7- Algae and Men

Total Page:16

File Type:pdf, Size:1020Kb

7- Algae and Men 7- Algae and Men INTRODUCTION Microalgae and macroalgae have been utilized by man for hundreds of years as food, fodder, remedies, and fertilizers. Ancient records show that people collected macroalgae for food as long as 500 B.C. in China and one thousand of years later in Europe. Microalgae such as Arthrospira have a history of human consumption in Mexico and Africa. In addition to direct consumption, agars and carrageenans extracted from red macroalgae and alginates from brown macroalgae and microalgae have been included in a remarkable array of prepared food products, serving mostly to modify viscosity or texture. Microalgae are a source for viable and inexpensive carotenoids, pigments, proteins, and vitamins that can be used for the production of nutraceuticals, pharmaceuticals, animal feed additives, and cosmetics. Table 1 summarizes commercially exploited algae and the corresponding nutraceutical. 134 USES OF COMMERCIAL ALGAE FOOD Cyanophyta Nostoc sphaeroides are used as food and delicacy for hundreds of years. It is found in rice fields from December to May in Hubei, China. Colonies are dark green and pearlshaped, and can reach 2.5 cm in diameter. Dried Nostoc spp. Balls are sold in Asian markets; they are stir-fried sautéed with oysters, and used in soups and as thickeners for other foods. Nostoc flagelliforme is a terrestrial cyanobacterium that naturally grows on arid and semiarid steppes in the Northern and the Northwestern parts of China, where it is considered an edible delicacy with special medical value and great economic value. N. flagelliforme is called “Facai” (hair vegetable) in Chinese because of its hair-like appearance. Arthrospira platensis is filamentous cyanobacterium has a history of human consumption, which can be located essentially in Mexico (where it is called tecuitlatl) and in Africa (where it is called dihe´). Arthrospira bloom is present as a thick blue-green mat floating onto the surface of the lake only few hours a day, early in the morning. When the sun is high, the temperature of the water rises, and the bloom disperses, therefore the harvesting begins -by women - (Figure 1) at sunrise and it is over in about 2 h. Dihe´ is mainly used to prepare la souce, a kind of vegetable broth served with corn, millet, or sorghum meal, which occasionally can have fish or meat as additional ingredients. A minor utilization of dihe´ is as remedy applied onto wounds to speed up the healing process, or as a poultice to soothe the pain and reduce the swelling of mumps. Nutritional value Arthrospira biomass has a high content of protein, about 55–60% of the dry matter, the proteins are low in lysine and sulfured amino acids such as methionine and cystein, but their amount is much higher than in other vegetables, including legumina. Phycobiliproteins represent a major portion of proteins, and among them phycocyanin can reach 7–13% of the dry matter; carbohydrates reach 10–20% of the dry weight, and consist mainly of reserve products, while lipids account for 9–14% of the dry weight. The mineral fraction represents 6–9% of the dry biomass, rich in K, P, Na, Ca, Mn, and Fe. Group A, B, and C vitamins are also present, with an average β-carotene content of 1.5 mg g-1 of Arthrospira, corresponding to 0.25 mg of vitamin A. Rhodophyta Porphyra (Bangiophyceae) is popularly known as Nori in Japan, Kim in Korea, and Zicai in China,. Porphyra grows as a very thin, flat, blade, which can be yellow, olive, pink, or purple. It can be either round, round to ovate, obovate, linear or linear lanceolate, from 5 to 35 cm in length. The thalli are either one or two cells thick. Porphyra is gathered by coastal peoples from wild populations in large quantities, dried and processed into dried sheets, and served in a variety of ways: toasted as a snack, cooked with clams, salmon eggs, or fish in soup, or sprinkled on other foods as a condiment. 135 FIGURE 1 Harvesting, drying and preparation of Arthrospira of dihe´ on the shore of Lake Kossorom. Nori is often wrapped around the rice ball of sushi, a typical Japanese food consisting of a small handful of boiled rice with a slice of raw fish on the top. It can be incorporated into soy sauce and boiled down to give an appetizing luxury sauce. In China it is mostly used in soups and for seasoning fried foods. In the Republic of Korea it has uses similar to Japan. Nutritional value Porphyra is among the most nutritious macroalgae, with a protein content of 25–50%, and about 75% of which is digestible. This alga is an excellent source of iodine, other trace minerals, and dietary fibers. Sugars are low (0.1%), and the vitamin content very high, with significant amounts of vitamins A, complex B, and C, but the shelf life of vitamin C can be short in the dried product. The characteristic taste of nori is caused by the large amounts of three amino acids: alanine, glutamic acid, and glycine. It also contains taurine, which controls blood cholesterol levels. The alga is a preferred source of the red pigment r-phycoerythrin, which is utilized as a fluorescent “tag” in the medical diagnostic industry. Other Uses P. abbottae is valued also for its medicinal properties as gastrointestinal aid, taken as decoction or applied as a poultice for any kind of sickness in the stomach, and as orthopedic aid applied on broken collarbones. 136 Palmaria (Rodimenia) palmata (Florideophyceae) The fronds of the red alga Palmaria palmata are known as “dulse” (Figure 2); they are eaten raw as a vegetable substitute, dried or cooked with potatoes, in soups and fish dishes. Nutritional value Dulse is a good source of minerals, being very high in iron and containing all the trace elements needed in human nutrition, and has also a high vitamin content. FIGURE 2 Palmaria palmata. Chondrus crispus (Florideophyceae), the Irish moss or carrageenan moss (Figure 3) is not eaten as such, but used for its thickening powers when boiled in water, a result of its carrageenan content. One example is its use in making blancmange, a traditional vanilla-flavored pudding. It also used in macroalgae salads and as a soup ingredient. FIGURE 3 Frond of Chondrus crispus. 137 Gracilaria (Florideophyceae) when fresh, it is known as Ogo, ogonori, or sea moss. Gracilaria has been collected and sold as a salad vegetable in Hawaii (USA) for several decades. Nutritional value Gracilaria sp. contains (wet weight basis): 6.9 +0.1% total proteins, 24.7+0.7% crude fiber, 3.3+0.2% total lipids, and 22.7+0.6% ash. It contains 28.5+0.1 mg of vitamin C per 100 g of wet biomass, 5.2+0.4 % mg of β-carotene per 100 g of dry weight, which corresponds to a vitamin A activity of 865 mg. Limu manauea and limu ogo are both sold as fresh vegetables, the latter usually mixed with raw fish. Callophyllis variegata (carola) (Florideophyceae) This red macroalgae is one of the most popular (Figure 4) edible macroalgae in Chile. FIGURE 4 Frond of Callophyllis variegata. Heterokontophyta Alaria esculenta, is a large brown kelp (Figure 5). It is known as winged kelp. It has a wide distribution in cold waters and does not survive above 16°C. Nutritional value It is said to have the best protein among the kelps and is also rich in trace metals and vitamins, especially niacin. It is usually collected from the wild and eaten by local people. China is the largest producer of edible macroalgae, harvesting about 5 million wet tons annually. Laminaria japonica (Figure 6) is a large macroalga, usually 2–5 m long, but it can grow up to 10 m in favorable conditions. It requires water temperatures below 20°C. Kombu is the Japanese name for the dried macroalgae that is derived from a mixture of Laminaria species. 138 FIGURE 5 Frond of Alaria esculenta. FIGURE 6 Frond of Laminaria japonica. In Japan, it is used in everyday food, such as a seasoned and cooked kombu that is served with herring or sliced salmon. Undaria sp. Called wakame, is another exploited kelp, which together with Laminaria sp. is one of the two most economically important edible algae. U. pinnatifida is the main species cultivated (Figure 7). Wakame products is used for various instant foods such as noodles and soups, and its consumption is very popular. Nutritional value The crude protein content of wakame and kombu is 16.3 and 6.2 g (g/100 g), respectively, and both algae contain all essential amino acids, which account for 47.1% of the total amino acid content in wakame and for 50.7% in kombu. FIGURE 7 Frond of Undaria pinnatifida. 139 Table 2–Table 4 summarize the vitamins, minerals, and fiber contents of the two edible algae. This data shows that wakame and kombu have high contents of β- carotene, that is, 1.30 and 2.99 mg (100 g d.w.) -1 or 217 and 481 µg retinol (100 g d.w.) -1, respectively. The basic component in sea vegetables is iodine, an essential trace element and an integral part of two hormones released by the thyroid gland. According to the results in Table 3, wakame and kombu contain 26 and 170 mg (100 g d.w.)-1 of iodine, respectively, which is lacking in nori and other red macroalgae.. 140 Hizikia fusiforme is another brown algae popular as food in Japan and the Republic of Korea known as Hiziki. It is collected from the wild in Japan and cultivated in the Republic of Korea, grows at the bottom of the eulittoral and top of the sublittoral zones.
Recommended publications
  • Intertidal and Subtidal Benthic Seaweed Diversity of South Georgia
    Intertidal and Subtidal Benthic Seaweed Diversity of South Georgia Report for the South Georgia Heritage Trust Survey September 2011 Shallow Marine Survey Group E Wells1, P Brewin and P Brickle 1 Wells Marine, Norfolk, UK Executive Summary South Georgia is a highly isolated island with its marine life influenced by the circumpolar currents. The local seaweed communities have been researched sporadically over the last two centuries with most species collections and records documented for a limited number of sites within easy access. Despite the harsh conditions of the shallow marine environment of South Georgia a unique and diverse array of algal flora has become well established resulting in a high level of endemism. Current levels of seaweed species diversity were achieved along the north coast of South Georgia surveying 15 sites in 19 locations including both intertidal and subtidal habitats. In total 72 species were recorded, 8 Chlorophyta, 19 Phaeophyta and 45 Rhodophyta. Of these species 24 were new records for South Georgia, one of which may even be a new record for the Antarctic/sub-Antarctic. Historic seaweed studies recorded 103 species with a new total for the island of 127 seaweed species. Additional records of seaweed to the area included both endemic and cosmopolitan species. At this stage it is unknown as to the origin of such species, whether they have been present on South Georgia for long periods of time or if they are indeed recent additions to the seaweed flora. It may be speculated that many have failed to be recorded due to the nature of South Georgia, its sheer isolation and inaccessible coastline.
    [Show full text]
  • Seaweeds of California Green Algae
    PDF version Remove references Seaweeds of California (draft: Sun Nov 24 15:32:39 2019) This page provides current names for California seaweed species, including those whose names have changed since the publication of Marine Algae of California (Abbott & Hollenberg 1976). Both former names (1976) and current names are provided. This list is organized by group (green, brown, red algae); within each group are genera and species in alphabetical order. California seaweeds discovered or described since 1976 are indicated by an asterisk. This is a draft of an on-going project. If you have questions or comments, please contact Kathy Ann Miller, University Herbarium, University of California at Berkeley. [email protected] Green Algae Blidingia minima (Nägeli ex Kützing) Kylin Blidingia minima var. vexata (Setchell & N.L. Gardner) J.N. Norris Former name: Blidingia minima var. subsalsa (Kjellman) R.F. Scagel Current name: Blidingia subsalsa (Kjellman) R.F. Scagel et al. Kornmann, P. & Sahling, P.H. 1978. Die Blidingia-Arten von Helgoland (Ulvales, Chlorophyta). Helgoländer Wissenschaftliche Meeresuntersuchungen 31: 391-413. Scagel, R.F., Gabrielson, P.W., Garbary, D.J., Golden, L., Hawkes, M.W., Lindstrom, S.C., Oliveira, J.C. & Widdowson, T.B. 1989. A synopsis of the benthic marine algae of British Columbia, southeast Alaska, Washington and Oregon. Phycological Contributions, University of British Columbia 3: vi + 532. Bolbocoleon piliferum Pringsheim Bryopsis corticulans Setchell Bryopsis hypnoides Lamouroux Former name: Bryopsis pennatula J. Agardh Current name: Bryopsis pennata var. minor J. Agardh Silva, P.C., Basson, P.W. & Moe, R.L. 1996. Catalogue of the benthic marine algae of the Indian Ocean.
    [Show full text]
  • Macroalgas Marinas Bentónicas Del Submareal Somero De La Ecorregión Subantártica De Magallanes, Chile
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/265293883 Macroalgas Marinas Bentónicas del Submareal Somero de la Ecorregión Subantártica de Magallanes, Chile Article in Anales del Instituto de la Patagonia · December 2013 DOI: 10.4067/S0718-686X2013000200004 CITATIONS READS 3 140 7 authors, including: Andres Omar Mansilla Marcela Avila University of Magallanes Arturo Prat University 175 PUBLICATIONS 604 CITATIONS 41 PUBLICATIONS 333 CITATIONS SEE PROFILE SEE PROFILE Jaime Ojeda University of Magallanes 36 PUBLICATIONS 89 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: HISTORICAL AND RECENT BIOGEOGRAPHIC PATTERNS AND PROCESSES IN SOUTHERN OCEAN MARINE MOLLUSKS WITH CONTRASTING DEVELOPMENTAL MODES View project Phylogeography, population genetic structure and connectivity of the Subantarctic crab Halicarcinus planatus, the first alien marine invertebrate discovered in Antarctica View project All content following this page was uploaded by Sebastian Rosenfeld on 03 September 2014. The user has requested enhancement of the downloaded file. All in-text references underlined in blue are added to the original document and are linked to publications on ResearchGate, letting you access and read them immediately. Anales Instituto Patagonia (Chile), 2013. 41(2):49-62 49 MACROALGAS MARINAS BENTÓNICAS DEL SUBMAREAL SOMERO DE LA ECORREGIÓN SUBANTÁRTICA DE MAGALLANES, CHILE SHALLOW SUBTIDAL BENTHIC MARINE MACROALGAE FROM THE MAGELLAN SUBANTARCTIC ECOREGION, CHILE Andrés Mansilla1,4, Marcela Ávila2, María E. Ramírez3, Juan Pablo Rodriguez1,4, Sebastián Rosenfeld1,4,5, Jaime Ojeda1, & Johanna Marambio1,5 ABSTRACT The area of channels and fjords belonging to the Magellan subantarctic has a high diversity of macroalgae, in relation to the temperate areas of South America.
    [Show full text]
  • The Global Status of Seaweed Production, Trade and Utilization
    GLOBEFISH RESEARCH PROGRAMME The global status of seaweed production, trade and utilization Volume 124 FAO GLOBEFISH RESEARCH PROGRAMME VOL. 124 The global status of seaweed production, trade and utilization by Fatima Ferdouse Susan Løvstad Holdt Rohan Smith Pedro Murúa Zhengyong Yang FAO Consultants Products, Trade and Marketing Branch Fisheries and Aquaculture Policy and Resources Division Rome, Italy FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Rome, 2018 5HTXLUHGFLWDWLRQ )$2 7KHJOREDOVWDWXVRIVHDZHHGSURGXFWLRQWUDGHDQGXWLOL]DWLRQ *OREHILVK5HVHDUFK3URJUDPPH9ROXPH 5RPHSS /LFHQFH&&%<1&6$,*2 7KHGHVLJQDWLRQVHPSOR\HGDQGWKHSUHVHQWDWLRQRIPDWHULDOLQWKLVLQIRUPDWLRQSURGXFWGRQRWLPSO\WKHH[SUHVVLRQRIDQ\RSLQLRQZKDWVRHYHU RQWKHSDUWRIWKH)RRGDQG$JULFXOWXUH2UJDQL]DWLRQRIWKH8QLWHG1DWLRQV )$2 FRQFHUQLQJWKHOHJDORUGHYHORSPHQWVWDWXVRIDQ\FRXQWU\ WHUULWRU\FLW\RUDUHDRURILWVDXWKRULWLHVRUFRQFHUQLQJWKHGHOLPLWDWLRQRILWVIURQWLHUVRUERXQGDULHV7KHPHQWLRQRI VSHFLILFFRPSDQLHVRU SURGXFWVRIPDQXIDFWXUHUVZKHWKHURUQRWWKHVHKDYHEHHQSDWHQWHGGRHVQRWLPSO\WKDWWKHVHKDYHEHHQHQGRUVHGRUUHFRPPHQGHGE\ )$2LQSUHIHUHQFHWRRWKHUVRIDVLPLODUQDWXUHWKDWDUHQRWPHQWLRQHG 7KHYLHZVH[SUHVVHGLQWKLVLQIRUPDWLRQSURGXFWDUHWKRVHRIWKHDXWKRU V DQGGRQRWQHFHVVDULO\UHIOHFWWKHYLHZVRUSROLFLHVRI)$2 ,6%1 )$2 6RPHULJKWVUHVHUYHG7KLVZRUNLV PDGH DYDLODEOHXQGHUWKH&UHDWLYH&RPPRQV$WWULEXWLRQ1RQ&RPPHUFLDO6KDUH$OLNH ,*2OLFHQFH && %<1&6$ ,*2KWWSVFUHDWLYHFRPPRQVRUJOLFHQVHVE\QFVDLJR 8QGHUWKHWHUPVRIWKLVOLFHQFH WKLVZRUNPD\EHFRSLHGUHGLVWULEXWHG DQGDGDSWHG IRUQRQFRPPHUFLDOSXUSRVHVSURYLGHGWKDWWKHZRUNLV DSSURSULDWHO\FLWHG,QDQ\XVHRIWKLVZRUNWKHUHVKRXOGEHQRVXJJHVWLRQWKDW)$2
    [Show full text]
  • Variación Estacional En La Composición De Ensambles Sublitorales De Macroalgas Asociadas Al Alga Roja Gigartina Skottsbergii
    Anales Instituto Patagonia (Chile), 2016. Vol. 44(2):5-22 5 Variación estacional en la composición de ensambles sublitorales de macroalgas asociadas al alga roja Gigartina skottsbergii Setchell & Gardner, en el Estrecho de Magallanes, Chile Seasonal variation in the composition of subtidal macroalgal assemblages associated with the red macroalga Gigartina skottsbergii Setchell & Gardner, in the Strait of Magellan, Chile Johanna Marambio1,2, Sebastián Rosenfeld1,2, Jaime Ojeda1, Andrés Mansilla1,2 Resumen sublitorales de macroalgas en dos localidades del La creciente demanda de carragenanos por Estrecho de Magallanes. parte de la industria chilena y mundial ha provocado una fuerte presión extractiva sobre Palabras claves: Subantártico, macroalgas, las praderas naturales de ‘luga roja’, Gigartina biodiversidad, estacional, sublitoral. skottsbergii, desplazando el esfuerzo pesquero desde los 41°S hacia la zona más austral de Abstract Chile (54-56°S). A pesar del conocimiento The emergent demand for carrageenan by generado sobre la biología de G. skottsbergii, Chilean and global industries caused increasing se desconocen las macroalgas asociadas a sus extraction pressures on natural populations of praderas naturales, por lo tanto no se sabe ‘red luga’, Gigartina skottsbergii, displacing cómo afectan factores estresantes como: cambio fishing effort from 41°S to the southernmost climático, acidificación de los océanos, pesquería region of Chile (54-56 °S). artesanal, entre otros, sobre los organismos Despite the knowledge generated in the biology asociados a praderas de G. skottsbergii. En of G. skottsbergii, unknown the flora associated este trabajo se evalúa estacionalmente la com- with G. skottsbergii, therefore we don´t know, posición de las macroalgas asociadas a dos the real impacts of: global warming, ocean praderas ubicadas en el Estrecho de Magallanes.
    [Show full text]
  • Molecular-Assisted Alpha Taxonomy Reveals Pseudocryptic Diversity Among Species of Bossiella (Corallinales, Rhodophyta) in the Eastern Pacific Ocean
    Phycologia Volume 53 (5), 443–456 Published 24 September 2014 Molecular-assisted alpha taxonomy reveals pseudocryptic diversity among species of Bossiella (Corallinales, Rhodophyta) in the eastern Pacific Ocean 1,2* 3 1 KATHARINE R. HIND ,PAUL W. GABRIELSON AND GARY W. SAUNDERS 1Centre for Environmental and Molecular Algal Research, Department of Biology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada 2Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada 3Herbarium, Coker Hall CB 3280, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina 27599-3280, USA ABSTRACT: A floristic survey of the red algal genus Bossiella was conducted using molecular-assisted alpha taxonomy (MAAT). The MAAT approach used DNA sequence data as a first pass to assess species diversity followed by additional study including detailed morphological observations to delimit species. In addition, type specimen sequencing was conducted to apply existing species names to genetic groups. Four Bossiella species were recognised in the eastern Pacific Ocean based on morphology, but a genetic screen using a DNA barcode marker, mitochondrial cytochrome c oxidase subunit 1 (COI-5P), showed 17 genetic species groups. Due to the large number of species requiring taxonomic assessment, we focused this study on species with predominantly dichotomous branching, that is, the recognised morphospecies B. californica and B. orbigniana. DNA sequences from three loci, psbA, rbcL and COI-5P, resolved five species: B. californica, B. dichotoma, B. schmittii, Bossiella heteroforma sp. nov. and B. orbigniana (the only species with a type locality not in the northeast Pacific). Morphology alone was an inadequate discriminator of these species, but incorporating distribution and habitat data facilitated identification of some species without DNA sequencing.
    [Show full text]
  • Sulfated Galactans from Red Seaweeds and Their Potential Applications
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Pertanika Journal of Scholarly Research Reviews (PJSRR - Universiti Putra Malaysia,... PJSRR (2018) 4(2): 1-17 eISSN: 2462-2028 © Universiti Putra Malaysia Press Pertanika Journal of Scholarly Research Reviews http://www.pjsrr.upm.edu.my/ Sulfated Galactans From Red Seaweeds and Their Potential Applications Yi-Yi, LIMa, Wei-Kang, LEEa, Adam Thean-Chor, LEOWa, Parameswari, NAMASIVAYAMa, Janna-Ong, ABDULLAHa, Chai-Ling, HOa* a Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM-Serdang, Selangor, Malaysia. *[email protected] Abstract – Red seaweeds (Rhodophyta) produce a variety of sulfated galactans in their cell wall matrix and intercellular space, contributing up to 50-60 % of their total dry weight. These sulfated polysaccharides are made up of galactose disaccharides substituted with sulfate, methoxyl, pyruvic acid, or non-galactose monosaccharides (e.g. xylose, glucose and mannose). They are required by the Rhodophytes for protection against pathogen, desiccation, tidal waves and extreme changes in pH, temperature and salinity. Since ancient times, sulfated galactans from red seaweeds, such as agar and carrageenan, have been consumed as human foods and later being used in traditional medicine. Nowadays, some red seaweeds are cultivated and exploited for commercial uses in various fields. In this review, different types of sulfated galactans found in red seaweeds and their current and potential uses in food, biotechnology, medical and pharmaceutical industries are discussed. Keywords: Agar, carrageenan, red seaweed, Rhodophyta, sulfated galactan Type of Sulfated Galactans from Red Seaweeds Red seaweeds, especially those in the order Gelidiales and Gigartinales, are a major source of marine sulfated galactans, with at least 70-80 species of them being industrially exploited for galactan production (Delattre et al., 2011).
    [Show full text]
  • A Biophysical Profile of the Tristan Da Cunha Archipelago (PDF)
    A biophysical profile of Tristan da Cunha -Sue Scott - 2017 A Biophysical Profile of the Tristan da Cunha Archipelago Sue Scott Commissioned and reviewed by The Pew Charitable Trusts 2017 1 A biophysical profile of Tristan da Cunha -Sue Scott - 2017 Contents 1. Key information on Tristan da Cunha 7 2. Geophysical setting 11 2.1. Isolated islands 11 2.2. Geology and topography 11 2.3. Climate 17 3. The ecology and biodiversity of the marine ecosystems of Tristan da Cunha 21 3.1. The pelagic ecosystem 21 3.1.1. Oceanography and ecosystem productivity 21 3.1.2. Plankton and pelagic life 25 3.1.3. Pelagic fishes 27 3.2. Marine biological surveys 29 3.3. The coastal environment 32 3.3.1. The seabed 32 3.3.2. Tides 34 3.3.3. Seashore 35 3.3.4. Intertidal bedrock and stable boulders 35 3.3.5. Rock pools and channels 39 3.3.6. Boulder beaches 42 3.4. Shallow subtidal to 40m depth 43 3.5. Deeper subtidal 45 3.6. Deep sea 48 3.7. Diversity and biogeography of benthic biota 53 3.7.1. Diversity and biogeography of fish communities 53 3.7.2. Diversity and biogeography of invertebrates 57 3.7.3. Diversity and biogeography of macroalgae 60 4. Marine mammals of Tristan da Cunha 67 4.1. Introduction 67 4.2. Seals (order Carnivora) 68 4.2.1. Eared Seals (family Otariidae) 68 4.2.2 True Seals (family Phocidae) 70 4.2.3. Rare vagrant seals 72 4.3.
    [Show full text]
  • M422p077.Pdf
    Vol. 422: 77–91, 2011 MARINE ECOLOGY PROGRESS SERIES Published January 31 doi: 10.3354/meps08937 Mar Ecol Prog Ser Morpho-functional patterns and zonation of South Chilean seaweeds: the importance of photosynthetic and bio-optical traits Iván Gómez1,*, Pirjo Huovinen1, 2 1Universidad Austral de Chile, Instituto de Biología Marina/Laboratorio Costero de Calfuco, Facultad de Ciencias, Casilla 567, Valdivia, Chile 2Centro i~mar, Universidad de Los Lagos, Casilla 557, Puerto Montt, Chile ABSTRACT: We address the question of whether seaweed zonation can be characterized in terms of light absorption, pigmentation, photosynthetic parameters, photoinhibition, and thallus structure. Based on 32 seaweed species from the Pacific coast of southern Chile, intertidal assemblages exhib- ited higher light requirements for photosynthesis (Ek) and lower thallus light absorptances than sub- tidal algae. Ek values were lower than the highest measured irradiances at the corresponding natural depths, suggesting that photosynthesis in these organisms could potentially occur at lower depths. During summer, 1% of photosynthetically active radiation (PAR) reached a depth of 23 m, while UV- B and UV-A wavelengths were completely attenuated at <3 and 6 m, respectively. Overall, the pho- tobiological adaptations were associated with depth, morphology, and taxonomic group. Photoinhibi- tion was similar in algae from different depths, although recovery was higher in upper littoral algae than in infra- and sublittoral species. The characteristics conferring competitive abilities in light use and light stress tolerance were not, or only partially, related to the classical Littler form-function model. The filamentous and foliose forms were able to acclimate rapidly to changing light and phys- ical stress in the supralittoral zone.
    [Show full text]
  • Why One Species in New Zealand, Pugetia Delicatissima (Kallymeniaceae, Rhodophyta), Should Become Two New Genera, Judithia Gen. Nov
    European Journal of Phycology ISSN: 0967-0262 (Print) 1469-4433 (Online) Journal homepage: http://www.tandfonline.com/loi/tejp20 Why one species in New Zealand, Pugetia delicatissima (Kallymeniaceae, Rhodophyta), should become two new genera, Judithia gen. nov. and Wendya gen. nov. Roberta D’Archino, Showe-Mei Lin, Paul W. Gabrielson & Giuseppe C. Zuccarello To cite this article: Roberta D’Archino, Showe-Mei Lin, Paul W. Gabrielson & Giuseppe C. Zuccarello (2015): Why one species in New Zealand, Pugetia delicatissima (Kallymeniaceae, Rhodophyta), should become two new genera, Judithia gen. nov. and Wendya gen. nov., European Journal of Phycology, DOI: 10.1080/09670262.2015.1104557 To link to this article: http://dx.doi.org/10.1080/09670262.2015.1104557 View supplementary material Published online: 01 Dec 2015. Submit your article to this journal View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tejp20 Download by: [Niwa] Date: 02 December 2015, At: 19:05 Eur. J. Phycol. (2015), 1–16 Why one species in New Zealand, Pugetia delicatissima (Kallymeniaceae, Rhodophyta), should become two new genera, Judithia gen. nov. and Wendya gen. nov. ROBERTA D’ARCHINO1, SHOWE-MEI LIN2, PAUL W. GABRIELSON3 AND GIUSEPPE C. ZUCCARELLO4 1National Institute of Water and Atmospheric Research Ltd, Private Bag 14-901, Wellington 6241, New Zealand 2Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China 3Herbarium and Biology Department, University of North Carolina – Chapel Hill, Coker Hall, CB 3280, Chapel Hill, North Carolina 27599-3280, USA 4School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, New Zealand (Received 22 April 2015; revised 10 July 2015; accepted 19 July 2015) Blade-forming red algae occur worldwide and, prior to DNA sequencing, had been notoriously difficult to identify and classify, especially when lacking critical reproductive features.
    [Show full text]
  • The Phylogeographic History of Amphitropical Callophyllis Variegata (Florideophyceae, Rhodophyta) in the Pacific Ocean
    Research Article Algae 2019, 34(2): 91-97 https://doi.org/10.4490/algae.2019.34.5.26 Open Access The phylogeographic history of amphitropical Callophyllis variegata (Florideophyceae, Rhodophyta) in the Pacific Ocean Trevor T. Bringloe1,*, Erasmo C. Macaya2,3,4 and Gary W. Saunders1 1Centre for Environmental and Molecular Algal Research (CEMAR), Biology Department, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada 2Laboratorio de Estudios Algales (ALGALAB), Departamento de Oceanografía, Universidad de Concepción, Casilla 160-C, Concepción, Chile 3Millenium Nucleus Ecology and Sustainable Management of Oceanic Islands (ESMOI) 4Centro FONDAP de Investigaciones en Dinámica de Ecosistemas Marinos de Altas Latitudes (IDEAL), Independencia 631, Valdivia, Chile Chilean species of marine macroalgae with amphitropical distributions oftentimes result from introductions out of the Northern Hemisphere. This possibility was investigated using haplotype data in an amphitropical red macroalgae present in Chile, Callophyllis variegata. Published sequence records from Canada and the United States were supple- mented with new collections from Chile (April 2014-November 2015). Specimens of C. variegata were amplified for the ′5 end of the cytochrome c oxidase subunit I gene (COI-5P) and the full length nuclear internal transcribed spacer region. Haplotype networks and biogeographic distributions were used to infer whether C. variegata was introduced between hemispheres, and several population parameters were estimated using IMa2 analyses. C. variegata displayed a natural amphitropical distribution, with an isolation time of approximately 938 ka between hemispheres. It is hypothesized that contemporary populations of C. variegata were established from a refugial population during the late Pleistocene, and may have crossed the tropics via rafting on buoyant species of kelp or along deep-water refugia coincident with global cooling, representing a rare case of a non-human mediated amphitropical distribution.
    [Show full text]
  • Manual “Cultivo De Macroalgas: Diversificación De La Acuicultura De Pequeña Escala En Chile”
    Agradecimientos: Este trabajo forma parte del Programa Permanente en Pesca y Acuicultura (Ley de Pesca 20.657), el cual se realiza en virtud del convenio que se suscribe anualmente entre la Subsecretaría de Economía y Empresas de Menor Tamaño y el Instituto de Fomento Pesquero. La contraparte científico técnica del Programa Permanente y de cada uno de sus estudios, es la Subsecretaría de Pesca y Acuicultura a la cual se agradece su apoyo y gestión. Al AMERB de Auchac Sector C, administrada por el STI pescadores artesanales, algueros, buzos mariscadores y ramos afines de la localidad de Auchac, a CCAA en el Canal Dalcahue, administrada por el STI pescadores Cutivo de Macroalgas: artesanales, acuicultores de mitílidos y comercialización de productos del mar de la localidad de Dalcahue y a la Organización Comunitaria Diversificación de la Acuicultura de Los Castillos de La Higuera quienes contribuyeron en la ejecución de los cultivos pilotos. A Marcela Ávila por las observaciones a esta publicación. Pequeña Escala en Chile INSTITUTO DE FOMENTO PESQUERO Departamento de Repoblación y Cultivo División de Investigación en Acuicultura Autores: Registro de Propiedad Intelectual: N° A-306969 Sandra Saavedra - Luis Henríquez - Pablo Leal Registro Cámara Chilena del Libro ISBN: 978-956-7470-06-8 Francisco Galleguillos - Sebastián Cook - Francisco Cárcamo Este documento debe ser citado como: Saavedra S, Henríquez L, Leal P, Galleguillos F, Cook S, y Cárcamo F. (2019) - Cultivo de Macroalgas: Diversificación de la Departamento de Repoblación y Cultivo Acuicultura de Pequeña Escala en Chile. Convenio de Desempeño, División de Investigación en Acuicultura Subsecretaría de Economía y Empresas de Menor Tamaño.
    [Show full text]