Characterization of Hnrnp A3 Isoforms in the A2RE-Proteome

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Hnrnp A3 Isoforms in the A2RE-Proteome Characterization of hnRNP A3 Isoforms in The A2RE-Proteome Ying Wei MSc, MInfTech A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 School of Chemistry and Molecular Biosciences 1 Abstract Polarity is an important prerequisite for cell differentiation. The development of cellular asymmetry and cell polarity can be achieved by either selectively transporting key intracellular proteins or vectorial trafficking mRNAs to a subcellular location for local translation. The “A2RE-mRNA trafficking pathway” fits in the latter category, renowned for moving the myelin basic protein (MBP) RNA molecules from the nucleus to cytoplasmic myelin compartment of oligodendrocytes. This prominent pathway is named after a 11-nucleotide cis-acting sequence of “A2 response element (A2RE)”, which is necessary and sufficient for mRNA localization. The universally expressed protein hnRNP A2 was the first identified trans-acting factor bound to the A2RE cis- element directing the A2RE-containing transcripts to their subcellular locations along cytoskeletal components. In addition to hnRNP A2, hnRNP A3 is the second abundant proteins pulled down by the A2RE- sequence. At the beginning of this project, hnRNP A3 had just been identified as a novel key component along with other A2RE-binding proteins. A lot of structural and functional questions arising from the discovery of hnRNP A3 in the A2RE-context await answers. The detailed structural knowledge of hnRNP A3 among the A2RE-binding proteins was essential prior to the investigation of its biological involvement in the A2RE-trafficking pathway. Therefore, the overall aim of this project was to characterize the structure of hnRNP A3 isoforms which were purified by binding to the A2RE-sequence. At the same time, the structural comparison with other A2RE-binding proteins was also carried out, aiming to find out any similar or distinct features between these proteins when they were associated together with the same A2RE-sequence. The investigations in this project were established from aspects of genomics, proteomics and cellular location to characterize the hnRNP A3 isoforms. The experimental data, presented in this thesis, were collected reproducibly and comprise all above aspects. From the genomic aspect, the two splicing forms of hnRNP A3 in rat brain were exclusively identified through the extensive PCR screening. At the protein level, the masses of the intact A2RE- binding proteins were measured by liquid chromatography mass spectrometry (LC/MS) and analyzed. Next, the rat brain A2RE-binding proteins were successfully separated by two- dimensional gel electrophoresis (2-DE), showing a more complicated profile of hnRNP A/B isoforms in the A2RE-context. Each binding components were identified by mass spectrometry (MS) based peptide mass fingerprinting. 2 Targeting the complexity of hnRNP A3 inside the A2RE-proteome, the post-translational modifications (PTMs) of hnRNP A3 were investigated. Phospho-proteins of the A2RE proteome were detected by blotting and staining. Moreover, the pattern of protein phosphorylation was observed to be isoform-specific between the alternatively spliced isoform pairs. In terms of Arg modifications, the methylation of A3 was confirmed, and six asymmetric dimethylated residues of A3 were successfully identified in the protein Gly-rich region by the bottom-up tandem MS proteomics. The same MS/MS proteomic method also invalidated the occurrence of citrullinated Arg residues in A3. In the developmental study, the uneven levels between two alternatively spliced HNRPA3 transcripts were discovered. From the observation, the truncated A3b transcripts always maintain a stable higher level than the full-length A3a transcripts. The subcellular distribution patterns of the A3 isoforms were also explored by transfecting GFP-tagged A3 vectors into neuronal cells, in comparison with its endogenous cellular pattern detected by the specific immunostaining method. In summary, the investigations of hnRNP A3 in this project expanded from its encoding gene to its final cellular location. With more results acquired, the hnRNP A3 isoforms became more significant along with the other key A2RE-binding components A1 and A2/B1. The clarified 2-D profile of the A2RE proteome and unambiguously identified methylated residues of A3 provide insight into the functionally interweaved hnRNP A/B paralogs. Although the conclusions deduced from this project only represent the hnRNP A3 isoforms inside the A2RE-context, the characterization of A3 isoforms under such specific circumstance still provide valuable information for studies of hnRNP A/B paralogs in other fields, opening up a window for studying downstream mechanisms of mRNA biogenesis and metabolism. 3 Declaration by author This thesis is composed of my original work, and contains no material previously published or written by another person except where due reference has been made in the text. I have clearly stated the contribution by others to jointly-authored works that I have included in my thesis. I have clearly stated the contribution of others to my thesis as a whole, including statistical assistance, survey design, data analysis, significant technical procedures, professional editorial advice, and any other original research work used or reported in my thesis. The content of my thesis is the result of work I have carried out since the commencement of my research higher degree candidature and does not include a substantial part of work that has been submitted to qualify for the award of any other degree or diploma in any university or other tertiary institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for another award. I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, subject to the General Award Rules of The University of Queensland, immediately made available for research and study in accordance with the Copyright Act 1968. I acknowledge that copyright of all material contained in my thesis resides with the copyright holder(s) of that material. Where appropriate I have obtained copyright permission from the copyright holder to reproduce material in this thesis. 4 Publications during candidature Journal Publication Friend, L. R., Landsberg, M. J., Nouwens, A. S., Wei, Y., Rothnagel, J. A., & Smith, R. (2013). Arginine methylation of hnRNP A2 does not directly govern its subcellular localization. PLoS One, 8(9), e75669. doi: 10.1371/journal.pone.0075669 Conference Publication Ying Wei, Alice Ma and Ross Smith. The role of hnRNP A3 isoforms in mRNA trafficking. ComBio 2005, Adelaide, 25 - 29 September, 2005 (Abstract and poster). Ying Wei and Ross Smith. Structural characterization of hnRNP A3 isoforms. ComBio 2006, Brisbane, 24 - 28 September, 2006 (Abstract and poster). Ying Wei and Ross Smith. Subcellular localization of hnRNP A3 isoforms in neural cells. ComBio 2007, Sydney, 22-26 September, 2007 (Abstract and poster). Publications included in this thesis No publications included 5 Contributions by others to the thesis Dr. Amanda Nouwens, contribution in operating and calibrating the MALDI-TOF mass spectrometry system. Statement of parts of the thesis submitted to qualify for the award of another degree None 6 Acknowledgements The project presented in this thesis was carried out in the School of Chemistry and Molecular Biosciences, the University of Queensland, St. Lucia campus. Writing up a 200-page-thesis is a huge work for me, however, the efforts and supports I have received from people around me during my thesis writing will be ten times longer if I write the details down. Coming to this far, I have run out of my words in writing, but full of gratitude and appreciation to all these great people: my supervisors Prof. Ross Smith, Assoc. Prof. Joseph A. Rothnagel and Dr. Lexie Friend; my peer members Dr. Jodie Hatfield, Dr. Yaowu He, Dr. Sergio Sara, Dr. Wolfgan Hofmeister, Yuan Li; and all my family members. I would address my special appreciation to Ross for his mentoring and continuous supports all these years; to Lexie for her caring in both professional and personal areas, her persistence and strong encouragements leading me through all the difficulties. You both let me know this journey to the Ph.D. degree is much more than a scientific research—it is a philosophy and attitude of life. Great thanks for igniting me after years of pending in writing, refreshing me with many innovative brainstorms, believing me without any doubt to complete this IMPOSSIBLE job… Behind my thesis, there are countless conversations, emails and visits: caring about every progress I have made, commenting on every page I have written, passing me every piece of information that might be helpful. Although this thesis could not correctly reflect the efforts you have invested in me, I have tried my best. Sincerely thank you both! To my family, I would like thank my nephews Wesley, baby Neo and niece Minnie. Wesley, your gift in Math and Music sometimes sidetracked me from my research, but your peerless talents were my true pride when I was down. Your academic excellency always urges me to stand higher so as to provide more advanced guidance for you. I am proud of you! Last but not least thanks go to my mum. Your company these days is the best support for me. I love you from the bottom of my heart! 7 Keywords hnRNP, A2RE, isoform, methylation, phosphorylation, proteomics, two-dimensional electrophoresis, mass spectrometry,
Recommended publications
  • Role of Phytochemicals in Colon Cancer Prevention: a Nutrigenomics Approach
    Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan J van Erk Promotor: Prof. Dr. P.J. van Bladeren Hoogleraar in de Toxicokinetiek en Biotransformatie Wageningen Universiteit Co-promotoren: Dr. Ir. J.M.M.J.G. Aarts Universitair Docent, Sectie Toxicologie Wageningen Universiteit Dr. Ir. B. van Ommen Senior Research Fellow Nutritional Systems Biology TNO Voeding, Zeist Promotiecommissie: Prof. Dr. P. Dolara University of Florence, Italy Prof. Dr. J.A.M. Leunissen Wageningen Universiteit Prof. Dr. J.C. Mathers University of Newcastle, United Kingdom Prof. Dr. M. Müller Wageningen Universiteit Dit onderzoek is uitgevoerd binnen de onderzoekschool VLAG Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Marjan Jolanda van Erk Proefschrift ter verkrijging van graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof.Dr.Ir. L. Speelman, in het openbaar te verdedigen op vrijdag 1 oktober 2004 des namiddags te vier uur in de Aula Title Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Author Marjan Jolanda van Erk Thesis Wageningen University, Wageningen, the Netherlands (2004) with abstract, with references, with summary in Dutch ISBN 90-8504-085-X ABSTRACT Role of phytochemicals in colon cancer prevention: a nutrigenomics approach Specific food compounds, especially from fruits and vegetables, may protect against development of colon cancer. In this thesis effects and mechanisms of various phytochemicals in relation to colon cancer prevention were studied through application of large-scale gene expression profiling. Expression measurement of thousands of genes can yield a more complete and in-depth insight into the mode of action of the compounds.
    [Show full text]
  • In Patients with Rheumatoid Arthritis This Information Is Current As of September 26, 2021
    Characterization of Autoreactive T Cells to the Autoantigens Heterogeneous Nuclear Ribonucleoprotein A2 (RA33) and Filaggrin in Patients with Rheumatoid Arthritis This information is current as of September 26, 2021. Ruth Fritsch, Daniela Eselböck, Karl Skriner, Beatrice Jahn-Schmid, Clemens Scheinecker, Barbara Bohle, Makiyeh Tohidast-Akrad, Silvia Hayer, Josef Neumüller, Serafin Pinol-Roma, Josef S. Smolen and Günter Steiner J Immunol 2002; 169:1068-1076; ; Downloaded from doi: 10.4049/jimmunol.169.2.1068 http://www.jimmunol.org/content/169/2/1068 References This article cites 83 articles, 9 of which you can access for free at: http://www.jimmunol.org/ http://www.jimmunol.org/content/169/2/1068.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 26, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2002 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Characterization of Autoreactive T Cells to the Autoantigens Heterogeneous Nuclear Ribonucleoprotein A2 (RA33) and Filaggrin in Patients with Rheumatoid Arthritis1 Ruth Fritsch,* Daniela Eselbo¨ck,* Karl Skriner,*† Beatrice Jahn-Schmid,*‡ Clemens Scheinecker,2* Barbara Bohle,‡ Makiyeh Tohidast-Akrad,¶ Silvia Hayer,* Josef Neumu¨ller,§ Serafin Pinol-Roma,ʈ Josef S.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • A Semi-Quantitative Analysis of Lupus Arthritis Using Contrasted High-Field MRI
    bioRxiv preprint doi: https://doi.org/10.1101/218503; this version posted November 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MRI in Lupus Arthritis A semi-quantitative analysis of lupus arthritis using contrasted high-field MRI. Eric S Zollars, MD, PhD. Assistant Professor, Division of Rheumatology, Medical University of South Carolina Russell Chapin, MD. Assistant Professor, Division of Musculoskeletal Radiology, Medical University of South Carolina Corresponding author: Eric Zollars Email: [email protected] Phone: 843-792-1964 Fax: Address: 96 Jonathan Lucas ST, MSC 632, MUSC, Charleston, SC 29466 Financial support Zollars: This project is supported by the South Carolina Clinical & Translational Research (SCTR) Institute, with an academic home at the Medical University of South Carolina, through NIH-NCATS Grant Number UL1TR001450. No commercial support or conflicts of interest 1 bioRxiv preprint doi: https://doi.org/10.1101/218503; this version posted November 13, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. MRI in Lupus Arthritis Abstract (fewer than 250 words) Objective Arthritis in systemic lupus erythematosus is poorly described and there is no objective measure for quantification of the arthritis. We aim to develop MRI as a research tool for the quantification of lupus arthritis. Methods Patients were eligible for entry into the study if they were evaluated at the MUSC Lupus Center and determined by their treating physician to have active hand arthritis due to SLE.
    [Show full text]
  • Role and Regulation of the P53-Homolog P73 in the Transformation of Normal Human Fibroblasts
    Role and regulation of the p53-homolog p73 in the transformation of normal human fibroblasts Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Bayerischen Julius-Maximilians-Universität Würzburg vorgelegt von Lars Hofmann aus Aschaffenburg Würzburg 2007 Eingereicht am Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Dr. Martin J. Müller Gutachter: Prof. Dr. Michael P. Schön Gutachter : Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am Erklärung Hiermit erkläre ich, dass ich die vorliegende Arbeit selbständig angefertigt und keine anderen als die angegebenen Hilfsmittel und Quellen verwendet habe. Diese Arbeit wurde weder in gleicher noch in ähnlicher Form in einem anderen Prüfungsverfahren vorgelegt. Ich habe früher, außer den mit dem Zulassungsgesuch urkundlichen Graden, keine weiteren akademischen Grade erworben und zu erwerben gesucht. Würzburg, Lars Hofmann Content SUMMARY ................................................................................................................ IV ZUSAMMENFASSUNG ............................................................................................. V 1. INTRODUCTION ................................................................................................. 1 1.1. Molecular basics of cancer .......................................................................................... 1 1.2. Early research on tumorigenesis ................................................................................. 3 1.3. Developing
    [Show full text]
  • Stroke Genetics and Genomics
    Faculdade de Medicina da Universidade de Lisboa Unidade Neurológica de Investigação Clínica PhD Thesis Stroke Genetics and Genomics Tiago Krug Coelho Host Institution: Instituto Gulbenkian de Ciência Supervisor at Instituto Gulbenkian de Ciência: Doctor Sofia Oliveira Supervisor at Faculdade de Medicina da Universidade de Lisboa: Professor José Ferro PhD in Biomedical Sciences Specialization in Neurosciences 2010 Stroke Genetics and Genomics A ciência tem, de facto, um único objectivo: a verdade. Não esgota perfeitamente a sua tarefa se não descobre a causa do todo. Chiara Lubich i Stroke Genetics and Genomics ii Stroke Genetics and Genomics A impressão desta dissertação foi aprovada pela Comissão Coordenadora do Conselho Científico da Faculdade de Medicina de Lisboa em reunião de 28 de Setembro de 2010. iii Stroke Genetics and Genomics iv Stroke Genetics and Genomics As opiniões expressas são da exclusiva responsabilidade do seu autor. v Stroke Genetics and Genomics vi Stroke Genetics and Genomics Abstract ABSTRACT This project presents a comprehensive approach to the identification of new genes that influence the risk for developing stroke. Stroke is the leading cause of death in Portugal and the third leading cause of death in the developed world. It is even more disabling than lethal, and the persistent neurological impairment and physical disability caused by stroke have a very high socioeconomic cost. Moreover, the number of affected individuals is expected to increase with the current aging of the population. Stroke is a “brain attack” cutting off vital blood and oxygen to the brain cells and it is a complex disease resulting from environmental and genetic factors.
    [Show full text]
  • The Role of Hnrnps in Frontotemporal Dementia and Amyotrophic Lateral Sclerosis
    Acta Neuropathologica https://doi.org/10.1007/s00401-020-02203-0 REVIEW The role of hnRNPs in frontotemporal dementia and amyotrophic lateral sclerosis Alexander Bampton1,2 · Lauren M. Gittings3 · Pietro Fratta4 · Tammaryn Lashley1,2 · Ariana Gatt1,2 Received: 25 June 2020 / Revised: 27 July 2020 / Accepted: 27 July 2020 © The Author(s) 2020 Abstract Dysregulated RNA metabolism is emerging as a crucially important mechanism underpinning the pathogenesis of fron- totemporal dementia (FTD) and the clinically, genetically and pathologically overlapping disorder of amyotrophic lateral sclerosis (ALS). Heterogeneous nuclear ribonucleoproteins (hnRNPs) comprise a family of RNA-binding proteins with diverse, multi-functional roles across all aspects of mRNA processing. The role of these proteins in neurodegeneration is far from understood. Here, we review some of the unifying mechanisms by which hnRNPs have been directly or indirectly linked with FTD/ALS pathogenesis, including their incorporation into pathological inclusions and their best-known roles in pre-mRNA splicing regulation. We also discuss the broader functionalities of hnRNPs including their roles in cryptic exon repression, stress granule assembly and in co-ordinating the DNA damage response, which are all emerging patho- genic themes in both diseases. We then present an integrated model that depicts how a broad-ranging network of pathogenic events can arise from declining levels of functional hnRNPs that are inadequately compensated for by autoregulatory means. Finally, we provide a comprehensive overview of the most functionally relevant cellular roles, in the context of FTD/ALS pathogenesis, for hnRNPs A1-U. Keywords hnRNP · Frontotemporal dementia · Amyotrophic lateral sclerosis · RNA · Autoregulation Introduction RNA and protein homeostasis have been identifed as con- verging mechanisms of neurotoxicity in both disorders.
    [Show full text]
  • Genetically Modified Macrophages and Renal Regeneration
    Genetically Modified Macrophages and Renal Regeneration Chrysoula Mastora ADVERTIMENT. La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents condicions d'ús: La difusió d’aquesta tesi per mitjà del servei TDX (www.tdx.cat) i a través del Dipòsit Digital de la UB (diposit.ub.edu) ha estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei TDX ni al Dipòsit Digital de la UB. No s’autoritza la presentació del seu contingut en una finestra o marc aliè a TDX o al Dipòsit Digital de la UB (framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora. ADVERTENCIA. La consulta de esta tesis queda condicionada a la aceptación de las siguientes condiciones de uso: La difusión de esta tesis por medio del servicio TDR (www.tdx.cat) y a través del Repositorio Digital de la UB (diposit.ub.edu) ha sido autorizada por los titulares de los derechos de propiedad intelectual únicamente para usos privados enmarcados en actividades de investigación y docencia. No se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde un sitio ajeno al servicio TDR o al Repositorio Digital de la UB.
    [Show full text]
  • Supplementary Table 1 Genes Tested in Qrt-PCR in Nfpas
    Supplementary Table 1 Genes tested in qRT-PCR in NFPAs Gene Bank accession Gene Description number ABI assay ID a disintegrin-like and metalloprotease with thrombospondin type 1 motif 7 ADAMTS7 NM_014272.3 Hs00276223_m1 Rho guanine nucleotide exchange factor (GEF) 3 ARHGEF3 NM_019555.1 Hs00219609_m1 BCL2-associated X protein BAX NM_004324 House design Bcl-2 binding component 3 BBC3 NM_014417.2 Hs00248075_m1 B-cell CLL/lymphoma 2 BCL2 NM_000633 House design Bone morphogenetic protein 7 BMP7 NM_001719.1 Hs00233476_m1 CCAAT/enhancer binding protein (C/EBP), alpha CEBPA NM_004364.2 Hs00269972_s1 coxsackie virus and adenovirus receptor CXADR NM_001338.3 Hs00154661_m1 Homo sapiens Dicer1, Dcr-1 homolog (Drosophila) (DICER1) DICER1 NM_177438.1 Hs00229023_m1 Homo sapiens dystonin DST NM_015548.2 Hs00156137_m1 fms-related tyrosine kinase 3 FLT3 NM_004119.1 Hs00174690_m1 glutamate receptor, ionotropic, N-methyl D-aspartate 1 GRIN1 NM_000832.4 Hs00609557_m1 high-mobility group box 1 HMGB1 NM_002128.3 Hs01923466_g1 heterogeneous nuclear ribonucleoprotein U HNRPU NM_004501.3 Hs00244919_m1 insulin-like growth factor binding protein 5 IGFBP5 NM_000599.2 Hs00181213_m1 latent transforming growth factor beta binding protein 4 LTBP4 NM_001042544.1 Hs00186025_m1 microtubule-associated protein 1 light chain 3 beta MAP1LC3B NM_022818.3 Hs00797944_s1 matrix metallopeptidase 17 MMP17 NM_016155.4 Hs01108847_m1 myosin VA MYO5A NM_000259.1 Hs00165309_m1 Homo sapiens nuclear factor (erythroid-derived 2)-like 1 NFE2L1 NM_003204.1 Hs00231457_m1 oxoglutarate (alpha-ketoglutarate)
    [Show full text]
  • Stem Cells® Original Article
    ® Stem Cells Original Article Properties of Pluripotent Human Embryonic Stem Cells BG01 and BG02 XIANMIN ZENG,a TAKUMI MIURA,b YONGQUAN LUO,b BHASKAR BHATTACHARYA,c BRIAN CONDIE,d JIA CHEN,a IRENE GINIS,b IAN LYONS,d JOSEF MEJIDO,c RAJ K. PURI,c MAHENDRA S. RAO,b WILLIAM J. FREEDa aCellular Neurobiology Research Branch, National Institute on Drug Abuse, Department of Health and Human Services (DHHS), Baltimore, Maryland, USA; bLaboratory of Neuroscience, National Institute of Aging, DHHS, Baltimore, Maryland, USA; cLaboratory of Molecular Tumor Biology, Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, Maryland, USA; dBresaGen Inc., Athens, Georgia, USA Key Words. Embryonic stem cells · Differentiation · Microarray ABSTRACT Human ES (hES) cell lines have only recently been compared with pooled human RNA. Ninety-two of these generated, and differences between human and mouse genes were also highly expressed in four other hES lines ES cells have been identified. In this manuscript we (TE05, GE01, GE09, and pooled samples derived from describe the properties of two human ES cell lines, GE01, GE09, and GE07). Included in the list are genes BG01 and BG02. By immunocytochemistry and reverse involved in cell signaling and development, metabolism, transcription polymerase chain reaction, undifferenti- transcription regulation, and many hypothetical pro- ated cells expressed markers that are characteristic of teins. Two focused arrays designed to examine tran- ES cells, including SSEA-3, SSEA-4, TRA-1-60, TRA-1- scripts associated with stem cells and with the 81, and OCT-3/4. Both cell lines were readily main- transforming growth factor-β superfamily were tained in an undifferentiated state and could employed to examine differentially expressed genes.
    [Show full text]
  • Highly Conserved Syntenic Blocks at the Vertebrate Hox Loci and Conserved Regulatory Elements Within and Outside Hox Gene Clusters
    Highly conserved syntenic blocks at the vertebrate Hox loci and conserved regulatory elements within and outside Hox gene clusters Alison P. Lee, Esther G. L. Koh, Alice Tay, Sydney Brenner†, and Byrappa Venkatesh† Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore 138673 Contributed by Sydney Brenner, February 22, 2006 Hox genes in vertebrates are clustered, and the organization of the Another factor that may have contributed to the clustering and clusters has been highly conserved during evolution. The conser- colinearity of Hox genes is the existence of global enhancers that vation of Hox clusters has been attributed to enhancers located regulate several genes in a manner independent of their local within and outside the Hox clusters that are essential for the enhancers but dependent on their location in the cluster. Global coordinated ‘‘temporal’’ and ‘‘spatial’’ expression patterns of Hox control regions (GCRs) have been identified on either side of the genes in developing embryos. To identify evolutionarily conserved HoxD cluster. The 5Ј HoxD GCR, regulating the expression of regulatory elements within and outside the Hox clusters, we Lnp, Evx2, and posterior HoxD genes in developing digits and the obtained contiguous sequences for the conserved syntenic blocks central nervous system, is located Ϸ240 kb upstream of HoxD13 from the seven Hox loci in fugu and carried out a systematic search in the intergenic region between Atp5g3 and Lnp (3). The 3Ј for conserved noncoding sequences (CNS) in the human, mouse, HoxD GCR mapped downstream of HoxD1, called early limb and fugu Hox loci. Our analysis has uncovered unusually large control region, is implicated in the early colinear expression of conserved syntenic blocks at the HoxA and HoxD loci.
    [Show full text]
  • 1 Supplemental Informations Microarray Method Total RNA Was
    Supplemental Informations Microarray method Total RNA was purified using nucleospin RNA L columns (Macherey Nagel, Hoerdt, France) according to the manufacturer’s recommendations. cDNA synthesis and biotin labelling of cRNA were performed using 5 µg total RNA and according to One-Cycle Target Labelling protocol (Affymetrix, Santa Clara, CA). cRNA were hybridized to 12 Mouse Genome 430A GeneChips (1 mouse per chip) and analyzed using a GeneChip 3000 7G scanner and the GeneChip Operative Software v1.1.1 (Affymetrix) at the Gene Expression core facility of the Institute for Biotherapy (Montpellier, France). CEL files were processed using the ChipInspector software (Genomatix, Munich, Germany). ChipInspector uses single probe expression levels as input and map to transcripts probes that uniquely display significant changes. The methods circumvent false negative resulting from low signal probes, annotation errors and errors due to the existence of alternative transcripts. Differentially expressed genes between the AL and MT groups at both time points were identified using a SAM (Significance analysis of Microarrays) one class comparison with the following settings: false discovery rate of 0.5%; minimal probe coverage: 3; minimal fold change threshold of 1.5. Down and up-regulated genes from both datasets (CT4 and CT16) were mapped to the Gene Ontology (GO) biological process terms and calculated as over- represented (z-score) relative to the expected number of regulated genes in each GO category. Cluster 3.0 and Treeview were used to construct the heatmap of the subset of genes regulated in a time dependent manner in the tumor of mice with restricted access to food.
    [Show full text]