LEUKEMIA CHEMOTHERAPY REGIMENS (Part 1 of 2) the Selection, Dosing, and Administration of Anti-Cancer Agents and the Management of Associated Toxicities Are Complex
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
214120Orig1s000
CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 214120Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review NDA Multidisciplinary Review and Evaluation Application Number NDA 214120 Application Type Type 3 Priority or Standard Priority Submit Date 3/3/2020 Received Date 3/3/2020 PDUFA Goal Date 9/3/2020 Office/Division OOD/DHM1 Review Completion Date 9/1/2020 Applicant Celgene Corporation Established Name Azacitidine (Proposed) Trade Name Onureg Pharmacologic Class Nucleoside metabolic inhibitor Formulations Tablet (200 mg, 300 mg) (b) (4) Applicant Proposed Indication/Population Recommendation on Regulatory Regular approval Action Recommended Indication/ For continued treatment of adult patients with acute Population myeloid leukemia who achieved first complete remission (CR) or complete remission with incomplete blood count recovery (CRi) following intensive induction chemotherapy and are not able to complete intensive curative therapy. SNOMED CT for the Recommended 91861009 Indication/Population Recommended Dosing Regimen 300 mg orally daily on Days 1 through 14 of each 28-day cycle Reference ID: 4664570 NDA Multidisciplinary Review and Evaluation NDA 214120 Onureg (azacitidine tablets) TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................... 2 TABLE OF TABLES ....................................................................................................................................... -
The Application of a Characterized Pre-Clinical
THE APPLICATION OF A CHARACTERIZED PRE-CLINICAL GLIOBLASTOMA ONCOSPHERE MODEL TO IN VITRO AND IN VIVO THERAPEUTIC TESTING by Kelli M. Wilson A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2014 ABSTRACT Glioblastoma multiforme (GBM) is a lethal brain cancer with a median survival time (MST) of approximately 15 months following treatment. A serious challenge facing the development of new drugs for the treatment of GBM is that preclinical models fail to replicate the human GBM phenotype. Here we report the Johns Hopkins Oncosphere Panel (JHOP), a panel of GBM oncosphere cell lines. These cell lines were validated by their ability to form tumors intracranially with histological features of human GBM and GBM variant tumors. We then completed whole exome sequencing on JHOP and found that they contain genetic alterations in GBM driver genes such as PTEN, TP53 and CDKN2A. Two JHOP cell lines were utilized in a high throughput drug screen of 466 compounds that were selected to represent late stage clinical development and a wide range of mechanisms. Drugs that were inhibitory in both cell lines were EGFR inhibitors, NF-kB inhibitors and apoptosis activators. We also examined drugs that were inhibitory in a single cell line. Effective drugs in the PTEN null and NF1 wild type cell line showed a limited number of drug targets with EGFR inhibitors being the largest group of cytotoxic compounds. However, in the PTEN mutant, NF1 null cell line, VEGFR/PDGFR inhibitors and dual PIK3/mTOR inhibitors were the most common effective compounds. -
Options for the Treatment of Gemcitabine-Resistant Advanced Pancreatic Cancer
JOP. J Pancreas (Online) 2010 Mar 5; 11(2):113-123. REVIEW Options for the Treatment of Gemcitabine-Resistant Advanced Pancreatic Cancer Ioannis Gounaris, Kamarul Zaki, Pippa Corrie Oncology Centre, Cambridge University Hospitals NHS Trust. Cambridge, United Kingdom Summary Context Pancreatic cancer is noteworthy in that the number of patients dying from the disease is roughly equal to the number diagnosed. For more than a decade, gemcitabine has constituted the standard of care for the palliative treatment of the majority of patients who present with metastatic or relapsed disease, although the survival gains are limited. Despite a median survival of less than 6 months, there is a significant proportion of advanced pancreatic cancer patients who progress on gemcitabine that remains fit and these patients are candidates for second-line treatment. Methods The OVID MEDLINE database was searched from 1950 to present using the MeSH terms “pancreatic neoplasms”, “drug treatment” and “gemcitabine”. After excluding non-relevant results, 31 published studies were identified. These results were supplemented by searching the last three (2007-2009) American Society of Clinical Oncology (ASCO) Proceedings of Annual Meetings for studies published only in abstract form and reviewing reference lists of published articles. Results and discussion The evidence for second line treatments of metastatic pancreatic cancer consists mostly of single arm, small phase II studies. Oxaliplatin-fluoropyrimidine combinations appear promising and have shown increased survival compared to best supportive care. As the molecular pathways governing pancreatic cancer are unravelled, novel targeted therapies may offer the greatest promise for this disease either given alone, combined with one another, or with cytotoxic agents. -
Intravesical Instillation of Azacitidine Suppresses Tumor Formation Through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer
cancers Article Intravesical Instillation of Azacitidine Suppresses Tumor Formation through TNF-R1 and TRAIL-R2 Signaling in Genotoxic Carcinogen-Induced Bladder Cancer Shao-Chuan Wang 1,2,3, Ya-Chuan Chang 2, Min-You Wu 2, Chia-Ying Yu 2, Sung-Lang Chen 1,2,3 and Wen-Wei Sung 1,2,3,* 1 Department of Urology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan; [email protected] (S.-C.W.); [email protected] (S.-L.C.) 2 School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan; [email protected] (Y.-C.C.); [email protected] (M.-Y.W.); [email protected] (C.-Y.Y.) 3 Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan * Correspondence: [email protected] or fl[email protected]; Tel.: +886-4-2473-9595 Simple Summary: Approximately 70% of all bladder cancer is diagnosed as non-muscle invasive bladder cancer and can be treated by transurethral resection of the bladder tumor, followed by intravesical instillation chemotherapy. Bacille Calmette-Guérin (BCG) is the first-line agent for intravesical instillation, but its accessibility has been limited for years due to a BCG shortage. Here, our aim was to evaluate the therapeutic role of intravesical instillation of azacitidine, a DNA methyltransferase inhibitor, in bladder cancer. Cell model experiments showed that azacitidine inhibited TNFR1 downstream pathways to downregulate HIF-1α, claspin, and survivin. Concomitant Citation: Wang, S.-C.; Chang, Y.-C.; upregulation of the TRAIL R2 pathway by azacitidine ultimately drove the tumor cells to apoptosis. Wu, M.-Y.; Yu, C.-Y.; Chen, S.-L.; Sung, Rats with genotoxic carcinogen-induced bladder cancer showed a significantly reduced in vivo tumor W.-W. -
Vidaza, INN-Azacitidine
ANNEX I SUMMARY OF PRODUCT CHARACTERISTICS 1 1. NAME OF THE MEDICINAL PRODUCT Vidaza 25 mg/ml powder for suspension for injection 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each vial contains 100 mg azacitidine. After reconstitution, each ml suspension contains 25 mg azacitidine. For a full list of excipients, see section 6.1. 3. PHARMACEUTICAL FORM Powder for suspension for injection. White lyophilised powder. 4. CLINICAL PARTICULARS 4.1 Therapeutic indications Vidaza is indicated for the treatment of adult patients who are not eligible for haematopoietic stem cell transplantation with: • intermediate-2 and high-risk myelodysplastic syndromes (MDS) according to the International Prognostic Scoring System (IPSS), • chronic myelomonocytic leukaemia (CMML) with 10-29 % marrow blasts without myeloproliferative disorder, • acute myeloid leukaemia (AML) with 20-30 % blasts and multi-lineage dysplasia, according to World Health Organisation (WHO) classification. 4.2 Posology and method of administration Vidaza treatment should be initiated and monitored under the supervision of a physician experienced in the use of chemotherapeutic agents. Patients should be premedicated with anti-emetics for nausea and vomiting. Posology The recommended starting dose for the first treatment cycle, for all patients regardless of baseline haematology laboratory values, is 75 mg/m2 of body surface area, injected subcutaneously, daily for 7 days, followed by a rest period of 21 days (28-day treatment cycle). It is recommended that patients be treated for a minimum of 6 cycles. Treatment should be continued as long as the patient continues to benefit or until disease progression. Patients should be monitored for haematologic response/toxicity and renal toxicities (see section 4.4); a delay in starting the next cycle or a dose reduction as described below may be necessary. -
(DAC) Followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia 2012-1064
2012-1064 September 02, 2014 Page 1 Protocol Page Phase I/II Study of Decitabine (DAC) followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia 2012-1064 Core Protocol Information Short Title Decitabine followed by Clofarabine, Idarubicin, and Cytarabine in Acute Leukemia Study Chair: Nitin Jain Additional Contact: Allison Pike Jeannice Y. Theriot Leukemia Protocol Review Group Department: Leukemia Phone: 713-745-6080 Unit: 428 Full Title: Phase I/II Study of Decitabine (DAC) followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia Protocol Type: Standard Protocol Protocol Phase: Phase I/Phase II Version Status: Terminated 01/12/2018 Version: 12 Submitted by: Jeannice Y. Theriot--4/26/2017 2:13:38 PM OPR Action: Accepted by: Melinda E. Gordon -- 5/1/2017 7:55:15 AM Which Committee will review this protocol? The Clinical Research Committee - (CRC) 2012-1064 September 02, 2014 Page 2 Protocol Body Phase I/II Study of Decitabine (DAC) followed by Clofarabine, Idarubicin, and Cytarabine (CIA) in Acute Leukemia 1. OBJECTIVES Phase I Primary: To determine the maximal tolerated dose (MTD) of clofarabine to be used in portion II of the study Phase II Primary: To determine the response rate of the DAC-CIA regimen Secondary: A) To determine the toxicity of the combination regimen B) To determine the disease-free survival (DFS) and overall survival (OS) rates 2. RATIONALE 2.1 Acute Myelogenous Leukemia Acute myelogenous leukemia (AML) is the most common acute leukemia in adults. It is estimated that 13,780 men and women will be diagnosed with and 10,200 men and women will die of acute myeloid leukemia in the year 2012.1 AML is a disease with a poor prognosis with a 5-year survival of only around 30%.2,3 Certain subgroups of AML have a particularly worse Page 1 of 34 outcome such as patients with relapsed and/or refractory AML and AML arising from antecedent myelodysplastic syndrome (MDS) or myeloproliferative neoplasms (MPNs). -
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Cr
Drug Name Plate Number Well Location % Inhibition, Screen Axitinib 1 1 20 Gefitinib (ZD1839) 1 2 70 Sorafenib Tosylate 1 3 21 Crizotinib (PF-02341066) 1 4 55 Docetaxel 1 5 98 Anastrozole 1 6 25 Cladribine 1 7 23 Methotrexate 1 8 -187 Letrozole 1 9 65 Entecavir Hydrate 1 10 48 Roxadustat (FG-4592) 1 11 19 Imatinib Mesylate (STI571) 1 12 0 Sunitinib Malate 1 13 34 Vismodegib (GDC-0449) 1 14 64 Paclitaxel 1 15 89 Aprepitant 1 16 94 Decitabine 1 17 -79 Bendamustine HCl 1 18 19 Temozolomide 1 19 -111 Nepafenac 1 20 24 Nintedanib (BIBF 1120) 1 21 -43 Lapatinib (GW-572016) Ditosylate 1 22 88 Temsirolimus (CCI-779, NSC 683864) 1 23 96 Belinostat (PXD101) 1 24 46 Capecitabine 1 25 19 Bicalutamide 1 26 83 Dutasteride 1 27 68 Epirubicin HCl 1 28 -59 Tamoxifen 1 29 30 Rufinamide 1 30 96 Afatinib (BIBW2992) 1 31 -54 Lenalidomide (CC-5013) 1 32 19 Vorinostat (SAHA, MK0683) 1 33 38 Rucaparib (AG-014699,PF-01367338) phosphate1 34 14 Lenvatinib (E7080) 1 35 80 Fulvestrant 1 36 76 Melatonin 1 37 15 Etoposide 1 38 -69 Vincristine sulfate 1 39 61 Posaconazole 1 40 97 Bortezomib (PS-341) 1 41 71 Panobinostat (LBH589) 1 42 41 Entinostat (MS-275) 1 43 26 Cabozantinib (XL184, BMS-907351) 1 44 79 Valproic acid sodium salt (Sodium valproate) 1 45 7 Raltitrexed 1 46 39 Bisoprolol fumarate 1 47 -23 Raloxifene HCl 1 48 97 Agomelatine 1 49 35 Prasugrel 1 50 -24 Bosutinib (SKI-606) 1 51 85 Nilotinib (AMN-107) 1 52 99 Enzastaurin (LY317615) 1 53 -12 Everolimus (RAD001) 1 54 94 Regorafenib (BAY 73-4506) 1 55 24 Thalidomide 1 56 40 Tivozanib (AV-951) 1 57 86 Fludarabine -
Azacytidine Sensitizes Acute Myeloid Leukemia Cells to Arsenic Trioxide By
Chau et al. Journal of Hematology & Oncology (2015) 8:46 DOI 10.1186/s13045-015-0143-3 JOURNAL OF HEMATOLOGY & ONCOLOGY RESEARCH ARTICLE Open Access Azacytidine sensitizes acute myeloid leukemia cells to arsenic trioxide by up-regulating the arsenic transporter aquaglyceroporin 9 David Chau1†, Karen Ng1†, Thomas Sau-Yan Chan1, Yuen-Yee Cheng1,3, Bonnie Fong2, Sidney Tam2, Yok-Lam Kwong1 and Eric Tse1* Abstract Background: The therapeutic efficacy of arsenic trioxide (As2O3) in acute myeloid leukemia (AML) is modest, which is partly related to its limited intracellular uptake into the leukemic cells. As2O3 enters cells via the transmembrane protein aquaglyceroporin 9 (AQP9). Azacytidine, a demethylating agent that is approved for the treatment of AML, has been shown to have synergistic effect with As2O3. We tested the hypothesis that azacytidine might up-regulate AQP9 and enhances As2O3-mediated cytotoxicity in AML. Methods: Arsenic-induced cytotoxicity, the expression of AQP9, and the intracellular uptake of As2O3 were determined in AML cell lines and primary AML cells with or without azacytidine pre-treatment. The mechanism of AQP9 up-regulation was then investigated by examining the expression of transcription factors for AQP9 gene and the methylation status of their gene promoters. Results: As2O3-induced cytotoxicity in AML cell lines was significantly enhanced after azacytidine pre-treatment as a result of AQP9 up-regulation, leading to increased arsenic uptake and hence intracellular concentration. Blocking AQP9-mediated As2O3 uptake with mercury chloride abrogated the sensitization effect of azacytidine. AQP9 promoter does not contain CpG islands. Instead, azacytidine pre-treatment led to increased expression of HNF1A, a transcription activator of AQP9, through demethylation of HNF1A promoter. -
Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: from Discovery to Implementation
G C A T T A C G G C A T genes Review Pharmacogenomic Biomarkers in Docetaxel Treatment of Prostate Cancer: From Discovery to Implementation Reka Varnai 1,2, Leena M. Koskinen 3, Laura E. Mäntylä 3, Istvan Szabo 4,5, Liesel M. FitzGerald 6 and Csilla Sipeky 3,* 1 Department of Primary Health Care, University of Pécs, Rákóczi u 2, H-7623 Pécs, Hungary 2 Faculty of Health Sciences, Doctoral School of Health Sciences, University of Pécs, Vörösmarty u 4, H-7621 Pécs, Hungary 3 Institute of Biomedicine, University of Turku, Kiinamyllynkatu 10, FI-20520 Turku, Finland 4 Institute of Sport Sciences and Physical Education, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary 5 Faculty of Sciences, Doctoral School of Biology and Sportbiology, University of Pécs, Ifjúság útja 6, H-7624 Pécs, Hungary 6 Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia * Correspondence: csilla.sipeky@utu.fi Received: 17 June 2019; Accepted: 5 August 2019; Published: 8 August 2019 Abstract: Prostate cancer is the fifth leading cause of male cancer death worldwide. Although docetaxel chemotherapy has been used for more than fifteen years to treat metastatic castration resistant prostate cancer, the high inter-individual variability of treatment efficacy and toxicity is still not well understood. Since prostate cancer has a high heritability, inherited biomarkers of the genomic signature may be appropriate tools to guide treatment. In this review, we provide an extensive overview and discuss the current state of the art of pharmacogenomic biomarkers modulating docetaxel treatment of prostate cancer. This includes (1) research studies with a focus on germline genomic biomarkers, (2) clinical trials including a range of genetic signatures, and (3) their implementation in treatment guidelines. -
Vidaza U.S. Full Prescribing Information
-------------------------------CONTRAINDICATIONS------------------------------ HIGHLIGHTS OF PRESCRIBING INFORMATION Advanced Malignant Hepatic Tumors (4.1). These highlights do not include all the information needed to use Hypersensitivity to Azacitidine or Mannitol (4.2). VIDAZA safely and effectively. See full prescribing information for VIDAZA. -----------------------WARNINGS AND PRECAUTIONS------------------------ Anemia, Neutropenia and Thrombocytopenia: Monitor complete blood VIDAZA (azacitidine for injection), for subcutaneous or intravenous use counts (CBC) frequently (5.1). Initial U.S. Approval: 2004 Hepatotoxicity: Patients with severe preexisting hepatic impairment are at higher risk for toxicity (5.2). Renal Toxicity: Monitor patients with renal impairment for toxicity ----------------------------INDICATIONS AND USAGE--------------------------- since azacitidine and its metabolites are primarily excreted by the VIDAZA is a nucleoside metabolic inhibitor indicated for the treatment of kidneys (5.3). patients with the following FAB myelodysplastic syndrome (MDS) subtypes: Tumor Lysis Syndrome: VIDAZA may cause fatal or serious tumor Refractory anemia (RA) or refractory anemia with ringed sideroblasts (RARS) lysis syndrome, including in patients with MDS. Assess baseline risk (if accompanied by neutropenia or thrombocytopenia or requiring and monitor and treat as appropriate (5.4). transfusions), refractory anemia with excess blasts (RAEB), refractory anemia Embryo-Fetal Risk: VIDAZA can cause fetal harm. Advise females -
Corporate Overview May 2017
Corporate Overview May 2017 DEVELOPING PRECISION MEDICINES TO TREAT CANCER Forward Looking Statements This presentation contains forward-looking statements. Such statements include, but are not limited to, statements regarding our research, pre-clinical and clinical development activities, plans and projected timelines for tipifarnib, KO- 947 and KO-539, plans regarding regulatory filings, our expectations regarding the relative benefits of our product candidates versus competitive therapies, and our expectations regarding the therapeutic and commercial potential of our product candidates. The words “believe,” “may,” “will,” “estimate,” “promise,” “plan”, “continue,” “anticipate,” “intend,” “expect,” “potential” and similar expressions (including the negative thereof), are intended to identify forward-looking statements. Because such statements are subject to risks and uncertainties, actual results may differ materially from those expressed or implied by such forward-looking statements. Risks that contribute to the uncertain nature of the forward-looking statements include: our future preclinical studies and clinical trials may not be successful; the U.S. Food and Drug Administration (FDA) may not agree with our interpretation of the data from clinical trials of our product candidates; we may decide, or the FDA may require us, to conduct additional clinical trials or to modify our ongoing clinical trials; we may experience delays in the commencement, enrollment, completion or analysis of clinical testing for our product candidates, or significant issues regarding the adequacy of our clinical trial designs or the execution of our clinical trials may arise, which could result in increased costs and delays, or limit our ability to obtain regulatory approval; our product candidates may not receive regulatory approval or be successfully commercialized; unexpected adverse side effects or inadequate therapeutic efficacy of our product candidates could delay or prevent regulatory approval or commercialization; we may not be able to obtain additional financing. -
(12) United States Patent (10) Patent No.: US 8,911,786 B2 Desai Et Al
US00891. 1786B2 (12) United States Patent (10) Patent No.: US 8,911,786 B2 Desai et al. (45) Date of Patent: Dec. 16, 2014 (54) NANOPARTICLE COMPRISING RAPAMYCIN A61K 45/06 (2013.01); A61K 47/42 (2013.01); AND ALBUMINAS ANTICANCERAGENT A61N 5/10 (2013.01); A61N 7700 (2013.01) (75) Inventors: Neil P. Desai, Los Angeles, CA (US); USPC ............ 424/491; 424/489: 424/490; 424/500 Patrick Soon-Shiong, Los Angeles, CA (58) Field of Classification Search (US); Vuong Trieu, Calabasas, CA (US) USPC .......... 424/465-489, 490, 491, 500: 514/19.3 See application file for complete search history. (73) Assignee: Abraxis Bioscience, LLC, Los Angeles, CA (US) (56) References Cited (*) Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S. PATENT DOCUMENTS U.S.C. 154(b) by 344 days. 5,206,018 A * 4/1993 Sehgal et al. ................. 424,122 5,362.478 A 11/1994 Desai et al. (21) Appl. No.: 12/530,188 5.439,686 A 8, 1995 Desai et al. 5,498.421 A 3, 1996 Grinstaffet al. (22) PCT Filed: Mar. 7, 2008 5,505,932 A 4/1996 Grinstaffet al. 5,508,021 A 4/1996 Grinstaffet al. (86). PCT No.: PCT/US2O08/OO3O96 5,512,268 A 4/1996 Grinstaffet al. 5,540,931 A 7/1996 Hewitt et al. S371 (c)(1), 5,560,933 A 10/1996 Soon-Shiong et al. (2), (4) Date: Mar. 4, 2010 5,635,207 A 6/1997 Grinstaffet al. 5,639,473 A 6/1997 Grinstaffet al.