Novel Drugs for Older Patients with Acute Myeloid Leukemia

Total Page:16

File Type:pdf, Size:1020Kb

Novel Drugs for Older Patients with Acute Myeloid Leukemia Leukemia (2015) 29, 760–769 © 2015 Macmillan Publishers Limited All rights reserved 0887-6924/15 www.nature.com/leu REVIEW Novel drugs for older patients with acute myeloid leukemia G Montalban-Bravo1,2,3 and G Garcia-Manero1,3 Acute myeloid leukemia (AML) is the second most common form of leukemia and the most frequent cause of leukemia-related deaths in the United States. The incidence of AML increases with advancing age and the prognosis for patients with AML worsens substantially with increasing age. Many older patients are ineligible for intensive treatment and require other therapeutic approaches to optimize clinical outcome. To address this treatment gap, novel agents with varying mechanisms of action targeting different cellular processes are currently in development. Hypomethylating agents (azacitidine, decitabine, SGI-110), histone deacetylase inhibitors (vorinostat, pracinostat, panobinostat), FMS-like tyrosine kinase receptor-3 inhibitors (quizartinib, sorafenib, midostaurin, crenolanib), cytotoxic agents (clofarabine, sapacitabine, vosaroxin), cell cycle inhibitors (barasertib, volasertib, rigosertib) and monoclonal antibodies (gentuzumab ozogamicin, lintuzumab-Ac225) represent some of these promising new treatments. This review provides an overview of novel agents that have either completed or are currently in ongoing phase III trials in patients with previously untreated AML for whom intensive treatment is not an option. Other potential drugs in earlier stages of development will also be addressed in this review. Leukemia (2015) 29, 760–769; doi:10.1038/leu.2014.244 INTRODUCTION still lacking. In the current review we will focus on the novel Acute myeloid leukemia (AML) is a heterogeneous disease agents under development for older patients not eligible for characterized by uncontrolled clonal expansion of hematopoietic intensive treatment. progenitor cells. As the second most common form of leukemia and the most frequent cause of leukemia-related deaths in the NOVEL AGENTS CURRENTLY IN PHASE III DEVELOPMENT FOR United States, predictions for 2014 estimate that there will be up THE TREATMENT OF AML to 18 860 new diagnoses of AML, resulting in ∼ 10 460 related deaths.1 The incidence of AML increases with advancing age, with Table 1 lists the novel agents for which phase III trials are ongoing 54% of all cases diagnosed in adults aged ⩾ 65 years and or have been completed in previously untreated patients with approximately one-third of cases over 75 years of age.2 AML who are older, or for whom intensive therapy is not an 12–14 In the past decades, there have been important advances in the option. elucidation of the different molecular mechanisms involved in 3 AML pathogenesis including mutational events affecting cell Hypomethylating agents cycle regulators and kinases (TP53, NPM1, NRAS/KRAS, FLT3-ITD),4 4 DNA methylation regulates gene expression in normal and tumor transcription factors (RUNX1, CEBPA), epigenetic regulators (TET2, fi 15 5 6 cells through the modi cation of cytosines. Aberrant promoter IDH 1/2, ASXL1, DNMT3A) and microenvironment alterations. DNA methylation in cancer cells has been associated with the Despite this progressively growing understanding of the disease, silencing of tumor suppressor genes.15 Methylation status has there have only been small advances in treatment strategies in been shown to be prognostic in AML and myelodysplastic AML. Molecular data have mostly had an impact in better syndrome (MDS), with hypermethylation exerting a negative determining response to treatment, risk of relapse and overall effect on the outcome of induction treatment.16,17 Hypomethylat- 7 survival (OS), hence allowing us to better determine which ing agents (HMAs) currently used to treat AML and MDS include patients may benefit from allogeneic hematopoietic stem cell azacitidine, a ribonucleoside, and decitabine, a deoxyribonucleo- 8–10 transplantation in first remission. Prognosis of AML remains side. Both are incorporated into DNA as decitabine triphosphate- poor even when allogeneic hematopoietic stem cell transplanta- depleting DNA methyltransferases as cells replicate, resulting in tion in younger patients is possible, with even worse outcomes in hypomethylation of DNA, differentiation and subsequent p53- patients older than 65 years in whom the median survival is independent apoptosis.18,19 Azacitidine can also be incorporated 7.4 months with a 5-year OS of 10%11 and treatment options are into RNA throughout the cell cycle, leading to direct inhibition very limited. Many efforts are being made in order to develop of protein synthesis, reducing cell viability.18 Azacitidine and specific drugs targeting many of the biological hallmarks of the decitabine are approved in the United States for the treatment of disease (Figure 1). Unfortunately, despite the increasing array of MDS; with decitabine also approved in the European Union for new potential therapeutic agents under development, availability patients with newly diagnosed de novo or secondary AML aged of new treatments in the clinical setting outside of clinical trials is 465 years, and for those who are not eligible for standard 1Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA and 2Department of Hematology, University Hospital La Paz, Madrid, Spain. Correspondence: Dr G Garcia-Manero, Department of Leukemia, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Unit 428, Houston, TX 77030, USA. E-mail: [email protected] 3These authors contributed equally to this work. Received 30 April 2014; revised 30 July 2014; accepted 4 August 2014; accepted article preview online 21 August 2014; advance online publication, 12 September 2014 Novel agents for patients with AML G Montalban-Bravo 761 Figure 1. The mechanisms of action of novel agents currently in development. DNMT, DNA methyltransferase; FLT3, FMS-like tyrosine kinase receptor-3; FT, farnesyltransferase; GO, gemtuzumab ozogamicin; HDAC, histone deacetylase; LDAC, low-dose cytosine arabinoside. induction therapy. In addition, azacitidine and decitabine are time in hospital compared with those treated with CCR.25 recommended low-intensity treatment options for patients with Preliminary results from an ongoing phase III study of azacitidine intermediate-2/high-risk MDS by the National Comprehensive versus CCR in patients with AML aged ⩾ 65 years with 430% Cancer Network (NCCN).20 Because of the achievement of blasts (NCT01074047/AML-001) were recently presented.26 A total cytogenetic responses in both MDS and AML caused by a p53- of 488 patients were randomized to azacitidine (n = 241) or CCR independent clonal suppression,21 DNA methyltransferase inhibi- (n = 247 including best supportive care (BSC), low-dose cytosine tors represent an interesting treatment option in patients with arabinoside (LDAC) and intensive chemotherapy). Median OS, the complex cytogenetics and TP53 mutations in whom response primary end point, was not significantly different between the two rates to conventional chemotherapy remain very low,22 and in arms: 10.4 months in the azacitidine group compared with whom responses to azacitidine appear to be independent of TP53 6.5 months in the CCR arm (stratified hazard ratio (HR) = 0.85 status.23 This is especially the case if toxicities derived from a more (0.69–1.03); P = 0.1009). However, a prespecified sensitivity analysis intensive treatment approach are also taken into account. Both for OS with patients censored at the start of subsequent AML azacitidine and decitabine are category 1 recommendations. The therapy showed a significant benefit with azacitidine: median OS only alternative low-intensity treatment option is enrollment into was 12.1 (9.2–14.2) vs 6.9 (5.1–9.6) months (stratified HR = 0.76 a clinical trial (category 2A recommendation).20 (0.60–0.96), P = 0.019). The 1-year survival was 47% in the azacitidine arm compared with 34% in patients treated with Azacitidine. In a phase III, randomized trial investigating azaciti- CCR. Grade 3–4 anemia, neutropenia, febrile neutropenia and dine versus conventional care regimens (CCRs) in patients with thrombocytopenia were higher in the azacitidine group compared intermediate-2 and high-risk MDS, azacitidine was associated with with BSC, but similar to LDAC and intensive chemotherapy. No a significant OS benefit.24 Approximately one-third of the patients difference in 30- and 60-day mortality was found between the enrolled into this trial were classified as having AML under World different treatment groups. Health Organization (WHO) criteria (20–30% blasts), and an analysis of this older AML subgroup demonstrated a survival Decitabine. In a phase III trial of decitabine versus supportive care benefit of azacitidine compared with CCR.25 Median OS for or LDAC in older (⩾65 years) patients with newly diagnosed AML azacitidine-treated patients was 24.5 months compared with and poor‐ or intermediate-risk cytogenetics, decitabine treatment 16.0 months for conventional care-treated patients (P = 0.005). resulted in improved rates of complete response (CR) and CR Azacitidine was also well tolerated with patients who received without platelet recovery (CRp) compared with treatment choice azacitidine, requiring fewer hospital admissions and spending less (17.8% vs 7.8%; odds ratio, 2.5; 95% confidence interval (CI), © 2015 Macmillan Publishers Limited Leukemia (2015) 760 – 769 Novel agents for patients with AML G Montalban-Bravo 762 Table 1. Novel agents at phase III development
Recommended publications
  • Potential High-Impact Interventions Report Priority Area 02: Cancer
    AHRQ Healthcare Horizon Scanning System – Potential High-Impact Interventions Report Priority Area 02: Cancer Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. HHSA290201000006C Prepared by: ECRI Institute 5200 Butler Pike Plymouth Meeting, PA 19462 December 2012 Statement of Funding and Purpose This report incorporates data collected during implementation of the Agency for Healthcare Research and Quality (AHRQ) Healthcare Horizon Scanning System by ECRI Institute under contract to AHRQ, Rockville, MD (Contract No. HHSA290201000006C). The findings and conclusions in this document are those of the authors, who are responsible for its content, and do not necessarily represent the views of AHRQ. No statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. This report’s content should not be construed as either endorsements or rejections of specific interventions. As topics are entered into the System, individual topic profiles are developed for technologies and programs that appear to be close to diffusion into practice in the United States. Those reports are sent to various experts with clinical, health systems, health administration, and/or research backgrounds for comment and opinions about potential for impact. The comments and opinions received are then considered and synthesized by ECRI Institute to identify interventions that experts deemed, through the comment process, to have potential for high impact. Please see the methods section for more details about this process. This report is produced twice annually and topics included may change depending on expert comments received on interventions issued for comment during the preceding 6 months.
    [Show full text]
  • 214120Orig1s000
    CENTER FOR DRUG EVALUATION AND RESEARCH APPLICATION NUMBER: 214120Orig1s000 MULTI-DISCIPLINE REVIEW Summary Review Office Director Cross Discipline Team Leader Review Clinical Review Non-Clinical Review Statistical Review Clinical Pharmacology Review NDA Multidisciplinary Review and Evaluation Application Number NDA 214120 Application Type Type 3 Priority or Standard Priority Submit Date 3/3/2020 Received Date 3/3/2020 PDUFA Goal Date 9/3/2020 Office/Division OOD/DHM1 Review Completion Date 9/1/2020 Applicant Celgene Corporation Established Name Azacitidine (Proposed) Trade Name Onureg Pharmacologic Class Nucleoside metabolic inhibitor Formulations Tablet (200 mg, 300 mg) (b) (4) Applicant Proposed Indication/Population Recommendation on Regulatory Regular approval Action Recommended Indication/ For continued treatment of adult patients with acute Population myeloid leukemia who achieved first complete remission (CR) or complete remission with incomplete blood count recovery (CRi) following intensive induction chemotherapy and are not able to complete intensive curative therapy. SNOMED CT for the Recommended 91861009 Indication/Population Recommended Dosing Regimen 300 mg orally daily on Days 1 through 14 of each 28-day cycle Reference ID: 4664570 NDA Multidisciplinary Review and Evaluation NDA 214120 Onureg (azacitidine tablets) TABLE OF CONTENTS TABLE OF CONTENTS ................................................................................................................................... 2 TABLE OF TABLES .......................................................................................................................................
    [Show full text]
  • Investigator Initiated Study IRB-29839 an Open-Label Pilot Study To
    Investigator Initiated Study IRB-29839 An open-label pilot study to evaluate the efficacy and safety of a combination treatment of Sonidegib and BKM120 for the treatment of advanced basal cell carcinomas Version 05 September 2016 NCT02303041 DATE: 12Dec2018 1 Coordinating Center Stanford Cancer Center 875 Blake Wilbur Drive Stanford, CA 94305 And 450 Broadway, MC 5334 Redwood City, CA 94603 Protocol Director and Principal Investigator Anne Lynn S Chang, MD, Director of Dermatological Clinical Trials 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] Co-Investigator Anthony Oro, MD PhD 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] Biostatistician Shufeng Li, MS 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] Study Coordinator Ann Moffat 450 Broadway St, MC 5334 Redwood City, CA 94603 [email protected] 2 Table of Contents 1 Background ................................................................. 7 1.1 Disease Background ..................................................... 7 1.2 Hedgehog Pathway and mechanism of action ............................... 7 1.3 PI3K Pathway and mechanism of action ................................... 9 1.4 Sonidegib Compound Information ............ Error! Bookmark not defined. 1.4.1 Preclinical Studies for Sonidegib ....................................................................11 1.4.2 Muscular system...............................................................................................13 1.4.3 Skeletal system ................................................................................................13
    [Show full text]
  • The Application of a Characterized Pre-Clinical
    THE APPLICATION OF A CHARACTERIZED PRE-CLINICAL GLIOBLASTOMA ONCOSPHERE MODEL TO IN VITRO AND IN VIVO THERAPEUTIC TESTING by Kelli M. Wilson A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland March, 2014 ABSTRACT Glioblastoma multiforme (GBM) is a lethal brain cancer with a median survival time (MST) of approximately 15 months following treatment. A serious challenge facing the development of new drugs for the treatment of GBM is that preclinical models fail to replicate the human GBM phenotype. Here we report the Johns Hopkins Oncosphere Panel (JHOP), a panel of GBM oncosphere cell lines. These cell lines were validated by their ability to form tumors intracranially with histological features of human GBM and GBM variant tumors. We then completed whole exome sequencing on JHOP and found that they contain genetic alterations in GBM driver genes such as PTEN, TP53 and CDKN2A. Two JHOP cell lines were utilized in a high throughput drug screen of 466 compounds that were selected to represent late stage clinical development and a wide range of mechanisms. Drugs that were inhibitory in both cell lines were EGFR inhibitors, NF-kB inhibitors and apoptosis activators. We also examined drugs that were inhibitory in a single cell line. Effective drugs in the PTEN null and NF1 wild type cell line showed a limited number of drug targets with EGFR inhibitors being the largest group of cytotoxic compounds. However, in the PTEN mutant, NF1 null cell line, VEGFR/PDGFR inhibitors and dual PIK3/mTOR inhibitors were the most common effective compounds.
    [Show full text]
  • Options for the Treatment of Gemcitabine-Resistant Advanced Pancreatic Cancer
    JOP. J Pancreas (Online) 2010 Mar 5; 11(2):113-123. REVIEW Options for the Treatment of Gemcitabine-Resistant Advanced Pancreatic Cancer Ioannis Gounaris, Kamarul Zaki, Pippa Corrie Oncology Centre, Cambridge University Hospitals NHS Trust. Cambridge, United Kingdom Summary Context Pancreatic cancer is noteworthy in that the number of patients dying from the disease is roughly equal to the number diagnosed. For more than a decade, gemcitabine has constituted the standard of care for the palliative treatment of the majority of patients who present with metastatic or relapsed disease, although the survival gains are limited. Despite a median survival of less than 6 months, there is a significant proportion of advanced pancreatic cancer patients who progress on gemcitabine that remains fit and these patients are candidates for second-line treatment. Methods The OVID MEDLINE database was searched from 1950 to present using the MeSH terms “pancreatic neoplasms”, “drug treatment” and “gemcitabine”. After excluding non-relevant results, 31 published studies were identified. These results were supplemented by searching the last three (2007-2009) American Society of Clinical Oncology (ASCO) Proceedings of Annual Meetings for studies published only in abstract form and reviewing reference lists of published articles. Results and discussion The evidence for second line treatments of metastatic pancreatic cancer consists mostly of single arm, small phase II studies. Oxaliplatin-fluoropyrimidine combinations appear promising and have shown increased survival compared to best supportive care. As the molecular pathways governing pancreatic cancer are unravelled, novel targeted therapies may offer the greatest promise for this disease either given alone, combined with one another, or with cytotoxic agents.
    [Show full text]
  • For Acute Myeloid Leukemia
    Published OnlineFirst September 21, 2010; DOI: 10.1158/1078-0432.CCR-10-0382 Published OnlineFirst on September 21, 2010 as 10.1158/1078-0432.CCR-10-0382 Clinical Therapy Clinical Cancer Research Sequential Cytarabine and α-Particle Immunotherapy with Bismuth-213–Lintuzumab (HuM195) for Acute Myeloid Leukemia Todd L. Rosenblat1, Michael R. McDevitt1, Deborah A. Mulford1, Neeta Pandit-Taskar1, Chaitanya R. Divgi1, Katherine S. Panageas1, Mark L. Heaney1, Suzanne Chanel1, Alfred Morgenstern2, George Sgouros1, Steven M. Larson1, David A. Scheinberg1, and Joseph G. Jurcic1 Abstract Purpose: Lintuzumab (HuM195), a humanized anti-CD33 antibody, targets myeloid leukemia cells and has modest single-agent activity against acute myeloid leukemia (AML). To increase the potency of the antibody without the nonspecific cytotoxicity associated with β-emitters, the α-particle–emitting ra- dionuclide bismuth-213 (213Bi) was conjugated to lintuzumab. This phase I/II trial was conducted to determine the maximum tolerated dose (MTD) and antileukemic effects of 213Bi-lintuzumab, the first targeted α-emitter, after partially cytoreductive chemotherapy. Experimental Design: Thirty-one patients with newly diagnosed (n = 13) or relapsed/refractory (n = 18) AML (median age, 67 years; range, 37-80) were treated with cytarabine (200 mg/m2/d) for 5 days followed by 213Bi-lintuzumab (18.5-46.25 MBq/kg). Results: The MTD of 213Bi-lintuzumab was 37 MB/kg; myelosuppression lasting >35 days was dose limiting. Extramedullary toxicities were primarily limited to grade ≤2 events, including infusion-related reactions. Transient grade 3/4 liver function abnormalities were seen in five patients (16%). Treatment- related deaths occurred in 2 of 21 (10%) patients who received the MTD.
    [Show full text]
  • An Overview of the Role of Hdacs in Cancer Immunotherapy
    International Journal of Molecular Sciences Review Immunoepigenetics Combination Therapies: An Overview of the Role of HDACs in Cancer Immunotherapy Debarati Banik, Sara Moufarrij and Alejandro Villagra * Department of Biochemistry and Molecular Medicine, School of Medicine and Health Sciences, The George Washington University, 800 22nd St NW, Suite 8880, Washington, DC 20052, USA; [email protected] (D.B.); [email protected] (S.M.) * Correspondence: [email protected]; Tel.: +(202)-994-9547 Received: 22 March 2019; Accepted: 28 April 2019; Published: 7 May 2019 Abstract: Long-standing efforts to identify the multifaceted roles of histone deacetylase inhibitors (HDACis) have positioned these agents as promising drug candidates in combatting cancer, autoimmune, neurodegenerative, and infectious diseases. The same has also encouraged the evaluation of multiple HDACi candidates in preclinical studies in cancer and other diseases as well as the FDA-approval towards clinical use for specific agents. In this review, we have discussed how the efficacy of immunotherapy can be leveraged by combining it with HDACis. We have also included a brief overview of the classification of HDACis as well as their various roles in physiological and pathophysiological scenarios to target key cellular processes promoting the initiation, establishment, and progression of cancer. Given the critical role of the tumor microenvironment (TME) towards the outcome of anticancer therapies, we have also discussed the effect of HDACis on different components of the TME. We then have gradually progressed into examples of specific pan-HDACis, class I HDACi, and selective HDACis that either have been incorporated into clinical trials or show promising preclinical effects for future consideration.
    [Show full text]
  • Research in Your Backyard Developing Cures, Creating Jobs
    Research in Your Backyard Developing Cures, Creating Jobs PHARMACEUTICAL CLINICAL TRIALS IN ILLINOIS Dots show locations of clinical trials in the state. Executive Summary This report shows that biopharmaceutical research com- Quite often, biopharmaceutical companies hire local panies continue to be vitally important to the economy research institutions to conduct the tests and in Illinois, and patient health in Illinois, despite the recession. they help to bolster local economies in communities all over the state, including Chicago, Decatur, Joliet, Peoria, At a time when the state still faces significant economic Quincy, Rock Island, Rockford and Springfield. challenges, biopharmaceutical research companies are conducting or have conducted more than 4,300 clinical For patients, the trials offer another potential therapeutic trials of new medicines in collaboration with the state’s option. Clinical tests may provide a new avenue of care for clinical research centers, university medical schools and some chronic disease sufferers who are still searching for hospitals. Of the more than 4,300 clinical trials, 2,334 the medicines that are best for them. More than 470 of the target or have targeted the nation’s six most debilitating trials underway in Illinois are still recruiting patients. chronic diseases—asthma, cancer, diabetes, heart dis- ease, mental illnesses and stroke. Participants in clinical trials can: What are Clinical Trials? • Play an active role in their health care. • Gain access to new research treatments before they In the development of new medicines, clinical trials are are widely available. conducted to prove therapeutic safety and effectiveness and compile the evidence needed for the Food and Drug • Obtain expert medical care at leading health care Administration to approve treatments.
    [Show full text]
  • Expression of Genes by Hypomethylating Agents
    Wolff et al. Cell Communication and Signaling (2017) 15:13 DOI 10.1186/s12964-017-0168-z REVIEW Open Access The double-edged sword of (re)expression of genes by hypomethylating agents: from viral mimicry to exploitation as priming agents for targeted immune checkpoint modulation Florian Wolff1, Michael Leisch2, Richard Greil2,3,4, Angela Risch1,4 and Lisa Pleyer2,3,4* Abstract Hypomethylating agents (HMAs) have been widely used over the last decade, approved for use in myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML) and acute myeloid leukemia (AML). The proposed central mechanism of action of HMAs, is the reversal of aberrant methylation in tumor cells, thus reactivating CpG-island promoters and leading to (re)expression of tumor suppressor genes. Recent investigations into the mode of action of azacitidine (AZA) and decitabine (DAC) have revealed new molecular mechanisms that impinge on tumor immunity via induction of an interferon response, through activation of endogenous retroviral elements (ERVs) that are normally epigenetically silenced. Although the global demethylation of DNA by HMAs can induce anti-tumor effects, it can also upregulate the expression of inhibitory immune checkpoint receptors and their ligands, resulting in secondary resistance to HMAs. Recent studies have, however, suggested that this could be exploited to prime or (re)sensitize tumors to immune checkpoint inhibitor therapies. In recent years, immune checkpoints have been targeted by novel therapies, with the aim of (re)activating the host immune system to specifically eliminate malignant cells. Antibodies blocking checkpoint receptors have been FDA-approved for some solid tumors and a plethora of clinical trials testing these and other checkpoint inhibitors are under way.
    [Show full text]
  • A Comparison of Early Intensive Methotrexate/Mercaptopurine With
    Leukemia (2001) 15, 1038–1045 2001 Nature Publishing Group All rights reserved 0887-6924/01 $15.00 www.nature.com/leu A comparison of early intensive methotrexate/mercaptopurine with early intensive alternating combination chemotherapy for high-risk B-precursor acute lymphoblastic leukemia: a Pediatric Oncology Group phase III randomized trial SJ Lauer1, JJ Shuster2, DH Mahoney Jr3, N Winick4, S Toledano5, L Munoz5, G Kiefer6, JD Pullen7, CP Steuber3 and BM Camitta6 1Emory University School of Medicine, Atlanta, GA; 2Pediatric Oncology Group Statistical Office and Department of Statistics, University of Florida, Gainesville, FL; 3Texas Children’s Cancer Center, Baylor College of Medicine, Houston, TX; 4University of Texas Southwestern Medical Center, Dallas, TX; 5University Miami School of Medicine, Miami, FL; 6Midwest Children’s Cancer Center, Milwaukee, WI; and 7University of Mississippi Medical Center Children’s Hospital, Jackson, MS, USA A prospective, randomized multicenter study was performed to to their risk for relapse and treatment strategies designed to evaluate the relative efficacy of two different concepts for early improve event-free survival (EFS). intensive therapy in a randomized trial of children with B-pre- cursor acute lymphoblastic leukemia (ALL) at high risk (HR) for It is believed that the leading causes of relapse in children relapse. Four hundred and ninety eligible children with HR-ALL with higher risk ALL (HR-ALL) are inadequate cell kill and were randomized on the Pediatric Oncology Group (POG) 9006 emergence of drug-resistant clones. Clinical trials using early phase III trial between 7 January 1991 and 12 January 1994. intensive myelosuppressive combination chemotherapy as After prednisone (PDN), vincristine (VCR), asparaginase (ASP) post-induction consolidation were designed to maximize cell and daunorubicin (DNR) induction, 470 patients received either 2 kill and address drug resistance.
    [Show full text]
  • Cyclacel Announces Grants of New U.S. & European Patents
    February 12, 2013 Cyclacel Announces Grants of New U.S. & European Patents Covering Sapacitabine Used in Combination With HDAC Inhibitors Granted Patents Provide Exclusivity for Potential Uses of Sapacitabine in Hematological Malignancies and Solid Tumors BERKELEY HEIGHTS, N.J., Feb. 12, 2013 (GLOBE NEWSWIRE) -- Cyclacel Pharmaceuticals, Inc. (Nasdaq:CYCC) (Nasdaq:CYCCP) (Cyclacel or the Company), a biopharmaceutical company developing oral therapies that target the various phases of cell cycle control for the treatment of cancer and other serious disorders, today announced the issuance of U.S. Patent No. US 8,349,792 ('792) and European Patent No 2,101,790 ('790). Both patents include claims to combination treatment of sapacitabine, the Company's lead product candidate, with HDAC (histone deacetylase) inhibitors. The patents provide exclusivity until June 2029 and December 2027 respectively. "The grants of the '792 and '790 patents are important enhancements of sapacitabine's intellectual property estate. They supplement sapacitabine's existing composition of matter, dosing regimen and combination treatment patent protection and support US and EU market exclusivity toward the end of the next decade," said Spiro Rombotis, President and Chief Executive Officer of Cyclacel. "We are pursuing a broad intellectual property strategy providing us with a strong foundation to achieve our clinical and commercial objectives for sapacitabine and our other assets. As we continue to enroll SEAMLESS, our pivotal Phase 3 trial of sapacitabine as front-line treatment in elderly patients with acute myeloid leukemia (AML), we look forward to providing additional updates for sapacitabine this year, including Phase 2 data in myelodysplastic syndromes (MDS), AML preceded by MDS, and solid tumors." The two patents include claims to combinations of sapacitabine and HDAC inhibitors, pharmaceutical compositions comprising sapacitabine and HDAC inhibitors, and methods of treatment using such compositions of proliferative disorders including leukemias, lymphomas, and lung cancer.
    [Show full text]
  • Incidence of Differentiation Syndrome Associated with Treatment
    Journal of Clinical Medicine Review Incidence of Differentiation Syndrome Associated with Treatment Regimens in Acute Myeloid Leukemia: A Systematic Review of the Literature Lucia Gasparovic 1, Stefan Weiler 1,2, Lukas Higi 1 and Andrea M. Burden 1,* 1 Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland; [email protected] (L.G.); [email protected] (S.W.); [email protected] (L.H.) 2 National Poisons Information Centre, Tox Info Suisse, Associated Institute of the University of Zurich, 8032 Zurich, Switzerland * Correspondence: [email protected]; Tel.: +41-76-685-22-56 Received: 30 August 2020; Accepted: 14 October 2020; Published: 18 October 2020 Abstract: Differentiation syndrome (DS) is a potentially fatal adverse drug reaction caused by the so-called differentiating agents such as all-trans retinoic acid (ATRA) and arsenic trioxide (ATO), used for remission induction in the treatment of the M3 subtype of acute myeloid leukemia (AML), acute promyelocytic leukemia (APL). However, recent DS reports in trials of isocitrate dehydrogenase (IDH)-inhibitor drugs in patients with IDH-mutated AML have raised concerns. Given the limited knowledge of the incidence of DS with differentiating agents, we conducted a systematic literature review of clinical trials with reports of DS to provide a comprehensive overview of the medications associated with DS. In particular, we focused on the incidence of DS reported among the IDH-inhibitors, compared to existing ATRA and ATO therapies. We identified 44 published articles, encompassing 39 clinical trials, including 6949 patients. Overall, the cumulative incidence of DS across all treatment regimens was 17.7%.
    [Show full text]