Carbon Allocation in Underground Storage Organs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physicochemical Properties of Selected Root and Tuber Starches
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1999 Physicochemical properties of selected root and tuber starches and characterization of extruded, chemically modified corn starches Andrew Edward McPherson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Agricultural Science Commons, Agriculture Commons, Agronomy and Crop Sciences Commons, Food Science Commons, and the Plant Biology Commons Recommended Citation McPherson, Andrew Edward, "Physicochemical properties of selected root and tuber starches and characterization of extruded, chemically modified corn starches " (1999). Retrospective Theses and Dissertations. 12592. https://lib.dr.iastate.edu/rtd/12592 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI fihns the text directly from the ori^nal or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, v^e others may be from any type of computo^ printer. The quality of this reproduction is dependeut upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely a£fect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids During Plant Development
Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development. Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain, Thomas Pfannschmidt To cite this version: Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, et al.. Regu- latory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development.. Frontiers in Plant Science, Frontiers, 2017, 8, pp.23. 10.3389/fpls.2017.00023. hal-01513709 HAL Id: hal-01513709 https://hal.archives-ouvertes.fr/hal-01513709 Submitted on 26 Sep 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-08-00023 January 17, 2017 Time: 16:47 # 1 MINI REVIEW published: 19 January 2017 doi: 10.3389/fpls.2017.00023 Regulatory Shifts in Plastid Transcription Play a Key Role in Morphological Conversions of Plastids during Plant Development Monique Liebers, Björn Grübler, Fabien Chevalier, Silva Lerbs-Mache, Livia Merendino, Robert Blanvillain and Thomas Pfannschmidt* Laboratoire de Physiologie Cellulaire et Végétale, Institut de Biosciences et Biotechnologies de Grenoble, CNRS, CEA, INRA, Université Grenoble Alpes, Grenoble, France Plastids display a high morphological and functional diversity. -
Chapter 1 Definitions and Classifications for Fruit and Vegetables
Chapter 1 Definitions and classifications for fruit and vegetables In the broadest sense, the botani- Botanical and culinary cal term vegetable refers to any plant, definitions edible or not, including trees, bushes, vines and vascular plants, and Botanical definitions distinguishes plant material from ani- Broadly, the botanical term fruit refers mal material and from inorganic to the mature ovary of a plant, matter. There are two slightly different including its seeds, covering and botanical definitions for the term any closely connected tissue, without vegetable as it relates to food. any consideration of whether these According to one, a vegetable is a are edible. As related to food, the plant cultivated for its edible part(s); IT botanical term fruit refers to the edible M according to the other, a vegetable is part of a plant that consists of the the edible part(s) of a plant, such as seeds and surrounding tissues. This the stems and stalk (celery), root includes fleshy fruits (such as blue- (carrot), tuber (potato), bulb (onion), berries, cantaloupe, poach, pumpkin, leaves (spinach, lettuce), flower (globe tomato) and dry fruits, where the artichoke), fruit (apple, cucumber, ripened ovary wall becomes papery, pumpkin, strawberries, tomato) or leathery, or woody as with cereal seeds (beans, peas). The latter grains, pulses (mature beans and definition includes fruits as a subset of peas) and nuts. vegetables. Definition of fruit and vegetables applicable in epidemiological studies, Fruit and vegetables Edible plant foods excluding -
Isa Islamic School National Grade Nine Assessment Science Project 2015
ISA ISLAMIC SCHOOL NATIONAL GRADE NINE ASSESSMENT SCIENCE PROJECT 2015 Name: Nusaibah Hussain Subject: Biology Topic: Project One - Food Storage Organs Teacher: Naudyah Hoosein Date of Submission: 21st April, 2015 1 TABLE OF CONTENTS SCHEDULE OF ACTIVITIES 3 OBJECTIVES 4 MA TERlALS 5 PROCEDURE 6 RESULTS: 7 DISCUSSION 8 PICTURE CHART 11 CONCLUSION 13 REFERENCE 14 2 SCHEDULE OF ACTIVITIES 6) Schedule· Date Completed Outline of project: Collect materials 10-03-2015 ../ Sketch samples 13-03-2015 ../ Complete picture chart 23-03-2015 ../ Preparation of seed 12-03-2015 ../ containers Planting of samples 13-03-2015 ../ Discussion: Complete table 30-03-2015 ../ Answer questions 30-03-2015 ../ Conclusion 30-03-2015 ../ Submission 13-04-2015 ../ - ~y (0 3 OBJECTIVES 1. To classify food storage organs found in plants 2. To draw sketches of storage organs showing structural details used to identify class. 3. To compare growth of buds and young plants from each class of storage organs. 4 MATERIALS • Four (4) samples of storage organs: Onion, Ginger, Sugarcane and Potato. • Stationery: Notepads, Sketchpads, Pencil, eraser etc. • Potting soil • Four (4) Containers (1)1 • 30cm ruler \V • Water can • Knife 5 PROCEDURE 1. Samples offour storage organs were collected 2. The samples were sketched, labeled and described 3. A picture chart with written descriptions was prepared 4. From each sample, parts with buds were selected for planting 5. Containers were prepared with potting soil 6. The selected materials were planted 7. The date of planting .and date of sprouting of buds or young plants was recorded 8. Growth of the plants was measured and recorded every three days for twenty one days 9. -
Seed, Tuber, Bulb
Garden Education from the Salmon Center Seed, Tuber, and Bulb Exploration Activity Ages 9+ (can be adapted for younger age group if focus is primarily on observation) Overview: Most students know that plants grow from seeds, but did they know that they also grow from bulbs and tubers? The purpose of this activity is to investigate the differences and similarities between seeds, bulbs, and tubers through the use of observational skills. Students will also learn about the anatomy and function of seeds, bulbs, and tubers. Essential Questions: What do seeds, tubers, and bulbs have in common? What are their differences? Why does a seed, tuber, or bulb grow when planted, but if a leaf or stem is planted, it decomposes? Definitions: Tuber: A swollen, fleshy, usually underground part of a plant that provides food and bears buds from which a new plant arises (Examples include potatoes, artichokes, Jicama, and yams) Bulb: A short underground stem surrounded by fleshy leaves, which contain stored food for the embryo inside (Examples include garlic, tulips, daffodils, and lilies) Bud: Compact growth on a tuber and inside a bulb that develops into a leaf, flower, or shoot Seed: An embryonic plant enclosed in a protective outer layer Seed coat: The outer layer that protects the seed/embryo Embryo: The baby plant inside a seed. It has only two tiny leaves and the beginnings of a root Cotyledon: The part of the plant that provides food for the embryo Materials: ● Seeds of different shapes and sizes (If using beans, consider soaking beforehand to allow for easier dissection) ● A tuber (a potato is an easy one!) ● A bulb (try garlic or a flower bulb) ● Magnifying glass ● Dissection tools (tweezers, knife, fork, etc.) ● Seed, Tuber, and Bulb Anatomy Guide (included) Start the Activity: 1. -
Vegetative Vs. Reproductive Morphology
Today’s lecture: plant morphology Vegetative vs. reproductive morphology Vegetative morphology Growth, development, photosynthesis, support Not involved in sexual reproduction Reproductive morphology Sexual reproduction Vegetative morphology: seeds Seed = a dormant young plant in which development is arrested. Cotyledon (seed leaf) = leaf developed at the first node of the embryonic stem; present in the seed prior to germination. Vegetative morphology: roots Water and mineral uptake radicle primary roots stem secondary roots taproot fibrous roots adventitious roots Vegetative morphology: roots Modified roots Symbiosis/parasitism Food storage stem secondary roots Increase nutrient Allow dormancy adventitious roots availability Facilitate vegetative spread Vegetative morphology: stems plumule primary shoot Support, vertical elongation apical bud node internode leaf lateral (axillary) bud lateral shoot stipule Vegetative morphology: stems Vascular tissue = specialized cells transporting water and nutrients Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Secondary growth = vascular cell division, resulting in increased girth Vegetative morphology: stems Modified stems Asexual (vegetative) reproduction Stolon: above ground Rhizome: below ground Stems elongating laterally, producing adventitious roots and lateral shoots Vegetative morphology: stems Modified stems Food storage Bulb: leaves are storage organs Corm: stem is storage organ Stems not elongating, packed with carbohydrates Vegetative -
Rutgers Home Gardeners School: the Beauty of Bulbs
The Beauty of Bulbs Bruce Crawford March 17, 2018 Director, Rutgers Gardens Rutgersgardens.rutgers.edu In general, ‘bulbs’, or more properly, geophytes are easy plants to grow, requiring full sun, good drainage and moderately fertile soils. Geophytes are defined as any non-woody plant with an underground storage organ. These storage organs contain carbohydrates, nutrients and water and allow the plant to endure extended periods of time that are not suitable for plant growth. Types of Geophytes include: Bulb – Swollen leaves or leaf stalks, attached at the bottom to a modified stem called a basal plant. The outer layers are modified leaves called scales. Scales contain necessary foods to sustain the bulb during dormancy and early growth. The outermost scales become dry and form a papery covering or tunic. At the center are developed, albeit embryonic flowers, leaves and stem(s). Roots develop from the basal plate. Examples are Tulipia (Tulip), Narcissus (Daffodil), and Allium (Flowering Onion). Corm – A swollen stem that is modified for food storage. Eyes or growing points develop on top of the corm. Roots develop from a basal plate on the bottom of the corm, similar to bulbs. The dried bases of the leaves from an outer layer, also called the tunic. Examples include Crocus and Erythronium (Dog Tooth Violet). Tuber – Also a modified stem, but it lacks a basal plate and a tunic. Roots, shoots and leaves grow from eyes. Examples are Cyclamen, Eranthis (Winter Aconite) and Anemone (Wind Flower). Tuberous Roots – These enlarged storage elements resemble tubers but are swollen roots, not stems. During active growth, they produce a fibrous root system for water and nutrient absorption. -
Bioenergetics of Growth of Seeds, Fruits, and Storage Organs F
BIOENERGETICS OF GROWTH OF SEEDS, FRUITS, AND STORAGE _ORGANS F. W. T. Penning de Vries, H. H. VanLaar, and M. C. M. Chardon In Potential Productivity of Field Crops Under Different Environments. IRRI, Los Banos Philipines, 1983, pp. 37-60 The amount of substrate required for growth of seeds, fruits, and other storage organs is computed for 23 major crops. The compu tations are based on knowledge of the biochemical conversion processes that occur during growth, and the biochemical composi tion of the storage organs. The amount of substrate required for maintenance processes in these organs is estimated from literature data. The procedures in calculating the growth processes are explained and justified. The substrate requirement for synthesis of 1 kg of the total storage organ varies from 1.3 to 2.4 kg glucose, and from I .6 to 5.5 kg glucose when the substrate is expressed per kg of the storage organ principal component. Synthesis of 1 kg of the total storage organ requires 0.02-0.3 kg amides, or 0.02-0.4 kg ami des I kg of the principal component. Respiration during growth is also computed. There is good evidence th(lt there is no scope for improvement of the efficiency with which plants convert substrates into storage organs. Higher yields per unit of substrate can be achieved only by the production of energetically cheaper storage organs. Mainte nance of the storage organs during their development consumes 6 to 25% of the total substrate requirement for their growth. Research should further quantify this fraction and indicate the scope for breeding and selection of varieties with lower mainte nance requirements. -
Nutritious, Delicious, Wisconsin: Connecting Nutrition Education And
Nutritious, Delicious, WISCONSIN CONNECTING NUTRITION EDUCATION AND LOCAL FOODS Jill Camber Davidson, RD, CD Nutrition Education Consultant Team Nutrition Director Wisconsin Department of Public Instruction i For questions about this publication contact the Student Services/Prevention and Wellness Team Wisconsin Department of Public Instruction 125 South Webster Street Madison, WI 53707-7841 608-267-9120 or 800-441-4563 Website at http://dpi.wi.gov Bulletin No. 02010 Wisconsin 2011 In accordance with Federal law and the United States Department of Agriculture policy, this in- stitution is prohibited from discriminating on the basis of race, color, national origin, sex, age, or disability. To file a complaint of discrimination, write USDA, Director, Office of Civil Rights; Room 326-W, Whitten Building, 1400 Independence Avenue, SW, Washington, CD 20250-9410 or call (202)720-5964 (voice and TDD). USDA is an equal opportunity provider and employer. The Wisconsin Department of Public Instruction does not discriminate on the basis of sex, race, color, religion, creed, age, national origin, ancestry, pregnancy, marital status or parental status, sexual orientation, or disability. This project has been funded at least in part with Federal funds from the United States Depart- ment of Agriculture. The contents of this publication do not necessarily reflect the view or poli- cies of the United States Department of Agriculture, nor does mention of trade names, com- mercial products, or organizations imply endorsement by the United States Government. The graphic design of this publication was funded through Wisconsin Action for Healthy Kids. For more information see www.actionforhealthykids.org. ii Foreword Using locally grown foods in the classroom is a tasty way to inspire learning about Wisconsin’s history, culture, and people. -
Potato Seed Management: Seed Size And
PotatoPotato SeedSeed Management:Management: SeedSeed SizeSize andand AgeAge W.H. Bohl, P. Nolte, G.E. Kleinkopf, and M.K. Thornton Summary number of eyes on each seed tuber increases only slightly as the tuber size increases. This means that the larger the tuber, his bulletin addresses two aspects of the fewer eyes there are on a seed piece of the recom- potato seed management: seed piece size mended size. Varieties such as Shepody that have few eyes and seed piece age. The impact of seed size per tuber are especially prone to these seed piece conditions. T Large tubers also tend to produce seed pieces that are too and physiological age on seed performance and large. Seed pieces larger than 3 ounces may not readily flow guidelines for management will be discussed. through the planter, causing skips during planting. For Russet Burbank, an average of 2.5 to 3.5 stems per plant is considered optimum for maximum performance in Seed Tuber and Seed Piece Size commercial plantings. The number of eyes per seed piece Seed piece size affects seed performance, which, in turn, influences stem numbers per plant. Every eye on a seed piece is highly dependent on the size of the uncut tuber. For this or whole tuber has the potential to produce at least one reason, the proportion of large tubers must be considered stem, although there are physiological factors that may when selecting a seed lot. After selection and purchase, it is prevent the eyes from producing a stem. Seed pieces cut critical that the tubers are cut into an acceptable seed piece- from large tubers may not contain enough eyes to produce size range. -
A Guide to Growing Potatoes in Your Home Garden
Growing Potatoes A Guidein Your to HomeGrowing Garden Potatoes In Your Home Garden Kelly A. Zarka, Donna C. Kells, David S. Douches and C. Robin Buell Michigan State University Have you ever grown potatoes in Are potatoes nutritious? your garden? Growing potatoes is fun and not that hard! Yes potatoes are Home gardeners can grow unique varieties that nutritious! They are a are not sold in local supermarkets. Potatoes great source of vitamin come in all different shapes, sizes and colors. Did C, potassium, fiber and you know that there are purple, red and yellow protein, all with no fat! potatoes ? Potatoes make a great garden project Potatoes, along with for your children or grandchildren. many other vegetables, can be prepared as part of a healthy diet. Luckily, potatoes are versatile and are easy to prepare. Whether baked, boiled, roasted or fried they are a delicious addition to any meal. Figure 2. Source: U.S. Food and Drug Administration Should you eat the skin? Yes! We recommend it! The skin of the potato contains the majority of the potato's fiber, and many of the nutrients are located close to the skin. Wash the potato thoroughly, cut away green discoloration and/or sprouts, and enjoy your potato with the skin on. Figure 1. Children love helping in the garden and getting dirty is an added bonus. Where did potatoes come from? Potatoes are important in our world! Potatoes are native to the Potatoes are the number one non‐grain food Andean region of South crop in the world. In the United States, over 1 America. -
Tubers and Other Healthy Starches Tubers Are a Family of Potato-Like Root Vegetables That Grow Underground
Tubers and Other Healthy Starches Tubers are a family of potato-like root vegetables that grow underground. In African heritage cooking, traditional meals feature a variety of tubers that are baked, boiled, or mashed and served with vegetables, stews, and sauces. They are a source of healthy carbohydrates and energy for our bodies. They are also a wonderful source of fiber, vitamins, and minerals. In Latin America, simply cooked and dressed tubers are an important part of the cuisine. Boiled, mashed, or turned into flour for bread, these hearty vegetables make a great compliment to any traditional protein. The following are some Latin American and African tubers available in the United States. If you can’t find them in your grocery store, they can be found in Latin, Caribbean, and African markets. Tubers Cassava is a staple tuber of African heritage, and is eaten in Latin America, West Africa, and the Caribbean, where it’s also known as manioc, mandioca, or yuca. Cassava is usually peeled and boiled like potatoes. It is eaten as a main vegetable or stew ingredient and is an excellent source of vitamin C and manganese. Potatoes are a very popular crop for South Americans, particularly in the Andes where almost 4,000 different types of potatoes are grown. Like in America, potatoes are often mashed, boiled, fried, and added to stews in Latin American countries and often covered in sauces such as a Colombian Tomato Cheese Sauce. Chuño are a specialty of the Andes where potatoes are freeze dried through exposure to frost and sun on the mountaintops.