CUBA's MESOPHOTIC CORAL REEFS Sponge Photo Identification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data. -
Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol published by his friend Sagot (1873). Although an aristo land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat (notably Nevis, Sint Eustatius, St. -
A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution
marine drugs Review A Soft Spot for Chemistry–Current Taxonomic and Evolutionary Implications of Sponge Secondary Metabolite Distribution Adrian Galitz 1 , Yoichi Nakao 2 , Peter J. Schupp 3,4 , Gert Wörheide 1,5,6 and Dirk Erpenbeck 1,5,* 1 Department of Earth and Environmental Sciences, Palaeontology & Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany; [email protected] (A.G.); [email protected] (G.W.) 2 Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo 169-8555, Japan; [email protected] 3 Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, 26111 Wilhelmshaven, Germany; [email protected] 4 Helmholtz Institute for Functional Marine Biodiversity, University of Oldenburg (HIFMB), 26129 Oldenburg, Germany 5 GeoBio-Center, Ludwig-Maximilians-Universität München, 80333 Munich, Germany 6 SNSB-Bavarian State Collection of Palaeontology and Geology, 80333 Munich, Germany * Correspondence: [email protected] Abstract: Marine sponges are the most prolific marine sources for discovery of novel bioactive compounds. Sponge secondary metabolites are sought-after for their potential in pharmaceutical applications, and in the past, they were also used as taxonomic markers alongside the difficult and homoplasy-prone sponge morphology for species delineation (chemotaxonomy). The understanding Citation: Galitz, A.; Nakao, Y.; of phylogenetic distribution and distinctiveness of metabolites to sponge lineages is pivotal to reveal Schupp, P.J.; Wörheide, G.; pathways and evolution of compound production in sponges. This benefits the discovery rate and Erpenbeck, D. A Soft Spot for yield of bioprospecting for novel marine natural products by identifying lineages with high potential Chemistry–Current Taxonomic and Evolutionary Implications of Sponge of being new sources of valuable sponge compounds. -
Proposal for a Revised Classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3*
Morrow and Cárdenas Frontiers in Zoology (2015) 12:7 DOI 10.1186/s12983-015-0099-8 DEBATE Open Access Proposal for a revised classification of the Demospongiae (Porifera) Christine Morrow1 and Paco Cárdenas2,3* Abstract Background: Demospongiae is the largest sponge class including 81% of all living sponges with nearly 7,000 species worldwide. Systema Porifera (2002) was the result of a large international collaboration to update the Demospongiae higher taxa classification, essentially based on morphological data. Since then, an increasing number of molecular phylogenetic studies have considerably shaken this taxonomic framework, with numerous polyphyletic groups revealed or confirmed and new clades discovered. And yet, despite a few taxonomical changes, the overall framework of the Systema Porifera classification still stands and is used as it is by the scientific community. This has led to a widening phylogeny/classification gap which creates biases and inconsistencies for the many end-users of this classification and ultimately impedes our understanding of today’s marine ecosystems and evolutionary processes. In an attempt to bridge this phylogeny/classification gap, we propose to officially revise the higher taxa Demospongiae classification. Discussion: We propose a revision of the Demospongiae higher taxa classification, essentially based on molecular data of the last ten years. We recommend the use of three subclasses: Verongimorpha, Keratosa and Heteroscleromorpha. We retain seven (Agelasida, Chondrosiida, Dendroceratida, Dictyoceratida, Haplosclerida, Poecilosclerida, Verongiida) of the 13 orders from Systema Porifera. We recommend the abandonment of five order names (Hadromerida, Halichondrida, Halisarcida, lithistids, Verticillitida) and resurrect or upgrade six order names (Axinellida, Merliida, Spongillida, Sphaerocladina, Suberitida, Tetractinellida). Finally, we create seven new orders (Bubarida, Desmacellida, Polymastiida, Scopalinida, Clionaida, Tethyida, Trachycladida). -
Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia
Diversity 2016, 8, 21; doi:10.3390/d8040021 S1 of S3 9 Supplementary Materials: Patterns of Sponge Biodiversity in the Pilbara, Northwestern Australia Jane Fromont, Muhammad Azmi Abdul Wahab, Oliver Gomez, Merrick Ekins, Monique Grol and John Norman Ashby Hooper 1. Materials and Methods 1.1. Collation of Sponge Occurrence Data Data of sponge occurrences were collated from databases of the Western Australian Museum (WAM) and Atlas of Living Australia (ALA) [1]. Pilbara sponge data on ALA had been captured in a northern Australian sponge report [2], but with the WAM data, provides a far more comprehensive dataset, in both geographic and taxonomic composition of sponges. Quality control procedures were undertaken to remove obvious duplicate records and those with insufficient or ambiguous species data. Due to differing naming conventions of OTUs by institutions contributing to the two databases and the lack of resources for physical comparison of all OTU specimens, a maximum error of ± 13.5% total species counts was determined for the dataset, to account for potentially unique (differently named OTUs are unique) or overlapping OTUs (differently named OTUs are the same) (157 potential instances identified out of 1164 total OTUs). The amalgamation of these two databases produced a complete occurrence dataset (presence/absence) of all currently described sponge species and OTUs from the region (see Table S1). The dataset follows the new taxonomic classification proposed by [3] and implemented by [4]. The latter source was used to confirm present validities and taxon authorities for known species names. The dataset consists of records identified as (1) described (Linnean) species, (2) records with “cf.” in front of species names which indicates the specimens have some characters of a described species but also differences, which require comparisons with type material, and (3) records as “operational taxonomy units” (OTUs) which are considered to be unique species although further assessments are required to establish their taxonomic status. -
Estructura De La Comunidad De Poriferos En El Arrecife “Los Picos”
UNIVERSIDAD VERACRUZANA INSTITUTO DE CIENCIAS MARINAS Y PESQUERÍAS MAESTRÍA EN ECOLOGÍA Y PESQUERÍAS ESTRUCTURA DE LA COMUNIDAD DE PORIFEROS EN EL ARRECIFE “LOS PICOS” EN VERACRUZ, MÉXICO. PROYECTO DE TESIS QUE PRESENTA: BIOL. JANNETH ALEJANDRA MARTÍNEZ VARGAS COMO REQUISITO PARCIAL PARA OBTENER EL TITULO PROFESIONAL DE: MAESTRA EN ECOLOGÍA Y PESQUERÍAS Director/Tutor de tesis: Dr. Alejandro Granados Barba Asesores: Dr. David Salas Monreal Dr. Leonardo D. Ortiz Lozano BOCA DEL RÍO, VERACRUZ "Lo que sabemos es una gota de agua, lo que ignoramos es el océano" Isaac Newton AGRADECIMIENTOS Al Consejo Nacional de Ciencia y Tecnología (CONACyT), por el apoyo económico otorgado con la beca de maestría no. 448364, sin la cual nada de esto hubiese sido posible. Al Instituto de Ciencias Marinas y Pesquerías de la Universidad Veracruzana, a sus académicos y administrativos, por haberme recibido como parte de sus alumnos de maestría, por el apoyo, buenos momentos y todas las enseñanzas. Al Programa de Fortalecimiento de la Calidad Educativa (PFCE) por los apoyos otorgados para la realización del trabajo de campo y para la participación en un congreso nacional (IV Congreso sobre los Recursos Acuáticos del Golfo de México y Mar Caribe - 2017). Al Laboratorio de Investigación de Recursos Acuáticos (LIRA) del Instituto Tecnológico de Boca del Río y todo su personal por facilitarme el acceso para trabajar en sus instalaciones y el uso del equipo para realizar el procesamiento de muestras de granulometría. Al Dr. Alejandro Granados, mi director y asesor, por recibirme en su grupo de trabajo aún sin conocerme. Por su apoyo en el proceso tan cambiante de la tesis que nos recordó una vez más que con la naturaleza nada está escrito. -
Sponges of the Caribbean: Linking Sponge Morphology and Associated Bacterial Communities Ericka Ann Poppell
University of Richmond UR Scholarship Repository Master's Theses Student Research 5-2011 Sponges of the Caribbean: linking sponge morphology and associated bacterial communities Ericka Ann Poppell Follow this and additional works at: http://scholarship.richmond.edu/masters-theses Part of the Biology Commons Recommended Citation Poppell, Ericka Ann, "Sponges of the Caribbean: linking sponge morphology and associated bacterial communities" (2011). Master's Theses. Paper 847. This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of UR Scholarship Repository. For more information, please contact [email protected]. ABSTRACT SPONGES OF THE CARIBBEAN: LINKING SPONGE MORPHOLOGY AND ASSOCIATED BACTERIAL COMMUNITIES By: Ericka Ann Poppell, B.S. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at the University of Richmond University of Richmond, May 2011 Thesis Director: Malcolm S. Hill, Ph.D., Professor, Department of Biology The ecological and evolutionary relationship between sponges and their symbiotic microflora remains poorly understood, which limits our ability to understand broad scale patterns in benthic-pelagic coupling on coral reefs. Previous research classified sponges into two different categories of sponge-microbial associations: High Microbial Abundance (HMA) and Low Microbial Abundance (LMA) sponges. Choanocyte chamber morphology and density was characterized in representatives of HMA and LMA sponges using scanning electron I)licroscopy from freeze-fractured tissue. Denaturing Gradient Gel Electrophoresis was used to examine taxonomic differences among the bacterial communities present in a variety of tropical sponges. -
Dry Tortugas National Park Monroe County, Florida
APPENDIX A: ERRATA 1. Page 63, Commercial Services, second paragraph. Replace the second sentence with the following text: “The number of vessels used in the operation, and arrival and departure patterns at Fort Jefferson, will be determined in the concession contracting process.” Explanation: The number of vessels to be used by the ferry concessionaire, and appropriate arrival and departure patterns, will be determined during the concessions contracting process that will occur during implementation of the Final GMPA/EIS. 2. Page 64, Commercial Services, third paragraph. Change the last word of the fourth sentence from “six” to “twelve.” Explanation: Group size for snorkeling and diving with commercial guides in the research natural area zone will be limited to 12 passengers, rather than 6 passengers. 3. Page 64, Commercial Services, sixth paragraph. Change the fourth sentence to read: “CUA permits will be issued to boat operators for 12-passenger multi-day diving trips.” Explanation: Group size for guided multi-day diving trips by operators with Commercial Use Authorizations will be 12 passengers, rather than 6 passengers. 4. Page 40, Table 1. Ranges of Visitor Use At Specific Locations. Change the last sentence in the box on page 40 to read: “Group size for snorkeling and diving with commercial guides in waters in the research natural area shall be a maximum of 12 passengers, excluding the guide.” Explanation: Clarifies that maximum group size for guided multi-day diving trips in the RNA by operators with Commercial Use Authorizations will be 12 passengers, rather than six passengers. 5. Page 84, Table 4: Summary of Alternative Actions. -
Ctz 74-00 Pinheiro.Indd
Contributions to Zoology, 74 (3/4) 271-278 (2005) Shallow-water Niphatidae (Haplosclerina, Haplosclerida, Demospongiae) from the São Sebastião Channel and its environs (tropical southwestern At- lantic), with the description of a new species U. S. Pinheiro1, 2, *, R.G.S. Berlinck 3, **, E. Hajdu 2, *** 1Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia, Rua José Moreira So- brinho, s/n, 45200-000, Jequiezinho, Jequié, BA, Brazil; 2Departamento de Invertebrados, Museu Nacional, Universidade do Brasil, Quinta da Boa Vista, s/n, 20940-040, Rio de Janeiro, RJ, Brazil; 3Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil; *FAPERJ fellow, e-mail: upinheiro@gmail. com; **CNPq fellow, e-mail: [email protected]; ***CNPq fellow, e-mail: [email protected] Key words: Porifera, Demospongiae, Haplosclerina, Niphatidae, tropical southwestern Atlantic, taxonomy, new species Abstract Comparison of the niphatids collected in the São Sebastião Channel area and its environs with data Two niphatids are described here: Amphimedon viridis and compiled from the literature lead us to identify Am- Pachychalina alcaloidifera sp. nov. Amphimedon viridis is a common and conspicuous species in most of the tropical western phimedon viridis and a new species, Pachychalina Atlantic. Pachychalina alcaloidifera sp. nov. has this far been alcaloidifera sp. nov., to be described below. found only in the coasts of Rio de Janeiro and São Paulo states. Both species are described on the basis of series of specimens observed alive. Material and methods Specimens were collected during a faunistic survey Contents conducted in the area of the São Sebastião Channel and its environs, in the municipalities of São Sebas- Introduction ................................................................................... -
Sponge Bioerosion and Habitat Degradation on Indonesian Coral Reefs
Sponge bioerosion and habitat degradation on Indonesian coral reefs by Joseph Marlow A thesis submitted to Victoria University of Wellington in fulfilment of the requirements for the degree of Doctor of Philosophy 2017 2 Acknowledgments Firstly I would like to thank my primary supervisor, Associate Professor James Bell, for his unwavering support and advice these past three years. I feel very lucky to have had James as my supervisor, his help and guidance whether it was in the field, in the lab or in relation to the many many manuscript drafts I sent him has always been fantastic. I would also like to thank my secondary supervisor, Professor Simon Davy, in particular for his advice about Symbiodinium and photophysiology but also for his overall support and excellent feedback on manuscripts. This research could not have happened without the funding and support from Operation Wallacea. I would like to thank in particular Pippa Mansell for her incredible management of the research station and thank both her and Chris Majors for all their support and help with my research. Thanks to all the Indonesian staff who kept me fed, in the water and made sure I always had a cold Bintang waiting for me at the end of the day. I am incredibly grateful for the support and funding provided by VUW, without which I would not have been able to complete this PhD. Thanks also to the PADI foundation which also provided research funding and Daniel LeDuc and Dennis Gordon at NIWA for their help and providing access to the SEM. -
Microbiome Structure of Ecologically Important Bioeroding Sponges (Family Clionaidae)
bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923250; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 2 Microbiome structure of ecologically important bioeroding sponges (family Clionaidae): 3 The role of host phylogeny and environmental plasticity. 4 Oriol Sacristán-Soriano1,2, †, Xavier Turon2 and Malcolm Hill1,3 5 6 7 1Department of Biology; University of Richmond; Richmond, VA 8 2Centre d’Estudis Avançats de Blanes (CEAB, CSIC), Blanes, Spain 9 3Department of Biology, Bates College, Lewiston, ME 04240 10 †Corresponding author 11 12 13 Keywords: symbiosis, bioerosion, microbiome, Symbiodinium, Cliona, Spheciospongia, 14 Cervicornia 15 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.28.923250; this version posted January 29, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 16 Abstract 17 The potential of increased bioerosion by excavating sponges in future environmental scenarios 18 represents a potential threat to coral reef structure and function. If we are to predict changes to 19 coral reef habitats, it is important to understand the biology of these sponges. Little is known 20 about prokaryotic associations in excavating sponges despite the fact that evidence indicates they 21 contribute to the sponge growth through their heterotrophic metabolism and may even act as 22 microborers. Here, we provide the first detailed description of the microbial community of 23 multiple bioeroding sponges from the Clionaidae family (Cliona varians, C. -
Sponge Fauna in the Sea of Marmara
www.trjfas.org ISSN 1303-2712 Turkish Journal of Fisheries and Aquatic Sciences 16: 51-59 (2016) DOI: 10.4194/1303-2712-v16_1_06 RESEARCH PAPER Sponge Fauna in the Sea of Marmara Bülent Topaloğlu1,*, Alper Evcen2, Melih Ertan Çınar2 1 Istanbul University, Department of Marine Biology, Faculty of Fisheries, 34131 Vezneciler, İstanbul, Turkey. 2 Ege University, Department of Hydrobiology, Faculty of Fisheries, 35100 Bornova, İzmir, Turkey. * Corresponding Author: Tel.: +90.533 2157727; Fax: +90.512 40379; Received 04 December 2015 E-mail: [email protected] Accepted 08 February 2016 Abstract Sponge species collected along the coasts of the Sea of the Marmara in 2012-2013 were identified. A total of 30 species belonging to 21 families were found, of which four species (Ascandra contorta, Paraleucilla magna, Raspailia (Parasyringella) agnata and Polymastia penicillus) are new records for the eastern Mediterranean, while six species [A. contorta, P. magna, Chalinula renieroides, P. penicillus, R. (P.) agnata and Spongia (Spongia) nitens] are new records for the marine fauna of Turkey and 12 species are new records for the Sea of Marmara. Sponge specimens were generally collected in shallow water, but two species (Thenea muricata and Rhizaxinella elongata) were found at depths deeper than 100 m. One alien species (P. magna) was found at 10 m depth at station K18 (Büyükada). The morphological and distributional features of the species that are new to the Turkish marine fauna are presented. Keywords: Porifera, Benthos, Invertebrate, Turkish Straits System. Marmara Denizi Sünger Faunası Özet Bu çalışmada, Marmara Denizi ve kıyılarında 2012-2013 yılları arasında toplanan Sünger örnekleri tanımlanmıştır.