dilemma: If a crocodile steals a child and promises its return if the father can correctly guess what the crocodile will do, how should the crocodile respond in the case that the father guesses that the child will not be returned? • Catch-22 (logic): In need of something which can only be had by not being in need of it. • Drinker paradox: In any pub there is a customer such that, if he or she drinks, everybody in the pub drinks. • Paradox of entailment: Inconsistent premises always make an argument valid. • Horse paradox: All horses are the same color. • Lottery paradox: There is one winning ticket in a large lottery. It is reasonable to believe of a particular lottery ticket that it is not the winning ticket, since the probability that it is the winner is so very small, but it is not reasonable to believe that no lottery ticket will win.
    [Show full text]
  • INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence the FRONTIERS COLLECTION
    THE FRONTIERS COLLECTION James B. Glattfelder INFORMATION– CONSCIOUSNESS– REALITY How a New Understanding of the Universe Can Help Answer Age-Old Questions of Existence THE FRONTIERS COLLECTION Series editors Avshalom C. Elitzur, Iyar, Israel Institute of Advanced Research, Rehovot, Israel Zeeya Merali, Foundational Questions Institute, Decatur, GA, USA Thanu Padmanabhan, Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India Maximilian Schlosshauer, Department of Physics, University of Portland, Portland, OR, USA Mark P. Silverman, Department of Physics, Trinity College, Hartford, CT, USA Jack A. Tuszynski, Department of Physics, University of Alberta, Edmonton, AB, Canada Rüdiger Vaas, Redaktion Astronomie, Physik, bild der wissenschaft, Leinfelden-Echterdingen, Germany THE FRONTIERS COLLECTION The books in this collection are devoted to challenging and open problems at the forefront of modern science and scholarship, including related philosophical debates. In contrast to typical research monographs, however, they strive to present their topics in a manner accessible also to scientifically literate non-specialists wishing to gain insight into the deeper implications and fascinating questions involved. Taken as a whole, the series reflects the need for a fundamental and interdisciplinary approach to modern science and research. Furthermore, it is intended to encourage active academics in all fields to ponder over important and perhaps controversial issues beyond their own speciality. Extending from quantum physics and relativity to entropy, conscious- ness, language and complex systems—the Frontiers Collection will inspire readers to push back the frontiers of their own knowledge. More information about this series at http://www.springer.com/series/5342 For a full list of published titles, please see back of book or springer.com/series/5342 James B.
    [Show full text]
  • Reflexivity and Self-Referentiality 0.8Em in Inverse Monoids And
    Reflexivity and Self-Referentiality In Inverse Monoids and Categories Peter M. Hines York – Mathematics – 2019 www.peterhines.info Reflexivity and Self-Referentiality Some motivation ... This talk is about some inverse category theory closely associated with logic and theoretical computer science. The general topic is models of self-referentiality. We aim to: 1 Describe the historical context & importance. 2 Give concrete axioms & examples. 3 Do all this in the reversible (inverse monoid) setting. www.peterhines.info Reflexivity and Self-Referentiality Historical Context (I) — Foundations & Logic Scenes from the frog-mouse wars www.peterhines.info Reflexivity and Self-Referentiality The historical setting The late 19th and early to mid 20th century saw some- thing of a crisis in the foundations of mathematics. This can be compared to the controversy caused by the introduction of calculus that was resolved by rigorous no- tions of limit & convergence. However, it was more profound, and less easily resolved. Its aftermath is still relevant today. www.peterhines.info Reflexivity and Self-Referentiality The problems of infinity Georg Cantor lit the fuse, and stepped back to a safe distance ... His work was not always appreciated: A ”scientific charlatan”, a ”renegade” and a ”corrupter of youth” — Leopold Kroenecker Mathematics is ”ridden through and through with the per- nicious idioms of set theory”, which is ”utter nonsense” that is ”laughable” and ”wrong” — Ludwig Wittgenstein www.peterhines.info Reflexivity and Self-Referentiality A more balanced approach A very readable contemporaneous account: Mathematical Rigor, past and present – J. Pierpont (1928) The Mengenlehre of Cantor [Set Theory] has brought to light a number of paradoxes which have profoundly disturbed the mathematical community for a quarter of a century.
    [Show full text]
  • MMP-Elections and the Assembly Size
    MMP-elections and the assembly size BY Eivind Stensholt DISCUSSION PAPER Institutt for foretaksøkonomi Department of Business and Management Science FOR 15/2019 ISSN: 1500-4066 October 2019 29.10.2019 MMP-elections and the assembly size Eivind Stensholt, [email protected] mobile (047) 455 27 129 Norwegian School of Economics, Helleveien 30 5045 Bergen Norway Abstract MMP (Mixed Member Proportional) elections for legislatures have ballots with one vote in a local single seat tally and one vote for a party list in a multi-seat tally. In Germany, the multi-seat tally occasionally violated a Participation axiom. The federal Constitutional Court declared this unconstitutional in 2008. Rules were changed. In 2017, the result was a Bundestag with 709 members, 111 of them in extra-ordinary party seats. The paper considers two remedies against excessive assembly size. One is “faithful accounting” of ballot data in each local tally, another a change from Plurality to a Majority method. For this use, we consider IRV, i.e. Instant Runoff Voting, in combination with a 3- candidate Condorcet method. The mayoral IRV election in Burlington 2009 serves as an example, here in the special context of MMP. Violations of the Participation criterion occur also in the usual Majority methods for single seat elections. The legal adoption of a mathematical axiom from election theory have consequences seen in the context of established impossibility theorems. JEL classification D72 Key words: Mixed Member Proportional, Instant Runoff Voting, Participation criterion, legality, legitimacy, Burlington election 2009. Acknowledgement: Thanks to colleague Dirk Schindler for many and useful conversations! 1 MMP-elections and the assembly size Introduction Surveying elections of legislatures, "New Handbook" (Reynolds & al.
    [Show full text]
  • Software Studies: a Lexicon, Edited by Matthew Fuller, 2008
    fuller_jkt.qxd 4/11/08 7:13 AM Page 1 ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• S •••••••••••••••••••••••••••••••••••••new media/cultural studies ••••software studies •••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• O ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• F software studies\ a lexicon ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• T edited by matthew fuller Matthew Fuller is David Gee Reader in ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• This collection of short expository, critical, Digital Media at the Centre for Cultural ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• W and speculative texts offers a field guide Studies, Goldsmiths College, University of to the cultural, political, social, and aes- London. He is the author of Media ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• thetic impact of software. Computing and Ecologies: Materialist Energies in Art and A digital media are essential to the way we Technoculture (MIT Press, 2005) and ••••••••••••••••••••••••••••••••••••• •••• •••••••••••••••••••••••••••••••••• work and live, and much has been said Behind the Blip: Essays on the Culture of •••••••••••••••••••••••••••••••••••••
    [Show full text]
  • Copyrighted Material
    1 Foundations and Paradoxes In this chapter and the following, we shall learn lots of things in a short time.1 Initially, some of the things we will gain knowledge of may appear unrelated to each other, and their overall usefulness might not be clear either. However, it will turn out that they are all connected within Gödel’s symphony. Most of the work of these two chapters consists in preparing the instruments in order to play the music. We will begin by acquiring familiarity with the phenomenon of self-reference in logic – a phenomenon which, according to many, has to be grasped if one is to understand the deep meaning of Gödel’s result. Self-reference is closely connected to the famous logical paradoxes, whose understanding is also important to fully appreciate the Gödelian construction – a con- struction that, as we shall see, owes part of its timeless fascination to its getting quite close to a paradox without falling into it. But what is a paradox? A common first definition has it that a paradox is the absurd or blatantly counter-intuitive conclusion of an argument, which starts with intuitively plausible premises and advances via seem- ingly acceptable inferences. In The Ways of Paradox, Quine claims that “a paradox is just any conclusion that at first sounds absurd but that has an argument to sustain it.”2 We shall be particularly concerned not just with sentences that are paradoxical in the sense of being implausible, or contrary to common sense (“paradox” intended as something opposed to theCOPYRIGHTED δo¢ ξα, or to what is e’¢νδοξον MATERIAL, entrenched in pervasive 1 This chapter draws on Berto (2006a), (2007a), and (2007b) for an account of the basics of set theory and of logical paradoxes.
    [Show full text]