C-STAT® Static Analysis Guide
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Language Subsetting in an Industrial Context: a Comparison of MISRA C 1998 and MISRA C 2004
Language subsetting in an industrial context: a comparison of MISRA C 1998 and MISRA C 2004 Les Hatton CISM, University of Kingston∗ November 20, 2005 Abstract The MISRA C standard [7] first appeared in 1998 with the objective of providing a set of guidelines to restrict features in the ISO C language of known undefined or otherwise dangerous behaviour. The standard was assembled by representatives of a number of companies in the automobile sector in response to the rapidly growing use of C in electronic embedded systems in automobiles. The standard attempts to build on the earlier work of [6], [3] and others. Due to various perceived deficiencies, notably considerable ambiguity in the rule definitions, a revision was planned and eventually appeared in 2004. This paper measures how well the two stan- dards compare on the same population of software and also determines how well the 2004 version achieved its stated goals. Given its increasing influence, the results raise important concerns. Keywords: safer subsets, MISRA C, embedded control systems 1 Overview Pragmatic safer subsetting of languages to remove dependence on poorly defined features is finally becoming a mainstream activity with the recent recommen- dation to form a high-integrity study group under the auspices of the ISO, [8] with the intention of producing sets of rules to restrict features with undefined or otherwise dangerous behaviour in programming languages in common use. It frequently comes as a surprise to developers that significant parts of a pro- gramming language can fall into this category. In practice, all standardised programming languages contain problematic features for a variety of reasons which include the inability of the standardising committee to agree on the be- haviour of a particular feature, the use of unintentionally ambiguous language in the standards document itself, omitting to say anything at all and so on. -
Truffle/C Interpreter
JOHANNES KEPLER UNIVERSITAT¨ LINZ JKU Faculty of Engineering and Natural Sciences Truffle/C Interpreter Master’s Thesis submitted in partial fulfillment of the requirements for the academic degree Diplom-Ingenieur in the Master’s Program Computer Science Submitted by Manuel Rigger, BSc. At the Institut f¨urSystemsoftware Advisor o.Univ.-Prof. Dipl.-Ing. Dr.Dr.h.c. Hanspeter M¨ossenb¨ock Co-advisor Dipl.-Ing. Lukas Stadler Dipl.-Ing. Dr. Thomas W¨urthinger Xiamen, April 2014 Contents I Contents 1 Introduction 3 1.1 Motivation . .3 1.2 Goals and Scope . .4 1.3 From C to Java . .4 1.4 Structure of the Thesis . .6 2 State of the Art 9 2.1 Graal . .9 2.2 Truffle . 10 2.2.1 Rewriting and Specialization . 10 2.2.2 Truffle DSL . 11 2.2.3 Control Flow . 12 2.2.4 Profiling and Inlining . 12 2.2.5 Partial Evaluation and Compilation . 12 2.3 Clang . 13 3 Architecture 14 3.1 From Clang to Java . 15 3.2 Node Construction . 16 3.3 Runtime . 16 4 The Truffle/C File 17 4.1 Truffle/C File Format Goals . 17 4.2 Truffle/C File Format 1 . 19 4.2.1 Constant Pool . 19 4.2.2 Function Table . 20 4.2.3 Functions and Attributes . 20 4.3 Truffle/C File Considerations and Comparison . 21 4.3.1 Java Class File and Truffle/C File . 21 4.3.2 ELF and Truffle/C File . 22 4.4 Clang Modification Truffle/C File . 23 Contents II 5 Truffle/C Data Types 25 5.1 Data Type Hierarchy: Boxing, Upcasts and Downcasts . -
Contents of Lecture 4: Declarations
Contents of Lecture 4: Declarations Implicint int Storage class specifiers Type specifiers Enumeration specifiers Type qualifiers Jonas Skeppstedt ([email protected]) Lecture 4 2014 1 / 39 Now obsolete: implicit int Sometimes you can see code such as: main() // invalid { } or even: #include <stdio.h> count; // invalid float x; In earlier versions of C one could skip the type, which then became int, and is called implicit int. Calling a function before its declaration also set its return type to int. It’s invalid C so don’t use it — but compilers often allow it... Jonas Skeppstedt ([email protected]) Lecture 4 2014 2 / 39 Storage class specifiers Last lecture we discussed the different kinds of storage durations. Now we will see how to specify some of them explicitly. Dynamic (important) and temporary (less important) storage duration are not specified by the programmer using any particular syntax but defined by the standard. The storage class specifiers are: typedef extern static _Thread_local auto register Of these typedef does not refer to any kind of storage duration — instead it introduces another name of a type and not a new type: typedef int num_t; int* p; num_t* q; p = q; // valid since p and q have the same type. Jonas Skeppstedt ([email protected]) Lecture 4 2014 3 / 39 Storage class specifiers: static at file scope static int count; /∗ initialized to zero. ∗/ static void init(void) { /∗ Do some initializations ... ∗/ } Used to make an identifier invisible outside the source file With static at file scope, there is no risk of name conflicts with other files. -
ACCU 2015 “New” Features in C
"New" Features in C ACCU 2015 “New” Features in C Dan Saks Saks & Associates www.dansaks.com 1 Abstract The first international standard for the C programming language was C90. Since then, two newer standards have been published, C99 and C11. C99 introduced a significant number of new features. C11 introduced a few more, some of which have been available in compilers for some time. Curiously, many of these added features don’t seem to have caught on. Many C programmers still program in C90. This session explains many of these “new” features, including declarations in for-statements, typedef redefinitions, inline functions, complex arithmetic, extended integer types, variable- length arrays, flexible array members, compound literals, designated initializers, restricted pointers, type-qualified array parameters, anonymous structures and unions, alignment support, non-returning functions, and static assertions. 2 Copyright © 2015 by Daniel Saks 1 "New" Features in C About Dan Saks Dan Saks is the president of Saks & Associates, which offers training and consulting in C and C++ and their use in developing embedded systems. Dan has written columns for numerous print publications including The C/C++ Users Journal , The C++ Report , Software Development , and Embedded Systems Design . He currently writes the online “Programming Pointers” column for embedded.com . With Thomas Plum, he wrote C++ Programming Guidelines , which won a 1992 Computer Language Magazine Productivity Award . He has also been a Microsoft MVP. Dan has taught thousands of programmers around the world. He has presented at conferences such as Software Development and Embedded Systems , and served on the advisory boards for those conferences. -
XL C/C++: Language Reference About This Document
IBM XL C/C++ for Linux, V16.1.1 IBM Language Reference Version 16.1.1 SC27-8045-01 IBM XL C/C++ for Linux, V16.1.1 IBM Language Reference Version 16.1.1 SC27-8045-01 Note Before using this information and the product it supports, read the information in “Notices” on page 63. First edition This edition applies to IBM XL C/C++ for Linux, V16.1.1 (Program 5765-J13, 5725-C73) and to all subsequent releases and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the level of the product. © Copyright IBM Corporation 1998, 2018. US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract with IBM Corp. Contents About this document ......... v Chapter 4. IBM extension features ... 11 Who should read this document........ v IBM extension features for both C and C++.... 11 How to use this document.......... v General IBM extensions ......... 11 How this document is organized ....... v Extensions for GNU C compatibility ..... 15 Conventions .............. v Extensions for vector processing support ... 47 Related information ........... viii IBM extension features for C only ....... 56 Available help information ........ ix Extensions for GNU C compatibility ..... 56 Standards and specifications ........ x Extensions for vector processing support ... 58 Technical support ............ xi IBM extension features for C++ only ...... 59 How to send your comments ........ xi Extensions for C99 compatibility ...... 59 Extensions for C11 compatibility ...... 59 Chapter 1. Standards and specifications 1 Extensions for GNU C++ compatibility .... 60 Chapter 2. Language levels and Notices .............. 63 language extensions ......... 3 Trademarks ............. -
Qa·C Release Notes
RELEASE NOTES QA·C 9.4.1 February, 2018 Documentation Version 1.3 IMPORTANT NOTICE DISCLAIMER OF WARRANTY This document should only be used in conjunction with QA·C 9.4.1. Programming Research Ltd. have taken due care in preparing this document which it has endeavored to ensure is accurate at the time of printing. However, no liability can be accepted for errors or omissions; nor should the document be considered as an expressed or implied warranty of accuracy or completeness, fitness for a particular purpose, or that the products described perform as specified within. COPYRIGHT NOTICE All rights reserved. No part of this document may be reproduced, stored in a retrieval system of any nature, or transmitted in any form or by any means, including photocopying and recording, without the prior written permission of Programming Research Ltd., the copyright owner. If any unauthorized acts are carried out in relation to this copyrighted work, a civil claim for damages may be made and/or a criminal prosecution may result. Copyright ©Programming Research Ltd. 2018 TRADEMARKS PRQA, the PRQA logo, QA·C, QA·C++ and High Integrity C++ (HIC++) are trademarks of Programming Research Ltd. "MISRA", "MISRA C" and "MISRA C++" are registered trademarks of HORIBA MIRA Lim- ited, held on behalf of the MISRA Consortium. "AUTOSAR" is a registered trademark of AUTOSAR GBR, held on behalf of the AU- TOSAR Development Partnership. Yices is a registered trademark of SRI International. Windows is a registered trademark of Microsoft Corporation. RELEASE NOTES : QA·C 9.4.1 Page i Programming Research Ltd. -
MISRA-C Subset of the C Language for Critical Systems SAFETY-CRITICAL SYSTEMS
MISRA-C Subset of the C language for critical systems SAFETY-CRITICAL SYSTEMS System is safety-critical if people might die due to software bugs Examples Automobile stability / traction control Medical automation Many military applications You develop safety-critical software differently from non-critical software MISRA-C MISRA – Motor Industry Software Reliability Association Their bright idea: Can’t avoid C But can force developers to avoid features of C that are known to be problematic Some language flaws Some legitimate features that happen to be bad for embedded software Most of MISRA-C is just good common sense for any C programmer TERMINOLOGY Execution error: Something illegal done by a program Out-of-bounds array reference Divide by zero Uninitialized variable usage Trapped execution error: Immediately results in exception or program termination Untrapped execution error: Program keeps running But may fail in an unexpected way later on E.g., due to corrupted RAM In C, operations with undefined behavior are not trapped SAFETY A safe language does not allow untrapped execution errors A statically safe language catches all execution errors at compile time Useful languages can’t be completely statically safe Java is dynamically safe C and C++ are very unsafe MISRA C is not safe either However, adherence to MISRA-C can largely be statically checked This eliminates or reduces the likelihood of some kinds of untrapped execution errors MISRA-C RULE 1.2 No reliance shall be placed on undefined or unspecified behavior. Lots of things in C have undefined behavior Divide by zero Out-of-bounds memory access Signed integer overflow Lots of things in C have implementation-defined and unspecified behavior printf (“a”) + printf (“b”); Both of these hard to detect at compile time, in general Implementation-defined behavior is fine in MISRA-C Why? MISRA-C RULE 5.2 Identifiers in an inner scope shall not use the same name as an identifier in an outer scope, and therefore hide that identifier. -
Crosscore Embedded Studio 2.2.0 C/C++ Compiler Manual for SHARC
CrossCore Embedded Studio 2.2.0 C/C++ Compiler Manual for SHARC Processors Revision 1.5, February 2016 Part Number 82-100117-01 Analog Devices, Inc. One Technology Way Norwood, MA 02062-9106 Copyright Information ©2016 Analog Devices, Inc., ALL RIGHTS RESERVED. This document may not be reproduced in any form without prior, express written consent from Analog Devices, Inc. Printed in the USA. Disclaimer Analog Devices, Inc. reserves the right to change this product without prior notice. Information furnished by Ana- log Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under the patent rights of Analog Devices, Inc. Trademark and Service Mark Notice The Analog Devices logo, Blackfin, CrossCore, EngineerZone, EZ-Board, EZ-KIT, EZ-KIT Lite, EZ-Extender, SHARC, and VisualDSP++ are registered trademarks of Analog Devices, Inc. Blackfin+, SHARC+, and EZ-KIT Mini are trademarks of Analog Devices, Inc. All other brand and product names are trademarks or service marks of their respective owners. CrossCore Embedded Studio 2.2.0 i Contents Preface Purpose of This Manual................................................................................................................................. 1±1 Intended Audience........................................................................................................................................ -
MISRA-C:2004 Guidelines for the Use of the C Language in Critical Systems
MISRA-C:2004 Guidelines for the use of the C language in critical systems October 2004 Licensed to: Tyler Doering. 10 Sep 2008. Copy 1 of 1 First published October 2004 by MIRA Limited Watling Street Nuneaton Warwickshire CV10 0TU UK www.misra-c.com Edition 2 reprinted July 2008 incorporating Technical Corrigendum 1 © MIRA Limited, 2004, 2008. “MISRA”, “MISRA C” and the triangle logo are registered trademarks of MIRA Limited, held on behalf of the MISRA Consortium. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical or photocopying, recording or otherwise without the prior written permission of the Publisher. ISBN 978-0-9524156-2-6 paperback ISBN 978-0-9524156-4-0 PDF Printed by Hobbs the Printers Ltd British Library Cataloguing in Publication Data. A catalogue record for this book is available from the British Library This copy of MISRA-C:2004 - Guidelines for the use of the C language in critical systems is issued to Tyler Doering. The file must not be altered in any way. No permission is given for distribution of this file. This includes but is not exclusively limited to making the copy available to others by email, placing it on a server for access by intra- or inter-net, or by printing and distributing hardcopies. Any such use constitutes an infringement of copyright. MISRA gives no guarantees about the accuracy of the information contained in this PDF version of the Guidelines. The published paper document should be taken as authoritative. -
Evaluation of Open Source Operating Systems for Safety-Critical Applications Master’S Thesis in Embedded Electronic System Design
Evaluation of open source operating systems for safety-critical applications Master’s thesis in Embedded Electronic System Design Petter Sainio Berntsson Department of Computer Science and Engineering CHALMERS UNIVERSITY OF TECHNOLOGY UNIVERSITY OF GOTHENBURG Gothenburg, Sweden 2017 MASTER’S THESIS 2017 Evaluation of open source operating systems for Safety-critical applications Petter Sainio Berntsson Department of Computer Science and Engineering Chalmers University of Technology University of Gothenburg Gothenburg, Sweden 2017 Evaluation of open source operating systems for safety-critical applications Petter Sainio Berntsson © Petter Sainio Berntsson, 2017 Examiner: Per Larsson-Edefors Chalmers University of Technology Department of Computer Science and Engineering Academic supervisor: Jan Jonsson Chalmers University of Technology Department of Computer Science and Engineering Industrial supervisors: Lars Strandén RISE Research Institutes of Sweden Dependable Systems Fredrik Warg RISE Research Institutes of Sweden Dependable Systems Master’s Thesis 2017 Department of Computer Science and Engineering Chalmers University of Technology University of Gothenburg SE-412 96 Gothenburg Telephone +46(0) 31 772 1000 Abstract Today many embedded applications will have to handle multitasking with real-time time constraints and the solution for handling multitasking is to use a real-time operating system for scheduling and managing the real-time tasks. There are many different open source real-time operating systems available and the use of open source software for safety-critical applications is considered highly interesting by industries such as medical, aerospace and automotive as it enables a shorter time to market and lower development costs. If one would like to use open source software in a safety-critical context one would have to provide evidence that the software being used fulfills the requirement put forth by the industry specific standard for functional safety, such as the ISO 26262 standard for the automotive industry. -
MISRA C 2012 Mapping to Codesonar®
MISRA C 2012 Mapping to CodeSonar® Relationship CodeSonar Class Category ID Category Name CodeSonar Class Mnemonic Type (category Name to class) Language extensions should Misra2012:1.2 LANG.COMM.CPP C++ Comment in C closely mapped not be used Language extensions should Misra2012:1.2 LANG.EXT.GNU GNU Extension closely mapped not be used Language extensions should Misra2012:1.2 LANG.EXT.TYPEOF GNU Typeof closely mapped not be used Language extensions should Misra2012:1.2 LANG.EXT.MS Microsoft Extension closely mapped not be used A project shall not contain Misra2012:2.1 LANG.STRUCT.UC Unreachable Call closely mapped unreachable code A project shall not contain Unreachable Misra2012:2.1 LANG.STRUCT.UC closely mapped unreachable code Computation A project shall not contain Unreachable Misra2012:2.1 LANG.STRUCT.UC closely mapped unreachable code Conditional A project shall not contain Unreachable Control Misra2012:2.1 LANG.STRUCT.UC closely mapped unreachable code Flow A project shall not contain Unreachable Data Misra2012:2.1 LANG.STRUCT.UC closely mapped unreachable code Flow Function Call Has Misra2012:2.2 There shall be no dead code MISC.NOEFFECT closely mapped No Effect Misra2012:2.2 There shall be no dead code LANG.STRUCT.UUVAL Unused Value closely mapped Misra2012:2.2 There shall be no dead code LANG.STRUCT.UA Useless Assignment closely mapped A project should not contain Misra2012:2.3 LANG.STRUCT.UUTYPE Unused Type closely mapped unused type declarations A project should not contain Misra2012:2.4 LANG.STRUCT.UUTAG Unused Tag closely -
Vbcc Compiler System
vbcc compiler system Volker Barthelmann i Table of Contents 1 General :::::::::::::::::::::::::::::::::::::::::: 1 1.1 Introduction ::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.2 Legal :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 1.3 Installation :::::::::::::::::::::::::::::::::::::::::::::::::::: 2 1.3.1 Installing for Unix::::::::::::::::::::::::::::::::::::::::: 3 1.3.2 Installing for DOS/Windows::::::::::::::::::::::::::::::: 3 1.3.3 Installing for AmigaOS :::::::::::::::::::::::::::::::::::: 3 1.4 Tutorial :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 5 2 The Frontend ::::::::::::::::::::::::::::::::::: 7 2.1 Usage :::::::::::::::::::::::::::::::::::::::::::::::::::::::::: 7 2.2 Configuration :::::::::::::::::::::::::::::::::::::::::::::::::: 8 3 The Compiler :::::::::::::::::::::::::::::::::: 11 3.1 General Compiler Options::::::::::::::::::::::::::::::::::::: 11 3.2 Errors and Warnings :::::::::::::::::::::::::::::::::::::::::: 15 3.3 Data Types ::::::::::::::::::::::::::::::::::::::::::::::::::: 15 3.4 Optimizations::::::::::::::::::::::::::::::::::::::::::::::::: 16 3.4.1 Register Allocation ::::::::::::::::::::::::::::::::::::::: 18 3.4.2 Flow Optimizations :::::::::::::::::::::::::::::::::::::: 18 3.4.3 Common Subexpression Elimination :::::::::::::::::::::: 19 3.4.4 Copy Propagation :::::::::::::::::::::::::::::::::::::::: 20 3.4.5 Constant Propagation :::::::::::::::::::::::::::::::::::: 20 3.4.6 Dead Code Elimination::::::::::::::::::::::::::::::::::: 21 3.4.7 Loop-Invariant Code Motion