Physics the Google Way

Total Page:16

File Type:pdf, Size:1020Kb

Physics the Google Way Physics the Google Way David W. Ward, Massachusetts Institute of Technology, Cambridge, MA “Never memorize something that you can look up.”—Albert Einstein of the page next to the calculator icon, followed Are we smarter now than Socrates was in his by web page results for the Google query. The time? Society as a whole certainly enjoys a results relevant to this article will always be higher degree of education, but humans as a those at the top of the page adjacent to the species probably don’t get intrinsically smarter calculator icon; only these can be used in with time. Our knowledge base, however, equations. Google has most of the fundamental constants built in, many of which are listed in continues to grow at an unprecedented rate, so 2 how then do we keep up? The printing press was table 1. one of the earliest technological advances that To illustrate the use of the constants in an expanded our memory and made possible our equation, consider the fine structure constant, in present intellectual capacity. We are now faced which the fundamental constants of quantum with a new technological advance of the same mechanics, electricity and magnetism, and magnitude—the internet—but how do we use it geometry are contained. We will actually google effectively? A new tool is available on Google one over the fine structure constant, as this has a (http://www.google.com) that allows a user not well know simple value. Google “(4 * pi * only to numerically evaluate equations, but to electric constant * hbar * c) / automatically perform unit analysis and (elementary charge^2) =” to find that conversion as well, with most of the it is equal to “137.035984”. We could have fundamental physical constants built in. just googled “1 / fine-structure constant” to find the same answer. Note, we were able to confirm that our calculation not The Fundamental Constants only matches the acceptable numerical value of the fine structure constant, but is unitless as well. To get a feel for how the Google calculator works, you can start by googling1 “2+2=”.You Unit Conversions can click on “More about calculator,” The previous example illustrates the utility of located directly below the result, to learn the the Google calculator in unit checking, a task basics of Google equation formatting and there which otherwise is only adequately described by you will find a link to more complete the word tedium. Although SI units have solid instructions on how to format equations for footing as a scientific standard, it is sometimes Google, e.g. “x^n” means raise x to the nth useful to employ others, or variants of SI units. power, “sqrt(x)” means take the square root This is not only because many classic texts and of x, etc. Return to the search bar and google some individual fields in physics employ units “G”, as illustrated in figure 1. Google returns other than SI, but mainly because these are not “gravitational constant = necessarily the units in which we understand the world. In the United States, a comfortable room 6.67300 × 10-11 m3 kg-1 s-2”at the top as our weight there would be “2,797.844 pounds force.” Try it for Mars or any other planet in the solar system by using “mass of planet name” and “radius of planet name” in Newton’s law of gravity. Einstein’s Car Let’s suppose you built a crazy car that converted mass into energy directly. So you put in a pound of matter, perhaps old cereal boxes, and the engine of this car converts it directly into Fig. 1. Type equations directly into the energy through Einstein’s famous energy/matter search bar, and if applicable, Google relation3, E=mc2—maybe we have to put in an outputs the result adjacent to a calculator equal dose of anti-matter to get 100% icon. Click on “More about calculator” to conversion, but we’ll assume that somehow it learn Google formatting of equations. does. Let’s suppose that it is capable of converting one pound per year under constant is one that is cooled to around 70 degrees operation. How many horsepower does this Fahrenheit, not 21.1 degrees Celsius or 294.3 engine have? Google “convert 1 pound* Kelvin. c^2 / year to horsepower” and it returns “1,732,400.85 horsepower.” It Illustrative Examples makes a Ferrari look like a go-cart. To further illustrate the advanced features of Internal Temperature of the Sun the Google calculator, we will consider several Inside the sun is a fusion engine creating heat example calculations, exploiting the Google and pressure that push everything outward from features to tailor the form of the answer we the center, but there is also gravity pulling obtain. everything in towards the center. Since the sun does not appear to be expanding or compressing, How much do I weigh on the moon?—the sun? the pressure from the heat engine at the center Space travel is fun, and though the internet must be equal to the gravitational pressure. If we won’t allow us to do it from the comfort of our assume that the sun is composed entirely of homes, we can get a sense of what it would be hydrogen, i.e. protons, and that the hydrogen like to visit another planet, without the harmful atoms behave like an ideal gas within the side effects of toxic atmospheres and unbearable volume of the sun, then the temperature due to temperatures, see figure 2. Since our weight, not this internal pressure is given by the familiar our mass, is just the gravitational attraction we ideal gas law, PV=nKT, where P is the internal experience to the local gravity, we can use pressure, V is the volume of the sun, n is the Newton’s law of gravity to determine what we number of hydrogen atoms (protons) that make would weigh on other planets. If on earth our up the sun, K is Boltzmann’s constant relating weight was 100 pounds of force, which is the heat energy to temperature, and T is the number our bathroom scale indicates, then our temperature of the sun, which is the quantity we mass would be 100 pounds. If we took our scale seek. The pressure from the sun’s gravity is just to the moon then to find out what the scale the force of the sun’s gravity on itself divided by would read there, google “convert (G*mass the surface area of the sun. Plugging all of this of the moon*100 pounds/(radius into the ideal gas law and solving for T, we can of the moon)^2) to pounds force” google the resulting equation to find our to find the answer “16.5912317 pounds estimate of the Sun’s temperature at its center: force.” Replace the moon with the sun “(G * proton mass * mass of the to find that we would need to take a better scale sun) / (Boltzmann constant * radius of the sun) = long Name Shorthand 23,118,268.8 Kelvin, or ~2.3x107 K.” atomic mass units amu or u Compared to the accepted value of 1.5x107 K, Astronomical Unit au this is not a bad estimate considering the Avogadro’s number N_A approximations used. By the way, how did I Bolzmann constant k know to use the Boltzmann rather the Rydberg electric constant, permittivity of free epsilon_0 constant in this problem? I originally used the space Rydberg constant, but got an answer in electron mass m_e electron volt eV Kelvins/mol, while I expected an answer in elementary charge Kelvins. Faraday constant fine-structure constant Electrostatic Versus Gravitational Force gravitational constant G Physics as we know it was born with Sir Isaac magnetic constant, permeability of mu_0 Newton’s Mathematical Principles of Natural free space 4 Philosophy or simply the Principia in 1687. magnetic flux quantum The seminal equation from this work is the law mass of the moon m_moon of gravitational attraction, which contains the mass of the sun m_sun gravitational constant, G. To illustrate the use of mass of [planet name] m_mercury,… the gravitational law, google “(G*mass of molar gas constant R the earth*mass of the sun/(1 Planck’s constant h and hbar astronomical unit)^2)” to find that proton mass m_p the force binding the earth to the sun is radius of the moon r_moon radius of the sun r_sun “3.54296305 × 1022 Newtons.” Using 2 radius of [planet name] r_mercury,… the equation for centripetal acceleration, a=v /r, Rydberg constant the earth’s rotational speed can be determined. speed of light c To do so google “sqrt(G*mass of the speed of sound (note: in air at sea sun/(1 astronomical unit))” to learn level) that the earth is hurling through space at the rate Stefan Boltzmann constant “29,785.5982 m/s.” One hundred years after the publication of the Principia, Charles Augustin Coulomb published, Table 1. Guide to physical constants in his second memoir on electricity and available on Google calculator. Entries magnetism, the law that bares his name; are sometimes case sensitive. Coulomb’s law is analogous to Newton’s law of gravitation, with the masses replaced by charge, Had we simply asked for the electrical force and the gravitational constant replaced by the between them instead of the ratio we would find -08 Coulomb constant which is now known to be that the force is equal to “1.85205315×10 1/4πε , where ε is the permittivity of free space, pounds force,” using the Bohr radius as 0 0 5 or electric constant.
Recommended publications
  • Coulomb's Force
    COULOMB’S FORCE LAW Two point charges Multiple point charges Attractive Repulsive - - + + + The force exerted by one point charge on another acts along the line joining the charges. It varies inversely as the square of the distance separating the charges and is proportional to the product of the charges. The force is repulsive if the charges have the same sign and attractive if the charges have opposite signs. q1 Two point charges q1 and q2 q2 [F]-force; Newtons {N} [q]-charge; Coulomb {C} origin [r]-distance; meters {m} [ε]-permittivity; Farad/meter {F/m} Property of the medium COULOMB FORCE UNIT VECTOR Permittivity is a property of the medium. Also known as the dielectric constant. Permittivity of free space Coulomb’s constant Permittivity of a medium Relative permittivity For air FORCE IN MEDIUM SMALLER THAN FORCE IN VACUUM Insert oil drop Viewing microscope Eye Metal plates Millikan oil drop experiment Charging by contact Example (Question): A negative point charge of 1µC is situated in air at the origin of a rectangular coordinate system. A second negative point charge of 100µC is situated on the positive x axis at the distance of 500 mm from the origin. What is the force on the second charge? Example (Solution): A negative point charge of 1µC is situated in air at the origin of a rectangular coordinate system. A second negative point charge of 100µC is situated on the positive x axis at the distance of 500 mm from the origin. What is the force on the second charge? Y q1 = -1 µC origin X q2= -100 µC Example (Solution): Y q1 = -1 µC origin X q2= -100 µC END Multiple point charges It has been confirmed experimentally that when several charges are present, each exerts a force given by on every other charge.
    [Show full text]
  • S.I. and Cgs Units
    Some Notes on SI vs. cgs Units by Jason Harlow Last updated Feb. 8, 2011 by Jason Harlow. Introduction Within “The Metric System”, there are actually two separate self-consistent systems. One is the Systme International or SI system, which uses Metres, Kilograms and Seconds for length, mass and time. For this reason it is sometimes called the MKS system. The other system uses centimetres, grams and seconds for length, mass and time. It is most often called the cgs system, and sometimes it is called the Gaussian system or the electrostatic system. Each system has its own set of derived units for force, energy, electric current, etc. Surprisingly, there are important differences in the basic equations of electrodynamics depending on which system you are using! Important textbooks such as Classical Electrodynamics 3e by J.D. Jackson ©1998 by Wiley and Classical Electrodynamics 2e by Hans C. Ohanian ©2006 by Jones & Bartlett use the cgs system in all their presentation and derivations of basic electric and magnetic equations. I think many theorists prefer this system because the equations look “cleaner”. Introduction to Electrodynamics 3e by David J. Griffiths ©1999 by Benjamin Cummings uses the SI system. Here are some examples of units you may encounter, the relevant facts about them, and how they relate to the SI and cgs systems: Force The SI unit for force comes from Newton’s 2nd law, F = ma, and is the Newton or N. 1 N = 1 kg·m/s2. The cgs unit for force comes from the same equation and is called the dyne, or dyn.
    [Show full text]
  • Communications-Mathematics and Applied Mathematics/Download/8110
    A Mathematician's Journey to the Edge of the Universe "The only true wisdom is in knowing you know nothing." ― Socrates Manjunath.R #16/1, 8th Main Road, Shivanagar, Rajajinagar, Bangalore560010, Karnataka, India *Corresponding Author Email: [email protected] *Website: http://www.myw3schools.com/ A Mathematician's Journey to the Edge of the Universe What’s the Ultimate Question? Since the dawn of the history of science from Copernicus (who took the details of Ptolemy, and found a way to look at the same construction from a slightly different perspective and discover that the Earth is not the center of the universe) and Galileo to the present, we (a hoard of talking monkeys who's consciousness is from a collection of connected neurons − hammering away on typewriters and by pure chance eventually ranging the values for the (fundamental) numbers that would allow the development of any form of intelligent life) have gazed at the stars and attempted to chart the heavens and still discovering the fundamental laws of nature often get asked: What is Dark Matter? ... What is Dark Energy? ... What Came Before the Big Bang? ... What's Inside a Black Hole? ... Will the universe continue expanding? Will it just stop or even begin to contract? Are We Alone? Beginning at Stonehenge and ending with the current crisis in String Theory, the story of this eternal question to uncover the mysteries of the universe describes a narrative that includes some of the greatest discoveries of all time and leading personalities, including Aristotle, Johannes Kepler, and Isaac Newton, and the rise to the modern era of Einstein, Eddington, and Hawking.
    [Show full text]
  • Fundamental Physical Constants: Explained and Derived by Energy Wave Equations
    Fundamental Physical Constants: Explained and Derived by Energy Wave Equations Jeff Yee [email protected] February 2, 2020 Summary There are many fundamental physical constants that appear in equations today, such as Planck’s constant (h) to calculate photon energy, or Coulomb’s constant (k) to calculate the electromagnetic force, or the gravitational constant (G) when using Newton’s law for calculating gravitational force. They appear in equations without explanations. They are simply numbers that have been given letters to make an equation work. This paper has derived and explained 23 different constants used in physics today, including the aforementioned Planck’s constant, Coulomb’s constant and gravitational constant, using only five physical constants in two different formats: 1) classical constants used in mainstream physics and 2) new wave constants. In wave format, the constants are: wavelength, wave amplitude, wave speed, density and a dimensionless property of the electron. In classical format, the constants are four of the Planck constants and the electron’s classical radius. All 23 fundamental physical constants presented in this paper can be derived from one of these five wave constants (20 in the case of the classical constants). In both classical and wave formats, the property of particle charge is expressed as wave amplitude, measured as a distance instead of charge (Coulombs). When changing the Planck charge (qP) and elementary charge (ee) to an SI unit of meters, existing classical forms of the fundamental physical constants can be reduced to be derived from five constants. This simplification also leads to more insight into the true meaning of the fundamental constants and is therefore shown in this paper.
    [Show full text]
  • Hydrogen Atom – Lyman Series Rydberg’S Formula Hydrogen 91.19Nm Energy Λ = Levels 1 1 0Ev − M2 N2
    Hydrogen atom – Lyman Series Rydberg’s formula Hydrogen 91.19nm energy λ = levels 1 1 0eV − m2 n2 Predicts λ of nàm transition: Can Rydberg’s formula tell us what ground n (n>m) state energy is? m (m=1,2,3..) -?? eV m=1 Balmer-Rydberg formula Hydrogen energy levels 91.19nm 0eV λ = 1 1 − m2 n2 Look at energy for a transition between n=infinity and m=1 1 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc − E final = E 13.6eV 91.19nm 1 = − Hydrogen energy levels A more general case: What is 0eV the energy of each level (‘m’) in hydrogen? … 0 ≡ 0eV hc hc ⎛ 1 1 ⎞ Einitial − E final = = ⎜ 2 − 2 ⎟ λ 91.19nm ⎝ m n ⎠ -?? eV hc 1 1 − E = E = −13.6eV final 91.19nm m2 m m2 Balmer/Rydberg had a mathematical formula to describe hydrogen spectrum, but no mechanism for why it worked! Why does it work? Hydrogen energy levels 410.3 486.1Balmer’s formula656.3 nm 434.0 91.19nm λ = 1 1 − m2 n2 where m=1,2,3 and where n = m+1, m+2 The Balmer/Rydberg formula correctly describes the hydrogen spectrum! Is it a good model? The Balmer/Rydberg formula is a mathematical representation of an empirical observation. It doesn’t really explain anything. How can we explain (not only calculate) the energy levels in the hydrogen atom? Next step: A semi-classical explanation of the atomic spectra (Bohr model) Rutherford shot alpha particles at atoms and he figured out that a tiny, positive, hard core is surrounded by negative charge very far away from the core.
    [Show full text]
  • Where Do We See Electricity and Magnetism? a Brief Walk Through History
    WHERE DO WE SEE ELECTRICITY AND MAGNETISM? A BRIEF WALK THROUGH HISTORY 600 BC: Greeks called amber “electron” as it would attract straw when rubbed against cloth 1752: Benjamin Franklin had many breakthroughs • Kite experiment (lightning ՞ electricity) • Charges: opposites attract, likes repel • “Electrical Fluid” through all matter A BRIEF WALK THROUGH HISTORY 1784: Henry Cavendish defines the inductive capacity of dielectrics/insulators 1786: Charles de Coulomb • Coulomb’s Law: inverse square law of electrostatics ݇ܳݍ ܨ = ݎෞ ࡽࢗ ݎଶ ொ௤ • Unit of charge is Coulomb THE ELECTRIC CHARGE Atom: nucleus with surrounding electron cloud • Nucleus has protons and neutrons Charge: • Protons are +ve; Electrons are –ve • Same magnitude of charge: 1.6 x 10-19 C Mass: -27 • ݉௣ ൎ݉௡ ൎ 1.7 x 10 kg -31 • ݉௘ ൎ 9.1 x 10 kg THE TRIBOELECTRIC EFFECT When we rub two objects with each other, small amounts of charges are transferred from one object to another Triboelectric series gives us tendency of material to acquire a positive charge Q1: If I rub amber with fur, what’s going to happen? Q2: What about rubbing glass rod with silk? CONSERVATION OF ELECTRIC CHARGE The electric charge is a conserved quantity • We cannot create or destroy an electric charge • But we can distribute them to create particles and localized areas with varying charges Conservation of Electric Charge: • The net electric charge in an isolated system must remain constant We can never violate this principle! QUANTIZATION OF CHARGE Elementary/Fundamental Charge: • The fundamental charge of the electron ݍ௘ is -1.602 x 10-19 C • Charge involved in transfer of electrons must be integer (݊) multiples of the fundamental charge; ܳ = ݊ݍ௘ Classical vs.
    [Show full text]
  • COULOMB's LAW Charles Coulomb
    COULOMB'S LAW Charles Coulomb (1736-1806) was one of the early scientists to study electrostatics. Coulomb knew that charged objects attracted or repelled each other and therefore they must exert a force on each other. He discovered that : a) the force F depended on how far apart the charged objects were and falls inversely as the square of the distance r: F α 1/r2 b) the force depended on the amount of charge on each of the objects and is proportional to the product of the charges. F α q1q2 These statements can be summarised in Coulomb's Law, which shows the force F between two point charges q1 and q2, separated by a distance r is: 2 F α q1q2/r If we now introduce a proportionality constant k, then: 2 F = kq1q2/r k is known as Coulomb’s constant and is equal to: k = 1/4Πε0 Therefore the force F in Newtons is: 1 qq12 F = 2 Coulomb’s Law 4πε 0 r -12 2 -1 -2 ε0 is the permittivity of free space = 8.854x10 C N m q1 and q2 are the amounts of charge in Coulombs r is the distance between the charges in metres. Question: Two point charges exert a force of F on each other when at a distance d apart. What will the force be if the distance between them is now 3d Answer: F/9 Question: Two point charges exert a force F on each other. If both the charges are doubled, what will the new force be.
    [Show full text]
  • Coulomb Balance
    Includes 012-03760E Teacher's Notes Instruction Manual and and 05/99 Typical Experiment Results Experiment Guide for the PASCO scientific Model ES-9070 COULOMB BALANCE © 1989 PASCO scientific $5.00 012-03760E Coulomb Balance Table of Contents Section Page Copyright, Warranty and Equipment Return...................................................ii Introduction ..................................................................................................... 1 Theory ............................................................................................................. 2 Equipment........................................................................................................ 3 Additional Equipment Recommended: ..................................................... 3 Tips for Accurate Results ................................................................................ 4 Setup ............................................................................................................. 5 Experiments: Part A Force Versus Distance................................................................... 7 Part B Force Versus Charge ...................................................................... 8 Part C The Coulomb Constant ................................................................... 9 Replacing the Torsion Wire........................................................................... 13 Teacher’s Guide............................................................................................. 15 Technical Support
    [Show full text]
  • I. Electric Charge I
    2 I. Electric Charge I. Electric Charge A. History of Electricity Dr. Bill Pezzaglia B. Coulomb’s Law C. Electrodynamics Updated 2014Feb03 3 1a. Thales of Miletos (624-454 BC) 4 A. History of Electricity • Famous theorems of similar triangles 1) The Electric Effect • Amber rubbed with fur attracts straw 2) Charging Methods • “Amber” in greek: “elektron” 3) Measuring Charge Here is a narrow tomb Great Thales lies; yet his renown for wisdom reached the skies 5 6 1.b. William Gilbert (1544-1603) 1.c. Stephen Gray (1696-1736) [student of Newton!] •“Father of Science” (i.e. use experiments instead of citing ancient authority) • 1729 does experiment showing electric effects can •1600 Book “De Magnete” travel over great distance – Originates term “electricity” through a thread or wire. – Distinguishes between electric and magnetic force – Influences Kepler & Galileo • Classifies Materials as: – Glass rubbed with Silk attracts – Conductors: which can objects remove charge from a body – Insulators: that do not. •Invented “Versorium” (needle) used to measure electric force 1 7 8 1.d. Charles Dufay (1689-1739) 1.e. Benjamin Franklin (1706-1790) •1733 Proposes “two fluid” theory of electricity •1752 Kite Experiment proves lightening is electric – Vitreous (glass, fur) (+) – Resinous (amber, silk) (-) •Proposes single fluid but two state model of charge •Summarizes Electric Laws + + – Like fluids repel + is an excess of charge – opposite attract + - - is deficit in charge – All bodies except metals can be charged by friction – All bodies can be charged by “influence” (induction) •Charge is conserved (objects are naturally neutral) 9 Dry human skin 10 + Asbestos 2.a.1 Triboelectrification chart Leather 2.
    [Show full text]
  • Copyrighted Material
    40235_Index_1-9 7/20/01 5:15 PM Page 1 INDEX A orbital, 1067 periodic, 1083–1086 Betatron, 786 Absorption, photon, 1093 spin, 1070–1071 rules of, 1082–1083 Big bang cosmology Accelerator(s) and uncertainty principle, subshell states of, 1071 age determination of universe in, cyclotron, 731–733 1068–1069 x-ray spectrum of, 1079–1081 1192–1194 electrostatic, 651–652 Angular momentum quantum Atomic magnetism, 805–806, expansion of universe in, Acceptor atom, 1113 number, 1067 1086–1087 1186–1187 Actinides, 1083 Anisotropic materials, optically, and atomic radiation, heavy element formation in, Action at a distance, 588 1004 1090–1092 1191–1192 Adiabatic demagnetization, 809 Annihilation, 1188 Atomic mass unit, energy nucleosynthesis in, 1190–1191 Airy disk, 970 Antenna, 866 equivalent of, 1133 particle interactions in, Alpha decay, 1136–1138 Anticoincidence(s), 1023 Atomic number, 570, 602, 603, 1187–1190 Alternating current (AC), Anticoincidence apparatus, 1131. See also Quantum Binding energy, 637, 1133–1134 782–783, 845–846 1023–1024 number(s) Binding energy curve, 1133–1134 transformers of, 852–854 Antineutrino, 1138–1139, and order of elements, Binnig, Gerd, 1047, 1048 and voltages, phase and 1176–1177 1081–1082 Bioluminescence, 886 amplitude relations for, Antineutron, 1178 origin of concept of, 1081 Biot-Savart law, 753 848t Antiparticles, 570 and periodicity of elements, applications of, 753–755 Alternating current circuit Antiproton, 1178 1083–1086 Birefringence, 1005–1006 capacitive element of, 847–848 Atom(s), 1062 Atomic radiation,
    [Show full text]
  • Electric Field Lines
    Giambattista College Physics Chapter 16 ©2020 McGraw-Hill Education. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Chapter 16: Electric Forces and Fields 16.1 Electric Charge. 16.2 Electric Conductors and Insulators. 16.3 Coulomb’s “law”. 16.4 The Electric Field. 16.5 Motion of a Point Charge in a Uniform Electric Field. 16.6 Conductors in Electrostatic Equilibrium. 16.7 Gauss’s “law” for Electric Fields. ©2020 McGraw-Hill Education 16.1 Electric Charge 1 Until the invention of the battery (Alessandro Volta) electricity experiments were basically static electricity, like when your clothes cling out of the dryer or you shock yourself after walking across a carpet. One early worker was Benjamin Franklin (1750s). In his book on electricity, he describes: ● killing turkeys ● Proposes execution ● Knocked down up to 6 men holding hands (by essentially building up charge by rubbing) ©2020 McGraw-Hill Education 16.1 Electric Charge 2 A fluid model of electricity proposed that when you rub, you move charge FROM one object TO another, so the NET amount was fixed. (Franklin, et al., proposed ONLY one fluid). So as you rubbed objects together, there was a DEFICIT of charge on one and an EXCESS on the other: Neutral Thing 1 Thing 2 - Charge moves + (not really) ©2020 McGraw-Hill Education 16.1 Electric Charge 2 “Whenever a physicists makes a 50/50 guess, they’ll be wrong about 90% of the time” Dr Wm Deering, UNT MUCH later experiments showed a need for TWO kinds of charge J J Thomson (1897) showed there was a negatively charged particle called the electron.
    [Show full text]
  • Physical Units, Constants and Conversion Factors
    Physical Units, Constants and Conversion Factors Here we regroup the values of the most useful physical and chemical constants used in the book. Also some practical combinations of such constants are provided. Units are expressed in the International System (SI), and conversion to the older CGS system is also given. For most quantities and units, the practical definitions currently used in the context of biophysics are also shown. © Springer International Publishing Switzerland 2016 609 F. Cleri, The Physics of Living Systems, Undergraduate Lecture Notes in Physics, DOI 10.1007/978-3-319-30647-6 610 Physical units, constants and conversion factors Basic physical units (boldface indicates SI fundamental units) SI cgs Biophysics Length (L) meter (m) centimeter (cm) Angstrom (Å) 1 0.01 m 10−10 m Time (T) second (s) second (s) 1 µs=10−6 s 1 1 1ps=10−12 s Mass (M) kilogram (kg) gram (g) Dalton (Da) −27 1 0.001 kg 1/NAv = 1.66 · 10 kg Frequency (T−1) s−1 Hz 1 1 Velocity (L/T) m/s cm/s µm/s 1 0.01 m/s 10−6 m/s Acceleration (L/T2) m/s2 cm/s2 µm/s2 1 0.01 m/s2 10−6 m/s2 Force (ML/T2) newton (N) dyne (dy) pN 1kg· m/s2 10−5 N 10−12 N Energy, work, heat joule (J) erg kB T (at T = 300 K) (ML2/T2) 1kg· m2/s2 10−7 J 4.114 pN · nm 0.239 cal 0.239 · 10−7 cal 25.7 meV 1C· 1V 1 mol ATP = 30.5 kJ = 7.3 kcal/mol Power (ML2/T3) watt (W) erg/s ATP/s 1kg· m2/s3 =1J/s 10−7 J/s 0.316 eV/s Pressure (M/LT2) pascal (Pa) atm Blood osmolarity 1 N/m2 101325˙ Pa ∼ 300 mmol/kg 1 bar = 105 Pa ∼300 Pa = 3 · 10−3 atm Electric current (A) ampere (A) e.s.u.
    [Show full text]