Anatomy and Function of the Skin Part 2 – the Epidermis

Total Page:16

File Type:pdf, Size:1020Kb

Anatomy and Function of the Skin Part 2 – the Epidermis CLINICAL systems of life Anatomy and function of the skin Part 2 – the epidermis stratum corneum stratum lucidum stratum granulosum stratum spinosum stratum basale Basement membrane Dermis fiG 1. the layeRs of the ePiDeRmis Author sandra lawton, msc, RGN, oND, eNB the underlying dermis for nutrient delivery and waste 393, RN (Child), is nurse consultant in dermatology, disposal through the dermo-epidermal junction. The Queen’s Medical Centre, Nottingham University epidermis is defined as a stratified squamous Hospitals NHS Trust. epithelium, consisting primarily of keratinocytes in progressive stages of differentiation (Revis and The epidermis is the outer layer of the skin varying in Seagle, 2006). Its prime function is to act as a thickness from 0.1mm to 1.4mm (Gawkrodger, 1992) physical and biological barrier to the environment, (Fig 1). It consists of a number of layers: preventing penetration by irritants and allergens and l Stratum corneum; loss of water while maintaining internal homeostasis l Stratum lucidum; (Gawkrodger, 1992; Cork, 1997). l Stratum granulosum; l Stratum spinosum; Layers of epidermis l Stratum basale; The epidermis is composed primarily of layers of l Basement membrane. densely packed keratinocytes that produce the protein It contains no blood vessels and is dependent on keratin and are the major cells of the epidermis. 28 NT 8 August 2006 Vol 102 No 32 www.nursingtimes.net keywoRDs n Skin n Epidermis n Anatomy and physiology Keratinocytes are formed by division in the fiG 2. the PRoCess of DesquamatioN RefeRences stratum basale (basal or germinative layer). As the keratinocytes move up through the stratum Butcher, M., White, r (2005) The spinosum (prickle cell layer) and stratum granulosum Structure and Functions of the Skin. (granular layer), they differentiate to form a rigid In: White, R. (Eds). Skin Care in Desquamation t Wound Management: Assessment, internal structure of keratin, microfilaments and 1,000 cells/cm2/hour microtubules (keratinisation). prevention and treatment. Aberdeen: Wounds UK. The outer layer of the epidermis, the stratum two corneum (horny layer), is composed of layers of weeks Cork, M. (1997) The importance of flattened dead cells (corneocytes) that have lost their stratum corneum skin barrier function. Journal of nucleus. These cells are then shed from the skin 15–20 cell layers t Dermatological Treatment; 8: Suppl (desquamation). The complete process from t 1, 7–13. formation to desquamation takes approximately 28 two days (Hill, 1994) (Fig 2). gawkrodger, D.J. (1992) An weeks Between these cells (corneocytes) there is a Dermatology: An Illustrated Colour complex mixture of lipid and proteins (Cork,1997). Text. Edinburgh: Churchill These intercellular lipids are broken down by Livingstone. enzymes from keratinocytes to produce a lipid mixture of ceramides (phospholipids), fatty acids graham-Brown, r., Bourke, J.F. and cholesterol. These molecules are arranged in a (1998) Mosby’s Color Atlas and highly organised fashion, fusing with each other and t Text of Dermatology. London: Mosby. the corneocytes to form the skin’s lipid barrier against water loss and penetration by allergens and Hill, M.J. (1994) Skin Disorders. irritants (Holden et al, 2002). Other epidermal cells St Louis: Mosby. The stratum corneum can be visualised as a brick Keratinocytes make up about 95% of the epidermal wall, with the corneocytes forming the bricks and the cells, the others being melanocytes, Langerhan cells Holden, C. et al (2002) Advised lamellar lipids forming the mortar. Corneocytes and Merkel Cells (Butcher and White, 2005). best practice for the use of contain a water-retaining substance – natural MeLANoCyTeS – are found in the stratum basale emollients in eczema and other dry moisturising factor – and so attract and hold water. (basal or germinative layer) and are interspersed skin conditions. Journal of The high water content of the corneocytes causes among the keratinocytes along the basement Dermatological Treatment; 13: 3, these cells to swell, thereby keeping the stratum membrane (dermo-epidermal junction) at a ratio of 103–106. corneum pliable and elastic, and preventing the one melanocyte to 10 basal cells. They produce the revis, D.r., Seagle, M.B. (2006) formation of fissures and cracks (Cork, 1997; Holden pigment melanin, which is manufactured from the Skin Anatomy emedicine. et al, 2002). This is an important consideration when amino acid tyrosine, packaged into melanosomes, Available: www.emedicine.com/ applying topical medications to the skin. transported and delivered into the cytoplasm of the plastics/topic389.htm. keratinocytes (Graham-Brown and Bourke, 1998). The Percutaneous absorption key function of melanin is protection, absorbing rudy, S., Parham-Vetter, P. (2003) Percutaneous absorption refers to the absorption of ultraviolet radiation and protecting us from its Percutaneous absorption of topically topical medications and other substances through the harmful effects. Skin colour is determined not by the applied medication. Dermatology epidermal barrier into the underlying tissues and numbers of melanocytes but by the number and size Nursing; 15: 2, 145–152. structures, which then transfer to the systemic of the melanosomes (Gawkrodger ,1992). Skin colour circulation. Three elements play a role in percutaneous is also influenced by ultraviolet light, genetic factors absorption – the features of normal skin, changes in and hormonal influences (Hill, 1994). skin barrier function and vascular changes. LANgerHAN’S CeLLS – are antigen-presenting cells in The stratum corneum (horny layer) regulates the the stratum spinosum (prickle cell layer). They amount and rate of percutaneous absorption (Rudy represent one part of the body’s immune system and and Parham-Vetter, 2003). Two of the most important are constantly on the lookout for antigens (micro- factors affecting percutaneous absorption are skin organisms and foreign proteins) in order to trap them hydration and environmental humidity. and present them to T helper lymphocytes, thus In healthy skin with normal hydration, activating an immune response (Graham-Brown and medicaments can only penetrate the stratum Bourke 1998, Butcher and White, 2005). corneum (horny layer) by passing through the tight, MerkeL CeLLS – are only present in very small relatively dry, lipid barrier between cells. When skin numbers and are found in the stratum basale (basal hydration is increased or the normal skin barrier is or germinative layer). They are closely associated This article has been double-blind impaired, as a result of skin disease, excoriations, with terminal filaments of cutaneous nerves and peer-reviewed. erosions, fissuring or prematurity, percutaneous seem to have a role in sensation, especially in areas For related articles on this subject absorption will be enhanced (Rudy and Parham- such as palms, soles and genitalia (Gawkrodger, and links to relevant websites see Vetter, 2003). 1992; Butcher and White, 2005). n www.nursingtimes.net NT 8 August 2006 Vol 102 No 32 www.nursingtimes.net 29.
Recommended publications
  • Diapositiva 1
    Ingegneria delle tecnologie per la salute Fondamenti di anatomia e istologia Apparato tegumentario aa. 2017-18 INTEGUMENTARY SYSTEM integumentary system = refers to skin and its accessory structures responsible for much more than simply human outward appearance: about 16% of body weight, covering an area of 1.5 to 2 m2 (= largest organ system in human body). • skin protects inner organs INTEGUMENTARY SYSTEM • skin = even not typical, but an organ, made of tissues that work together as a single structure to perform unique and critical functions • integumentary system = skin + its accessory structures, providing body with overall protection. • made of multiple layers of cells and tissues, which are held to underlying structures by connective tissue: deeper layer of skin is well vascularized (has numerous blood vessels) and also has numerous sensory, and autonomic and sympathetic nerve fibers ensuring communication to and from brain. INTEGUMENTARY SYSTEM Overview • Largest organ (15% of body weight) • Epidermis – keratinized stratified squamous epithelium • Dermis – connective tissue layer • Hypodermis • Thickness variable, normally 1-2 mm – dermis may thicken, up to 6 mm – stratum corneum layer increased • calluses on hands and feet Structure of the Skin 2 layers: epidermis + dermis SKIN: histology SKIN: histology SKIN: histology Cells of the Epidermis • Stem cells – undifferentiated cells in deepest layers • Keratinocytes – most of the skin cells • Melanocytes – synthesize pigment that shield UV • Tactile (merkel) cells – receptor cells associated with nerve fibers • Dendritic (langerhans) cells – macrophages guard against pathogens Cell and Layers of the Epidermis Epidermis: histology = composed of keratinized, stratified squamous epithelium, made of 4 or 5 layers of epithelial cells, depending on its location in body.
    [Show full text]
  • Enabling Sweat-Based Biosensors: Solving the Problem of Low
    Enabling sweat-based biosensors: Solving the problem of low biomarker concentration in sweat A dissertation submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Biomedical Engineering of the College of Engineering & Applied Science by Andrew J. Jajack B.S., Biology, Wittenberg University, 2014 Committee Chairs: Jason C. Heikenfeld, Ph.D. and Chia-Ying Lin, Ph.D. Abstract Non-invasive, sweat biosensing will enable the development of an entirely new class of wearable devices capable of assessing health on a minute-to-minute basis. Every aspect of healthcare stands to benefit: prevention (activity tracking, stress-level monitoring, over-exertion alerting, dehydration warning), diagnosis (early-detection, new diagnostic techniques), and management (glucose tracking, drug-dose monitoring). Currently, blood is the gold standard for measuring the level of most biomarkers in the body. Unlike blood, sweat can be measured outside of the body with little inconvenience. While some biomarkers are produced in the sweat gland itself, most are produced elsewhere and must diffuse into sweat. These biomarkers come directly from blood or interstitial fluid which surrounds the sweat gland. However, a two-cell thick epithelium acts as barrier and dilutes most biomarkers in sweat. As a result, many biomarkers that would be useful to monitor are diluted in sweat to concentrations below what can be detected by current biosensors. This is a core challenge that must be overcome before the advantages of sweat biosensing can be fully realized. The objective of this dissertation is to develop methods of concentrating biomarkers in sweat to bring them into range of available biosensors.
    [Show full text]
  • Biomechanics of Human Stratum Corneum: Dry Skin Conditions, Tissue Damage and Alleviation a Dissertation Submitted to the Depar
    BIOMECHANICS OF HUMAN STRATUM CORNEUM: DRY SKIN CONDITIONS, TISSUE DAMAGE AND ALLEVIATION A DISSERTATION SUBMITTED TO THE DEPARTMENT OF MATERIALS SCIENCE AND ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Kemal Levi November 2009 © 2010 by Kemal Levi. All Rights Reserved. Re-distributed by Stanford University under license with the author. This work is licensed under a Creative Commons Attribution- Noncommercial 3.0 United States License. http://creativecommons.org/licenses/by-nc/3.0/us/ This dissertation is online at: http://purl.stanford.edu/cb644mw1707 ii I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Reinhold Dauskardt, Primary Adviser I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. Sarah Heilshorn I certify that I have read this dissertation and that, in my opinion, it is fully adequate in scope and quality as a dissertation for the degree of Doctor of Philosophy. William Nix Approved for the Stanford University Committee on Graduate Studies. Patricia J. Gumport, Vice Provost Graduate Education This signature page was generated electronically upon submission of this dissertation in electronic format. An original signed hard copy of the signature page is on file in University Archives. iii Abstract The outermost layer of human skin, the stratum corneum (SC), is subject daily to variable ambient moisture and temperature conditions as well as application of potentially damaging cleansing agents.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Curling Cuticles of the Great Toenails: a Case Report of Eponychogryphosis
    Open Access Case Report DOI: 10.7759/cureus.3959 Curling Cuticles of the Great Toenails: A Case Report of Eponychogryphosis Philip R. Cohen 1 1. Dermatology, San Diego Family Dermatology, San Diego, USA Corresponding author: Philip R. Cohen, [email protected] Abstract The cuticle, also referred to as the eponychium, creates a seal between the proximal nail fold and the nail plate. It is derived from both the ventral and dorsal portions of the proximal nail fold. In addition to its principle function as a barrier preventing allergens, irritants and pathogens from entering the nail cul-de- sac, the cuticle can play a role as a model for evaluating the etiology and management of diseases that affect capillary microcirculation, provide a source of solid tissue for genetic disorder studies, and aid in the evaluation of patients in whom the diagnoses of either systemic scleroderma or dermatomyositis is being entertained. Curling cuticle is a distinctive and unique occurrence. The clinical features of a man with curling cuticles on the lateral portion of both great toes is described. Although a deficiency in personal hygiene may partially account for the clinical finding, the pathogenesis of this observation remains to be established. The term ‘eponychogryphosis’ is proposed to describe the alteration of the patient’s cuticles. Categories: Dermatology, Internal Medicine, Rheumatology Keywords: curl, curling, cuticle, eponychium, eponychogryphosis, fold, great, onychogryphosis, nail, toe Introduction The cuticle, also known as the eponychium, is an extension of the stratum corneum from the proximal nail fold [1-3]. It forms a seal that prevents allergens, irritants, and pathogens from entering the potential space between the distal skin of the digit and the nail plate [4-5].
    [Show full text]
  • Skin 1. Describe the Basic Histological Structure of the Skin, Identifying The
    Skin lecture notes 1 Lecture objectives: skin 1. Describe the basic histological structure of the skin, identifying the layers of the skin and their embryologic origin. 2. Identify the cell layers that constitute the epidermis and the differences between thick and thin skin. 3. Describe the cellular components of the epidermis and their function: keratinocytes, melanocytes, Langerhans cells and Merkel cells: 4. Describe the structural organization of the dermis and the components of the papillary and reticular layers. 5. Identify other structures present in the skin: vessels, skin sensorial receptors, hair follicles and hairs, nails and glands. 6. Understand the mechanism of skin repair 7. Describe histological findings in common skin diseases. Skin lecture notes 2 HISTOLOGY OF THE SKIN The skin is the heaviest, largest single organ of the body. It protects the body against physical, chemical and biological agents. The skin participates in the maintenance of body temperature and hydration, and in the excretion of metabolites. It also contributes to homeostasis through the production of hormones, cytokines and growth factors. 1. Describe the basic histological structure of the skin, identifying the layers of the skin and their embryologic origin. The skin is composed of the epidermis, an epithelial layer of ectodermal origin and the dermis, a layer of connective tissue of mesodermal origin. The hypodermis or subcutaneous tissue, which is not considered part of the skin proper, lies deep to the dermis and is formed by loose connective tissue that typically contains adipose cells. Skin layers 2. Identify the cell layers that constitute the epidermis and the differences between thick and thin skin.
    [Show full text]
  • Basic Biology of the Skin 3
    © Jones and Bartlett Publishers, LLC. NOT FOR SALE OR DISTRIBUTION CHAPTER Basic Biology of the Skin 3 The skin is often underestimated for its impor- Layers of the skin: tance in health and disease. As a consequence, it’s frequently understudied by chiropractic students 1. Epidermis—the outer most layer of the skin (and perhaps, under-taught by chiropractic that is divided into the following fi ve layers school faculty). It is not our intention to present a from top to bottom. These layers can be mi- comprehensive review of anatomy and physiol- croscopically identifi ed: ogy of the skin, but rather a review of the basic Stratum corneum—also known as the biology of the skin as a prerequisite to the study horny cell layer, consisting mainly of kera- of pathophysiology of skin disease and the study tinocytes (fl at squamous cells) containing of diagnosis and treatment of skin disorders and a protein known as keratin. The thick layer diseases. The following material is presented in prevents water loss and prevents the entry an easy-to-read point format, which, though brief of bacteria. The thickness can vary region- in content, is suffi cient to provide a refresher ally. For example, the stratum corneum of course to mid-level or upper-level chiropractic the hands and feet are thick as they are students and chiropractors. more prone to injury. This layer is continu- Please refer to Figure 3-1, a cross-sectional ously shed but is replaced by new cells from drawing of the skin. This represents a typical the stratum basale (basal cell layer).
    [Show full text]
  • Chapter 5 Lecture Outline
    Anatomy Lecture Notes Chapter 5 I. functions • protection • prevents water loss • body temperature control • synthesizes vitamin D • sensory reception II. basic structure the skin is an epithelial membrane (cutaneous) epithelial layer = epidermis (stratified squamous keratinized e.) c.t. layer = dermis (areolar c.t. and dense irregular c.t.) A. epidermis 1. cells a. keratinocytes are found in all layers and produce keratin b. melanocytes are found in the stratum basale • they make the pigment melanin and transfer it to keratinocytes • melanin protects keratinocytes from ultraviolet (UV) radiation • the lighter an individual's skin, the more of the melanin is degraded as cells move towards the surface • the amount of melanin in the skin increases with exposure to UV radiation c. Merkel cells are found in the stratum basale • they are associated with dermal nerve endings • they may be used for the sense of touch d. dendritic (Langerhans) cells are found in the stratum spinosum • they migrate to the skin from bone marrow and function as part of the immune system • they are sensitive to UV radiation Strong/Fall 2008 page 1 Anatomy Lecture Notes Chapter 5 2. layers a. stratum basale/stratum germinativum - single layer of cuboidal or columnar keratinocyte stem cells • attached to c.t. of dermis • cells undergo mitosis • one daughter cell migrates to the next layer and one stays in the stratum basale to be the new stem cell b. stratum spinosum - 8 to 10 layers of keratinocytes • gradually change shape from cuboidal to squamous as they migrate towards the surface c. stratum granulosum - 3 to 5 layers of keratinocytes with degrading nuclei • cells contain keratin precursor molecules (keratohyalin) and granules of glycolipids • the glycolipids are secreted into the extracellular space d.
    [Show full text]
  • The Integumentary System the Integumentary System
    Essentials of Anatomy & Physiology, 4th Edition Martini / Bartholomew The Integumentary System PowerPoint® Lecture Outlines prepared by Alan Magid, Duke University Slides 1 to 51 Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Integumentary Structure/Function Integumentary System Components • Cutaneous membrane • Epidermis • Dermis • Accessory structures • Subcutaneous layer (hypodermis) Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Integumentary Structure/Function Main Functions of the Integument • Protection • Temperature maintenance • Synthesis and storage of nutrients • Sensory reception • Excretion and secretion Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Integumentary Structure/Function Components of the Integumentary System Figure 5-1 Integumentary Structure/Function The Epidermis • Stratified squamous epithelium • Several distinct cell layers • Thick skin—five layers • On palms and soles • Thin skin—four layers • On rest of body Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Integumentary Structure/Function Cell Layers of The Epidermis • Stratum germinativum • Stratum spinosum • Stratum granulosum • Stratum lucidum (in thick skin) • Stratum corneum • Dying superficial layer • Keratin accumulation Copyright © 2007 Pearson Education, Inc., publishing as Benjamin Cummings Integumentary Structure/Function The Structure of the Epidermis Figure 5-2 Integumentary Structure/Function Cell Layers of The Epidermis • Stratum germinativum
    [Show full text]
  • Stratum Corneum Biomechanics
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/281637624 Stratum Corneum Biomechanics Chapter · March 2009 DOI: 10.3109/9781420070958.016 CITATION READS 1 319 4 authors, including: Anne Potter Gustavo S Luengo L'Oréal L'Oréal 17 PUBLICATIONS 115 CITATIONS 90 PUBLICATIONS 1,603 CITATIONS SEE PROFILE SEE PROFILE Roberto Santoprete L'Oréal 10 PUBLICATIONS 140 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Biosurface interactions View project Nano Tribology View project All content following this page was uploaded by Roberto Santoprete on 21 October 2018. The user has requested enhancement of the downloaded file. STRATUM CORNEUM BIOMECHANICS INTRODUCTION As the outermost layer of the skin, the stratum corneum participates in the functional properties of the skin (1). For some functions, i.e. photoprotection (2, 3) or barrier protection (4), it is well accepted that the stratum corneum plays the primordial role. Concerning the mechanical properties of the skin, the influence of the mechanical properties of the stratum corneum is also recognized (5,6), but its exact level of importance is still in debates as it doesn’t exist clear results in the literature. The stratum corneum could be considered as a composite material mainly made of corneocytes, intercellular lipids, corneodesmosomes, and other intercellular proteoglycannes. Such a complex material should be characterized in a multi-scale approach in order to relate mechanical
    [Show full text]
  • The Integumentary System the Integumentary System
    The Integumentary System The Integumentary System Integument is skin Skin and its appendages make up the integumentary system A fatty layer (hypodermis) lies deep to it Two distinct regions Epidermis Dermis Epidermis Keratinized stratified squamous epithelium Four types of cells Keratinocytes – deepest, produce keratin (tough fibrous protein) Melanocytes - make dark skin pigment melanin Merkel cells – associated with sensory nerve endings Langerhans cells – macrophage-like dendritic cells Layers (from deep to superficial) Stratum basale or germinativum – single row of cells attached to dermis; youngest cells Stratum spinosum – spinyness is artifactual; tonofilaments (bundles of protein) resist tension Stratum granulosum – layers of flattened keratinocytes producing keratin (hair and nails made of it also) Stratum lucidum (only on palms and soles) Stratum corneum – horny layer (cells dead, many layers thick) (see figure on next slide) Epithelium: layers (on left) and cell types (on right) Dermis Strong, flexible connective tissue: your “hide” Cells: fibroblasts, macrophages, mast cells, WBCs Fiber types: collagen, elastic, reticular Rich supply of nerves and vessels Critical role in temperature regulation (the vessels) Two layers (see next slides) Papillary – areolar connective tissue; includes dermal papillae Reticular – “reticulum” (network) of collagen and reticular fibers *Dermis layers *Dermal papillae * * Epidermis and dermis of (a) thick skin and (b) thin skin (which one makes the difference?) Fingerprints,
    [Show full text]
  • Melanin Transfer in the Epidermis: the Pursuit of Skin Pigmentation Control Mechanisms
    International Journal of Molecular Sciences Review Melanin Transfer in the Epidermis: The Pursuit of Skin Pigmentation Control Mechanisms Hugo Moreiras † , Miguel C. Seabra and Duarte C. Barral * iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; [email protected] (H.M.); [email protected] (M.C.S.) * Correspondence: [email protected]; Tel.: +351-218-803-102 † Present address: The Charles Institute of Dermatology, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland. Abstract: The mechanisms by which the pigment melanin is transferred from melanocytes and processed within keratinocytes to achieve skin pigmentation remain ill-characterized. Nevertheless, several models have emerged in the past decades to explain the transfer process. Here, we review the proposed models for melanin transfer in the skin epidermis, the available evidence supporting each one, and the recent observations in favor of the exo/phagocytosis and shed vesicles models. In order to reconcile the transfer models, we propose that different mechanisms could co-exist to sustain skin pigmentation under different conditions. We also discuss the limited knowledge about melanin processing within keratinocytes. Finally, we pinpoint new questions that ought to be addressed to solve the long-lasting quest for the understanding of how basal skin pigmentation is controlled. This knowledge will allow the emergence of new strategies to treat pigmentary disorders that cause a significant socio-economic burden to patients and healthcare systems worldwide and could also have relevant cosmetic applications. Citation: Moreiras, H.; Seabra, M.C.; Keywords: melanin; melanosome; melanocore; melanocyte; keratinocyte; skin pigmentation; Barral, D.C.
    [Show full text]