A Phase I, Pharmacokinetic, and Biological Study of The

Total Page:16

File Type:pdf, Size:1020Kb

A Phase I, Pharmacokinetic, and Biological Study of The Vol. 9, 4761–4771, October 15, 2003 Clinical Cancer Research 4761 A Phase I, Pharmacokinetic, and Biological Study of the Farnesyltransferase Inhibitor Tipifarnib in Combination with Gemcitabine in Patients with Advanced Malignancies Amita Patnaik,1 S. Gail Eckhardt, the pharmacokinetic behavior of each agent administered Elzbieta Izbicka, Anthony A. Tolcher, alone and together. The proportions of unfarnesylated and Lisa A. Hammond, Chris H. Takimoto, farnesylated HDJ2, a chaperone protein that undergoes far- nesylation, were measured in peripheral blood mononuclear Garry Schwartz, Heather McCreery, cells. Andrew Goetz, Masataka Mori, Kazutoyo Terada, Results: Nineteen evaluable patients were treated with Lou Gentner, Mary-Ellen Rybak, 74 courses of tipifarnib/gemcitabine (mg/mg/m2). Myelosup- Henry Richards, Steven Zhang, and pression was the principal toxicity. Dose-limiting myelosup- Eric K. Rowinsky pression occurred in 2 of 5 patients at the 300/1000 dose level, whereas 2 of 11 evaluable patients at the 200/1000 dose Institute for Drug Development, Cancer Therapy and Research Center, San Antonio, Texas 78229 [A. P., S. G. E., E. I., A. A. T., level experienced dose-limiting toxicity. There was no evi- L. A. H., C. H. T., H. M., A. G., E. K. R.]; Brooke Army Medical dence of clinically relevant pharmacokinetic interactions Center, San Antonio, Texas 78234-6200 [G. S.]; Kumamoto between tipifarnib and gemcitabine. Inhibition of farnesyla- University School of Medicine, Kumamoto, Japan 860-8556 [M. M., tion of HDJ2, a potential surrogate for Ras and/or other K. T.]; and Johnson and Johnson Pharmaceutical Research and potentially relevant farnesylated proteins, was demon- Development, Titusville, New Jersey 08560 [L. G., M-E. R., H. R., S. Z.] strated in peripheral blood mononuclear cells at all dose levels. Partial responses were noted in patients with ad- vanced pancreatic and nasopharyngeal carcinomas. ABSTRACT Conclusions: On the basis of the results of this study, Purpose: To assess the feasibility of administering tipi- the tipifarnib/gemcitabine dose level of 200/1000 is recom- farnib, an oral nonpeptidomimetic competitive inhibitor of mended for disease-directed studies. At this dose level, bio- farnesyltransferase, in combination with gemcitabine and logically relevant plasma concentrations of tipifarnib that recommend doses for disease-directed clinical trials. The consistently inhibit protein farnesylation in vitro are study also sought to identify drug-drug pharmacokinetic achieved and drug-induced inhibition of protein farnesyla- interactions, evaluate effects on protein farnesylation, and tion is measured in most patients. seek preliminary evidence for clinical activity. Experimental Design: Patients with advanced solid ma- INTRODUCTION lignancies were treated with tipifarnib at doses of 100, 200, Ras proteins are activated downstream of receptor tyrosine 2 and 300 mg twice daily continuously and 1000 mg/m gem- kinases and trigger a cascade of phosphorylation events through citabine i.v. on days 1, 8, and 15 every 4 weeks. To identify sequential activation of multiple effector pathways, including pharmacokinetic interactions, the treatment and plasma the mitogen-activated protein kinase, and phosphoinositide- sampling schemes were designed to permit comparisons of 3-OH kinase pathways, which are critical for cell proliferation, differentiation, and survival (1–5). After synthesis as cytosolic precursors, Ras proteins undergo a series of posttranslational modifications, the first and most important being the addition of Received 3/27/03; revised 7/7/03; accepted 7/7/03. a 15-carbon farnesyl isoprenoid group catalyzed by FTase,2 The costs of publication of this article were defrayed in part by the enabling association with the cell membrane (1, 5, 6). When Ras payment of page charges. This article must therefore be hereby marked is stimulated by receptor activation to bind GTP, it activates advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. several downstream effectors, thereby promoting cell prolifera- Some patients were treated at the Frederic C. Barter Clinical Research tion. The intrinsic GTPase activity of Ras then serves to revert Unit of the Audie Murphy Veterans Administration Hospital (San An- the molecule back to its inactive state. Mutations in the ras tonio, TX), supported in part by NIH Grant MO1-RR01346. Presented genes that are most commonly found in human malignancies in part at the 36th Annual Meeting of the American Society of Clinical Oncology, 11th Annual Meeting of National Cancer Institute–American Association for Cancer Research, Inc./European Organization for Re- search and Treatment of Cancer, and 92nd Annual Meeting of the American Association for Cancer Research, Inc. 2 The abbreviations used are: FTase, farnesyltransferase; FTI, FTase 1 To whom requests for reprints should be addressed, at Institute for inhibitor; GGTase I, geranylgeranyltransferase type I; MTD, maximum Drug Development, Cancer Therapy and Research Center, 7979 Wurz- tolerated dose; BID, twice daily; ANC, absolute neutrophil count; DLT, bach, Suite Z400, San Antonio, TX 78229. Phone: (210) 949-5069; Fax: dose-limiting toxicity; PBMC, peripheral blood mononuclear cell; (210) 692-7502; E-mail: [email protected]. HPLC, high-performance liquid chromatography. Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2003 American Association for Cancer Research. 4762 Phase I Trial of Tipifarnib and Gemcitabine ical and pharmacological foundation for disease-directed trials, including a Phase III study in advanced pancreas cancer (22). The objectives of this study were to: (a) characterize the prin- cipal toxicities of tipifarnib administered BID in combination with gemcitabine on a conventional dose schedule (1000 mg/m2 i.v. on days 1, 8, and 15 every 4 weeks) in patients with advanced solid malignancies; (b) determine the MTD of tipi- farnib in combination with gemcitabine on this dose schedule and recommend doses for subsequent disease-directed trials; (c) describe the pharmacokinetics and pharmacodynamics of tipi- farnib and gemcitabine in combination and determine whether there are major effects of each agent on the clearance of the other; (d) seek preliminary evidence of antitumor activity in Fig. 1 Structure of tipifarnib. patients with advanced malignancies; and (e) determine whether farnesylation of HDJ2, a chaperone protein and potential surro- gate for Ras and/or other critical farnesylated proteins, is inhib- ited at clinically relevant doses of tipifarnib and gemcitabine. favor Ras in its GTP-bound active state, in which it constitu- tively enables transmission of proliferative and survival signals (1, 2, 4, 7). Abnormal expression and conformation changes in MATERIALS AND METHODS Ras, conferred by ras gene mutations, have been demonstrated Patients with histologically confirmed advanced solid ma- in ϳ30% of all human malignancies including ϳ50% of colo- lignancies refractory to standard therapy or for whom no effec- rectal, 70–90% of pancreatic, and 30% of non-small cell lung tive therapy existed were candidates for this study. Eligibility cancers (7). criteria included: (a) age of Ն18 years; (b) Eastern Cooperative FTIs were developed on the premise that FTase inhibition Oncology Group performance status Յ2 (ambulatory and capa- would prevent Ras processing and, hence, transduction of crit- ble of self-care); (c) no chemotherapy, radiotherapy, or investi- ical proliferative and survival signals (8). The coupling of Ras to gational therapy within the previous 4 weeks (6 weeks for protein tyrosine kinases also raises the possibility that malig- nitrosoureas or mitomycin C); (d) adequate hematopoietic nancies driven by overactivity upstream of Ras might be inhib- (ANC, Ն1,500/␮l; platelets, Ն100,000/␮l; hemoglobin, Ն9 ited by therapeutics against this target (1, 9). Additionally, a g/dl), hepatic (total bilirubin within the institutional normal large number of multifunctional proteins, as well as Ras, un- limits; aspartate aminotransferase and alanine aminotransferase dergo farnesylation, and several of these proteins, including Յ2.0 times the institutional upper normal limits, unless caused RhoB, Akt2, and the centromere-associated protein-E and cen- by hepatic metastases, in which case elevations of Յ5.0 times tromere-associated protein-F centromeric proteins, seem to be the upper normal limits were permitted), and renal (serum affected critically by FTIs (10–13). creatinine within institutional normal limits) functions; (e)no Tipifarnib (R115777, Zarnestra; Johnson & Johnson Phar- prior extensive myelotoxic therapy [defined as more than six maceutical Research and Development, Titusville, NJ; Fig. 1), courses of alkylating agent-containing chemotherapy (except an oral quinolone analogue of imidazole-containing heterocyclic low-dose cisplatin); more than four courses of carboplatin; two compounds, is a nonpeptidomimetic competitive inhibitor of or more courses of mitomycin C or a nitrosourea; irradiation to FTase (14, 15). Tipifarnib is highly specific for FTase and does Ն25% of hematopoietic reserves; high-dose chemotherapy, fol- not inhibit GGTase I, which can alternatively prenylate both lowed by hematopoietic stem cell rescue]; (f) no concurrent K-Ras and RhoB (6, 14). Tipifarnib inhibits the growth of a radiation therapy (except palliative radiation therapy), chemo- broad spectrum of human malignancies in vitro and in human therapy, hormonal therapy,
Recommended publications
  • The Application of a Characterized Pre-Clinical
    THE APPLICATION OF A CHARACTERIZED PRE-CLINICAL GLIOBLASTOMA ONCOSPHERE MODEL TO IN VITRO AND IN VIVO THERAPEUTIC TESTING by Kelli M. Wilson A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2014 ABSTRACT Glioblastoma multiforme (GBM) is a lethal brain cancer with a median survival time (MST) of approximately 15 months following treatment. A serious challenge facing the development of new drugs for the treatment of GBM is that preclinical models fail to replicate the human GBM phenotype. Here we report the Johns Hopkins Oncosphere Panel (JHOP), a panel of GBM oncosphere cell lines. These cell lines were validated by their ability to form tumors intracranially with histological features of human GBM and GBM variant tumors. We then completed whole exome sequencing on JHOP and found that they contain genetic alterations in GBM driver genes such as PTEN, TP53 and CDKN2A. Two JHOP cell lines were utilized in a high throughput drug screen of 466 compounds that were selected to represent late stage clinical development and a wide range of mechanisms. Drugs that were inhibitory in both cell lines were EGFR inhibitors, NF-kB inhibitors and apoptosis activators. We also examined drugs that were inhibitory in a single cell line. Effective drugs in the PTEN null and NF1 wild type cell line showed a limited number of drug targets with EGFR inhibitors being the largest group of cytotoxic compounds. However, in the PTEN mutant, NF1 null cell line, VEGFR/PDGFR inhibitors and dual PIK3/mTOR inhibitors were the most common effective compounds.
    [Show full text]
  • Options for the Treatment of Gemcitabine-Resistant Advanced Pancreatic Cancer
    JOP. J Pancreas (Online) 2010 Mar 5; 11(2):113-123. REVIEW Options for the Treatment of Gemcitabine-Resistant Advanced Pancreatic Cancer Ioannis Gounaris, Kamarul Zaki, Pippa Corrie Oncology Centre, Cambridge University Hospitals NHS Trust. Cambridge, United Kingdom Summary Context Pancreatic cancer is noteworthy in that the number of patients dying from the disease is roughly equal to the number diagnosed. For more than a decade, gemcitabine has constituted the standard of care for the palliative treatment of the majority of patients who present with metastatic or relapsed disease, although the survival gains are limited. Despite a median survival of less than 6 months, there is a significant proportion of advanced pancreatic cancer patients who progress on gemcitabine that remains fit and these patients are candidates for second-line treatment. Methods The OVID MEDLINE database was searched from 1950 to present using the MeSH terms “pancreatic neoplasms”, “drug treatment” and “gemcitabine”. After excluding non-relevant results, 31 published studies were identified. These results were supplemented by searching the last three (2007-2009) American Society of Clinical Oncology (ASCO) Proceedings of Annual Meetings for studies published only in abstract form and reviewing reference lists of published articles. Results and discussion The evidence for second line treatments of metastatic pancreatic cancer consists mostly of single arm, small phase II studies. Oxaliplatin-fluoropyrimidine combinations appear promising and have shown increased survival compared to best supportive care. As the molecular pathways governing pancreatic cancer are unravelled, novel targeted therapies may offer the greatest promise for this disease either given alone, combined with one another, or with cytotoxic agents.
    [Show full text]
  • LEUKEMIA CHEMOTHERAPY REGIMENS (Part 1 of 2) the Selection, Dosing, and Administration of Anti-Cancer Agents and the Management of Associated Toxicities Are Complex
    LEUKEMIA CHEMOTHERAPY REGIMENS (Part 1 of 2) The selection, dosing, and administration of anti-cancer agents and the management of associated toxicities are complex. Drug dose modifications and schedule and initiation of supportive care interventions are often necessary because of expected toxicities and because of individual patient variability, prior treatment, and comorbidities. Thus, the optimal delivery of anti-cancer agents requires a healthcare delivery team experienced in the use of such agents and the management of associated toxicities in patients with cancer. The chemotherapy regimens below may include both FDA-approved and unapproved uses/regimens and are provided as references only to the latest treatment strategies. Clinicians must choose and verify treatment options based on the individual patient. REGIMEN DOSING Acute Myeloid Leukemia (AML) Induction Therapy Cytarabine (Cytosar-U; ARA-C) + Days 1–3: An anthracycline (eg, daunorubicin at least 60mg/m2/day IV, an anthracycline idarubicin 10–12mg/m2/day IV, or mitoxantrone 10–12mg/m2/day IV), plus (daunorubicin [Cerubidine], Days 1–7: Cytarabine 100–200mg/m2/day continuous IV infusion. idarubicin [Idamycin], OR mitoxantrone [Novantrone])1, 2 Days 1–3: An anthracycline (eg, daunorubicin 45mg/m2/day IV, idarubicin 12mg/m2/day IV, or mitoxantrone 12mg/m2/day IV), plus Days 1–7: Cytarabine 100mg/m2/day continuous IV infusion. Intermediate-dose cytarabine3 Cycle 1 Days 1–7: Cytarabine 200mg/m2/day continuous IV infusion, plus Days 5–6: Idarubicin 12mg/m2/day IV. Cycle 2 Days 1–6: Cytarabine 1,000mg/m2 continuous IV infusion for 3 hrs twice daily, plus Days 3, 5 and 7: Amsacrine 120mg/m2/day.
    [Show full text]
  • (DAC) Followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia 2012-1064
    2012-1064 September 02, 2014 Page 1 Protocol Page Phase I/II Study of Decitabine (DAC) followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia 2012-1064 Core Protocol Information Short Title Decitabine followed by Clofarabine, Idarubicin, and Cytarabine in Acute Leukemia Study Chair: Nitin Jain Additional Contact: Allison Pike Jeannice Y. Theriot Leukemia Protocol Review Group Department: Leukemia Phone: 713-745-6080 Unit: 428 Full Title: Phase I/II Study of Decitabine (DAC) followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia Protocol Type: Standard Protocol Protocol Phase: Phase I/Phase II Version Status: Terminated 01/12/2018 Version: 12 Submitted by: Jeannice Y. Theriot--4/26/2017 2:13:38 PM OPR Action: Accepted by: Melinda E. Gordon -- 5/1/2017 7:55:15 AM Which Committee will review this protocol? The Clinical Research Committee - (CRC) 2012-1064 September 02, 2014 Page 2 Protocol Body Phase I/II Study of Decitabine (DAC) followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia 1. OBJECTIVES Phase I Primary: To determine the maximal tolerated dose (MTD) of clofarabine to be used in portion II of the study Phase II Primary: To determine the response rate of the DAC-CIA regimen Secondary: A) To determine the toxicity of the combination regimen B) To determine the disease-free survival (DFS) and overall survival (OS) rates 2. RATIONALE 2.1 Acute Myelogenous Leukemia Acute myelogenous leukemia (AML) is the most common acute leukemia in adults. It is estimated that 13,780 men and women will be diagnosed with and 10,200 men and women will die of acute myeloid leukemia in the year 2012.1 AML is a disease with a poor prognosis with a 5-year survival of only around 30%.2,3 Certain subgroups of AML have a particularly worse Page 1 of 34 outcome such as patients with relapsed and/or refractory AML and AML arising from antecedent myelodysplastic syndrome (MDS) or myeloproliferative neoplasms (MPNs).
    [Show full text]
  • Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
    Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine
    [Show full text]
  • Corporate Overview May 2017
    Corporate Overview May 2017 DEVELOPING PRECISION MEDICINES TO TREAT CANCER Forward Looking Statements This presentation contains forward-looking statements. Such statements include, but are not limited to, statements regarding our research, pre-clinical and clinical development activities, plans and projected timelines for tipifarnib, KO- 947 and KO-539, plans regarding regulatory filings, our expectations regarding the relative benefits of our product candidates versus competitive therapies, and our expectations regarding the therapeutic and commercial potential of our product candidates. The words “believe,” “may,” “will,” “estimate,” “promise,” “plan”, “continue,” “anticipate,” “intend,” “expect,” “potential” and similar expressions (including the negative thereof), are intended to identify forward-looking statements. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Risks that contribute to the uncertain nature of the forward-looking statements include: our future preclinical studies and clinical trials may not be successful; the U.S. Food and Drug Administration (FDA) may not agree with our interpretation of the data from clinical trials of our product candidates; we may decide, or the FDA may require us, to conduct additional clinical trials or to modify our ongoing clinical trials; we may experience delays in the commencement, enrollment, completion or analysis of clinical testing for our product candidates, or significant issues regarding the adequacy of our clinical trial designs or the execution of our clinical trials may arise, which could result in increased costs and delays, or limit our ability to obtain regulatory approval; our product candidates may not receive regulatory approval or be successfully commercialized; unexpected adverse side effects or inadequate therapeutic efficacy of our product candidates could delay or prevent regulatory approval or commercialization; we may not be able to obtain additional financing.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 8,911,786 B2 Desai Et Al
    US00891. 1786B2 (12) United States Patent (10) Patent No.: US 8,911,786 B2 Desai et al. (45) Date of Patent: Dec. 16, 2014 (54) NANOPARTICLE COMPRISING RAPAMYCIN A61K 45/06 (2013.01); A61K 47/42 (2013.01); AND ALBUMINAS ANTICANCERAGENT A61N 5/10 (2013.01); A61N 7700 (2013.01) (75) Inventors: Neil P. Desai, Los Angeles, CA (US); USPC ............ 424/491; 424/489: 424/490; 424/500 Patrick Soon-Shiong, Los Angeles, CA (58) Field of Classification Search (US); Vuong Trieu, Calabasas, CA (US) USPC .......... 424/465-489, 490, 491, 500: 514/19.3 See application file for complete search history. (73) Assignee: Abraxis Bioscience, LLC, Los Angeles, CA (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 344 days. 5,206,018 A * 4/1993 Sehgal et al. ................. 424,122 5,362.478 A 11/1994 Desai et al. (21) Appl. No.: 12/530,188 5.439,686 A 8, 1995 Desai et al. 5,498.421 A 3, 1996 Grinstaffet al. (22) PCT Filed: Mar. 7, 2008 5,505,932 A 4/1996 Grinstaffet al. 5,508,021 A 4/1996 Grinstaffet al. (86). PCT No.: PCT/US2O08/OO3O96 5,512,268 A 4/1996 Grinstaffet al. 5,540,931 A 7/1996 Hewitt et al. S371 (c)(1), 5,560,933 A 10/1996 Soon-Shiong et al. (2), (4) Date: Mar. 4, 2010 5,635,207 A 6/1997 Grinstaffet al. 5,639,473 A 6/1997 Grinstaffet al.
    [Show full text]
  • Spotlight Review
    Leukemia (2009) 23, 10–24 & 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 $32.00 www.nature.com/leu SPOTLIGHT REVIEW Bone marrow microenvironment and the identification of new targets for myeloma therapy K Podar, D Chauhan and KC Anderson Department of Medical Oncology, LeBow Institute for Myeloma Therapeutics, Dana Farber Cancer Institute, Jerome Lipper Multiple Myeloma Center, Harvard Medical School, Boston, MA, USA The development of multiple myeloma (MM) is a complex multi- Signaling cascades activated by cytokines, growth factors and/ step process involving both early and late genetic changes in or adhesion in MM cells include the Ras/Raf/MEK/MAPK- the tumor cell as well as selective supportive conditions by the k bone marrow (BM) microenvironment. Indeed, it is now well pathway, PI3K/Akt-pathway, the JAK/Stat3-pathway, the NF B- established that MM cell-induced disruption of the BM homeo- pathway and the Wnt-pathway. Promising intracellular targets stasis between the highly organized cellular and extracellular for novel therapies also include protein kinase C (PKC) and SPOTLIGHT compartments supports MM cell proliferation, survival, migra- heat-shock proteins (HSPs). Moreover, genomic profiling has tion and drug resistance through activation of various signaling now identified additional stage-specific intracellular targets, (for example, PI3K/Akt, JAK/Stat-, Raf/MEK/MAPK-, NFjB- and which are now under investigation as novel potential therapeutic Wnt-) pathways. Based on our enhanced understanding of the 2,4 functional importance of the MM BM microenvironment and its targets. inter-relation with the MM cell resulting in homing, seeding, Cell surface receptors include integrins, cadherins, selectins, proliferation and survival, new molecular targets have been syndecans, and the immunoglobulin superfamily of cell adhe- identified and derived treatment regimens in MM have already sion molecules including syndecan-1 (CD138), H-CAM (CD44), changed fundamentally during recent years.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0226431 A1 Habib (43) Pub
    US 20090226431A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0226431 A1 Habib (43) Pub. Date: Sep. 10, 2009 (54) TREATMENT OF CANCER AND OTHER Publication Classification DISEASES (51) Int. Cl. A 6LX 3/575 (2006.01) (76)76) InventorInventor: Nabilabil Habib,Habib. Beirut (LB(LB) C07J 9/00 (2006.01) Correspondence Address: A 6LX 39/395 (2006.01) 101 FEDERAL STREET A6IP 29/00 (2006.01) A6IP35/00 (2006.01) (21) Appl. No.: 12/085,892 A6IP37/00 (2006.01) 1-1. (52) U.S. Cl. ...................... 424/133.1:552/551; 514/182: (22) PCT Filed: Nov.30, 2006 514/171 (86). PCT No.: PCT/US2O06/045665 (57) ABSTRACT .."St. Mar. 6, 2009 The present invention relates to a novel compound (e.g., 24-ethyl-cholestane-3B.5C,6C.-triol), its production, its use, and to methods of treating neoplasms and other tumors as Related U.S. Application Data well as other diseases including hypercholesterolemia, (60) Provisional application No. 60/741,725, filed on Dec. autoimmune diseases, viral diseases (e.g., hepatitis B, hepa 2, 2005. titis C, or HIV), and diabetes. F2: . - 2 . : F2z "..., . Cz: ".. .. 2. , tie - . 2 2. , "Sphagoshgelin , , re Cls Phosphatidiglethanolamine * - 2 .- . t - r y ... CBs .. A . - . Patent Application Publication Sep. 10, 2009 Sheet 1 of 16 US 2009/0226431 A1 E. e'' . Phosphatidylcholine. " . Ez'.. C.2 . Phosphatidylserias. * . - A. z' C. w E. a...2 .". is 2 - - " - B 2. Sphingoshgelin . Cls Phosphatidglethanglamine Figure 1 Patent Application Publication Sep. 10, 2009 Sheet 2 of 16 US 2009/0226431 A1 Chile Phosphater Glycerol Phosphatidylcholine E.
    [Show full text]
  • Chronic Myelogenous Leukemia: a Review and Update of Current and Future Therapy
    International Journal of Pharmacy and Pharmaceutical Sciences ISSN- 0975-1491 Vol 8, Issue 7, 2016 Review Article CHRONIC MYELOGENOUS LEUKEMIA: A REVIEW AND UPDATE OF CURRENT AND FUTURE THERAPY ANKIT ASHOKKUMAR DARJI, PRAFUL D. BHARADIA HNGU University Ph. D. Student Email: [email protected] Received: 08 Apr 2016 Revised and Accepted: 17 May 2016 ABSTRACT Leukemia is a cancer of marrow and blood, which is a clonal myeloproliferative disease, characterized by the presence of oncogenic Philadelphia chromosome, formed by a reciprocal translocation between chromosomes 9 and 22, resulting in the novel chimeric oncoprotein BCR/ABL. Chronic leukemia typically progresses slowly and permits the growth of greater numbers of more developed cells. If the cell change takes place in a type of marrow cell that normally goes on to form red blood cells, some kinds of white blood cells and platelets, the leukemia is called “myeloid. Therapy for chronic myeloid leukemia depends on the stage of CML patient. After diagnosis and confirmation of CML positive patient, treatment available for patients includes imatinib that is an early diagnosed treatment for CML but after some duration of time, it may lead to resistance to imatinib treatment. Dasatinib, nilotinib, bosutinib & ponatinib can be used for the treatment of CML as secondary treatments. Ponatinib is also found effective against T315i mutation patients. Omacetaxine mepesuccinate can be given with a mechanism of action independent of tyrosine kinase inhibition. Clinical trial for development of advanced therapy, which includes combination therapy and newer developed a treatment against CML are going on. It is required to develop better drug therapy, which will not cause genetical mutation and drug resistant.
    [Show full text]
  • Day Dosing of the Proteasome Inhibitor Carfilzomib in Patients with Relapsed Or Refractory Multiple Myeloma Or Lymphoma
    Published OnlineFirst July 3, 2012; DOI: 10.1158/1078-0432.CCR-11-3007 Clinical Cancer Cancer Therapy: Clinical Research A Phase I Single-Agent Study of Twice-Weekly Consecutive- Day Dosing of the Proteasome Inhibitor Carfilzomib in Patients with Relapsed or Refractory Multiple Myeloma or Lymphoma Melissa Alsina1, Suzanne Trudel2, Richard R. Furman3, Peter J. Rosen5, Owen A. O'Connor4, Raymond L. Comenzo6, Alvin Wong7, Lori A. Kunkel8, Christopher J. Molineaux9, and Andre Goy10 Abstract Purpose: Carfilzomib is a next-generation, selective, proteasome inhibitor with clinical activity in relapsed and/or refractory multiple myeloma. The objectives of this phase I study were to establish the safety, tolerability, pharmacokinetic, and pharmacodynamic profiles of escalating doses of carfilzomib in patients with relapsed or refractory hematologic malignancies. Experimental design: Carfilzomib (doses ranging from 1.2–27 mg/m2) was administered i.v. on 2 consecutive days for 3 weeks of a 4-week cycle. Single-agent dose escalation (n ¼ 37) was followed by a dose- expansion phase (n ¼ 11) that comprised 2 cohorts (carfilzomib or carfilzomib þ dexamethasone). During dose expansion, carfilzomib was administered starting with 20 mg/m2 during the first week (days 1, 2) and then escalated to 27 mg/m2 thereafter. Results: A maximum tolerated dose (MTD) was not reached during dose escalation. Dosing in the expansion cohort was well tolerated. Adverse events were manageable and primarily of grade I or II. The main hematologic adverse events of grade III were anemia and thrombocytopenia. Notably, there were no observations of grade III or more peripheral neuropathy. Carfilzomib was cleared rapidly with an elimination half-life of less than 30 minutes but still induced dose-dependent inhibition of the 20S chymotrypsin-like proteasome activity.
    [Show full text]
  • Spectrum Pharmaceuticals Appoints Steven M. Fruchtman, MD, an Industry Veteran, As Vice President of Clinical Development
    Spectrum Pharmaceuticals Appoints Steven M. Fruchtman, MD, an Industry Veteran, as Vice President of Clinical Development ● Dr. Fruchtman Is a Hematologist/Oncologist With a Proven Track Record in Clinical Research ® ● Joins Spectrum From Allos Therapeutics, Where He Led Development of FOLOTYN For Hematologic and Oncologic Indications; Leading to FDA Approval of FOLOTYN in Relapsed and Refractory Peripheral T-Cell Lymphoma ● Previously, Dr. Fruchtman Was At Novartis, Where He Was Responsible For The Development of Panobinostat For Hematologic and Oncologic Indications, and Proleukin For Renal Cell and Melanoma; and Ortho Biotech Products, a Division of Johnson & Johnson, Where He Led The Development of Doxil® and Others IRVINE, Calif--(BUSINESS WIRE)-- Spectrum Pharmaceuticals (NasdaqGS: SPPI), a biotechnology company with fully integrated commercial and drug development operations with a primary focus in oncology, today announced the appointment of Steven M. Fruchtman, MD, to the position of Vice President of Clinical Development. Dr. Fruchtman will report directly to George Tidmarsh, MD, PhD, the Company's Chief Scientific Officer and Head of Research and Development Operations, and will provide the strategic planning and leadership necessary for managing the Company's clinical development of belinostat, ZEVALIN® and its other pipeline products. "We are pleased to announce the appointment of Dr. Fruchtman as our Vice President of Clinical Development," said Rajesh C. Shrotriya, M.D., Chairman, Chief Executive Officer, and President of Spectrum Pharmaceuticals. "Steve comes to us from Allos Therapeutics, where he spearheaded the development of FOLOTYN. He was instrumental in the presentation of the FOLOTYN data to the ODAC panel that recommended and ultimately received FDA approval in relapsed/refractory Peripheral T-Cell Lymphoma.
    [Show full text]