Evaluation of Three Types of Artificial Habitats for Fishes in a Freshwater Pond in Maine, Usa

Total Page:16

File Type:pdf, Size:1020Kb

Evaluation of Three Types of Artificial Habitats for Fishes in a Freshwater Pond in Maine, Usa BULLETIN Or MARINE SCIENCE. 55(2-3): 1149-1159. 1994 EVALUATION OF THREE TYPES OF ARTIFICIAL HABITATS FOR FISHES IN A FRESHWATER POND IN MAINE, USA John R. Moring and Peter H. Nicholson ABSTRACT Three types of artificial structures (brush bundles, cinder blocks, tire bundles) were studied along transects in Lac D'or, a boreal, freshwater pond in central Maine. Observations were made of 1,397 adult and juvenile fishes by means of 18 dives during the day and 6 dives during the night in 1990. Cover attracted the five species of fishes in the pond (pumpkinseed, Lepomis gibbosus; chain pickerel, Esox niger; brown bullhead, Ameiurus nebu/osus; common shiner, Luxi/us comutus; and golden shiner, Notemigonus crysoleucas). Numbers of fishes were significantly higher in areas with artificial cover (70% of fishes, average counts pcr transcct), or in areas with natural weed beds (29%) than in areas without cover «1%). Pumpkinseeds were distributed about equally in areas with tire bundles (38%), cinder blocks (34%), and brush bundles (28%), whereas golden and common shiners were attracted pri- marily to brush bundles (62%). Numbers of fishes associated with artificial habitat werc significantly higher at night. Common and golden shiners occupied locations on the periphery of structures, whereas pumpkinseeds frequently inhabited recesses of cinder blocks and brush bundles. Associations with artificial habitat decreascd rapidly in Octobcr when water tcm- perature declined to below 12°C, By early November, as water temperatures decreased to 7°C, fishes moved to the bottom, away from cover, and markedly reduced their movements. Artificial habitats were re-examined in June 1991 following winter ice cover. All structures remained intact, except several branches from submerged brush bundles had been removed by animals, probably beaver Castor canadensis (Castoridae). Although artificial habitat may only serve to redistribute fishes in a lakc or pond, such structures arc rccommendcd as a long-term option for freshwaters where cover limits carrying capacity of fishes. Artificial habitat has long been used by management biologists to improve local sportfisheries by providing cover and protection for fishes and attachment sites for macroinvertebrates and other prey (Wege and Anderson, 1979; Moring et aI., 1989), although the magnitude of the added food organisms is not always clear (Bohnsack et aI., 1991). Both predatory and prey fishes are attracted to artificial reefs (Wege and Anderson, 1979) and such concentrations of fishes, in turn, attract anglers (Polovina, 1991). Although most artificial reefs have been constructed in marine waters, fresh- water reefs have been utilized since before the 1930s (Stone, 1985). Initially, these were "brush shelters." During the 1930s and 1940s, the State of Michigan placed piles of brush in numerous lakes (Hubbs and Eschmeyer, 1938; Rodeheffer, 1939, 1945). Other types of artificial material, such as submerged pulpwood and other woody debris (Moring et aI., 1989), plastic "trees," "lily pads," and tubes (1. Warnecke, Arizona Game and Fish Department, Phoenix, Arizona, unpubl. data) and rocks to increase spawning areas (Trendall, 1988) have also been introduced to freshwater environments. In recent years, logs (48%), brush (27%), and tires (21 %) have been the most common materials introduced to freshwater lakes (Sport Fishing Institute, 1984). Most reefs have been constructed in the South and Midwest as attractants for black basses and other centrarchids and for catfishes (Ictaluridae). But, evaluations of this management technique in freshwater ponds of boreal waters have been 1149 1150 BULLETIN OF MARINE SCIENCE, VOL. 55, NO. 2-3, 1994 limited (Haley et aI., 1987), The only study of artificial structures in Maine (with only limited analysis) occurred in the early 1970s, in Sand Pond, near Baldwin (DeRoche, 1973). Natural materials tended to attract largemouth bass (Mierop- terus salmoides), yellow perch (Perea fiaveseens), and pumpkinseed (Lepomis gibbosus), Waters of northern New England have long been managed primarily for sal- monid fishes. Yet, the recent increase in popularity of fishing for black basses (Hartley and Moring, 1991), esocids (Herke, 1988), and other non-salmonid ga- mefishes in ponds and lakes of northern New England has led to the need for new management techniques to meet angler demands. The objectives of this study were to evaluate three types of artificial structures as attractors of freshwater fishes, and to evaluate seasonal changes in fish abundance. STUDY SITE Three types of artificial reef material were evaluated in Lac O'or, a freshwater pond that is part of Hirundo Wildlife Refuge, near Alton, Maine (Fig. I). Area and maximum depth of the pond are 1.4 ha and 3 m, respectively. Water temperatures during the growth season ranged from 7°C in November to 26°C in August. The non-natural impoundment has contained a fish community for almost 25 years and the fishes have been studied since 1972 (Moring, 1988). Five fish species are currently in the pond: pumpkinseed, chain pickerel (Esox niger), brown bullhead (Ameiurus Ilebulosus), common shin- er (Luxilus cornutus), and golden shiner (Notemigonus crysoleucas). The pond is ideally suited for studies of artificial habitat because it is logistically convenient, closed to angling, and protecled from wind and other disturbances. The fish fauna is representative of many non-salmonid fish communities of northern New England. METHODS AND MATERIALS Prior to the introduction of artificial structures in Lac O'or, four transects were established in the deepest part of the pond on 8 June 1990 (Fig. 1). Each transect was 46 m (150 ft) long and marked by a rope, staked at each end. Each metal stake was attached to a clear plastic fishing bobber with monofilament line so that the position of each transect could be easily located. At the same time, the markers were inconspicuous and did not detract from the natural setting of the refuge. Pre-introduction surveys were conducted on 15 and 18 June 1990 by two divers who swam along the length of each transect and counted all fishes within sight during two passes, one near the bottom and one just below the surface. Artificial habitats were introduced on 20 and 21 June 1990 to three of the transects; the fourth transect served as a control. One unit of each of three types of artificial structure was placed at 15 m intervals along the length of each transect: bundled tires, brush bundles, and concrete blocks. Thus, there were three replicates of each treatment. The sequence of structures was different for each transect (Fig. 1). Tire bundles consisted of four tires placed end-to-end in a "+" pattern. Holes were drilled in the tires, and each tire bundle was secured with coated rope. No anchor was necessary bccause the protected conditions in the pond prevented displacement by winds or waves. Two 4-tire units were placed in an interlocking pattern on each transect. Concrete cinder blocks (each 20 cm X 41 em, with two open recesses), were stacked three layers high, but in an irregular pattern on each transect rope. Brush bundles consisted of tripod wooden frames, each 1.2 m X 1.2 m X 1.2 m of 5 em X 10 em wooden boards, to which bundles of white birch and white spruce limbs were tied. The tripod frames were then anchored to the bottom. On each sampling date, divers swam slowly along the bottom and recorded the species, number, and approximate size of all fishes associated with each type of structure or along the control transect. Because of the limited visibility, the divers then made a second pass near the surface to record fishes associated with the upper parts of the structures. Graham (\992) found that counts of fishes made by divers near freshwater artificial structures can be influenced by diver disturbance and diver adaptation to low light levels. Our structures were in comparatively shallow water and, because divers approached laterally, along a transect, the effect of disturbance should be equal for each structure, thus making diver counts appropriate as a technique. Data were recorded on underwater writing slates. In addition to fish counts, water temperature, weather conditions, time, underwater (horizontal) visibility, and Secchi disc measurements from the surface were also recorded. Following the two dives prior to installation of structures, on 15 and 18 MORING AND NICHOLSON: FRESHWATER ARTIFICIAL HABITATS 1151 j, ':, DAM ,~i, '/,".' " ; •••• I r.',: . : ... J' ." :1 . ','. LAC O'OR ALTON I MAl NE SCALE; SOm .. -. , . Figure I. Lac D'or, Hirundo Wildlife Refuge, near Alton, Maine, and locations of three experimental transects (I, 2, 3) and a control transect (4) for studies in June-November 1990. C = cinder blocks; T = tires; and B = brush bundles, June 1990, 16 dives were made during the day at about weekly intervals from 21 June (4 h after final introduction of habitat) to 7 November 1990. In addition, six dives were made at night between 3 August and 16 October to count fish, Only two transects could be surveyed on two of the night dives because underwater lights failed (transects I and 2 on 3 August and 20 September). Sampling was terminated after the 7 November dive because the water temperature declined to 7°C and diving conditions became more difficult. A final daytime dive was made on 19 June 1991. The purpose of this dive was to examine the 1]52 BULLETIN OF MARINE SCIENCE. VOL. 55. NO. 2-3, 1994 60 • 150 0 0 • DAY 50 Z • o NIGHT 0 0 Z • DAY •... 120 0 0 o NIGHT u 0 :::> • ... + CONTROL .0 Q U ::;) 0 90 C '"•... '"•... 0 •• '"•... Z •.. • Z 30 ::) '" 0 :J Z 0 0 60 V • 0 0 U I •+ 20 •I • 0 + I • I 0 • 30 I 10 I 0• + I • I • 0 ++ • I JU JUL AUG 5EP OCT NOV JUN JUl AUG SEP I OCT NOV MONTH MONTH Figure 2.
Recommended publications
  • Feeding Tactics and Body Condition of Two Introduced Populations of Pumpkinseed Lepomis Gibbosus: Taking Advantages of Human Disturbances?
    Ecology of Freshwater Fish 2009: 18: 15–23 Ó 2008 The Authors Printed in Malaysia Æ All rights reserved Journal compilation Ó 2008 Blackwell Munksgaard ECOLOGY OF FRESHWATER FISH Feeding tactics and body condition of two introduced populations of pumpkinseed Lepomis gibbosus: taking advantages of human disturbances? Almeida D, Almodo´var A, Nicola GG, Elvira B. Feeding tactics and body D. Almeida1, A. Almodo´var1, condition of two introduced populations of pumpkinseed Lepomis G. G. Nicola2, B. Elvira1 gibbosus: taking advantages of human disturbances? 1Department of Zoology and Physical Anthropol- Ecology of Freshwater Fish 2009: 18: 15–23. Ó 2008 The Authors. ogy, Faculty of Biology, Complutense University Journal compilation Ó 2008 Blackwell Munksgaard of Madrid, Madrid, Spain, 2Department of Environmental Sciences, University of Castilla-La Mancha, Toledo, Spain Abstract – Feeding tactics, body condition and size structure of two populations of pumpkinseed Lepomis gibbosus from Caban˜eros National Park (Guadiana River basin, central Spain) were compared to provide insight into the ecological requirements favouring levels of success ⁄ failure in relation to human intervention. Habitat, benthic macroinvertebrates and pumpkinseed were quantified in Bullaque (regulated flow, affected by agricultural activities) and Estena (natural conditions) rivers, from May to September of 2005 and 2006. Significant differences were found in the limnological characteristics between the two rivers. Spatial and temporal Key words: invasive species; feeding tactics; prey variations in diet composition were likely related to opportunistic feeding selection; freshwater fishes and high foraging plasticity. Diet diversity was higher in Bullaque River. B. Elvira, Department of Zoology and Physical Electivity of benthic prey showed variation between sized individuals and Anthropology, Faculty of Biology, Complutense populations.
    [Show full text]
  • Influence of Invasive Hybrid Cattails on Habitat Use by Common Loons
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln U.S. National Park Service Publications and Papers National Park Service 2018 Influence of Invasive Hybrid Cattails on Habitat Use by Common Loons Spencer L. Wesche Benjamin J. O'Neal Steve K. Windels Bryce T. Olson Max Larreur See next page for additional authors Follow this and additional works at: https://digitalcommons.unl.edu/natlpark This Article is brought to you for free and open access by the National Park Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in U.S. National Park Service Publications and Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Authors Spencer L. Wesche, Benjamin J. O'Neal, Steve K. Windels, Bryce T. Olson, Max Larreur, and Adam A. Ahlers Wildlife Society Bulletin 42(1):166–171; 2018; DOI: 10.1002/wsb.863 From The Field Influence of Invasive Hybrid Cattails on Habitat Use by Common Loons SPENCER L. WESCHE, Department of Biology, Franklin College, Franklin, IN 46131, USA BENJAMIN J. O’NEAL, Department of Biology, Franklin College, Franklin, IN 46131, USA STEVE K. WINDELS, National Park Service, Voyageurs National Park, International Falls, MN 56649, USA BRYCE T. OLSON, National Park Service, Voyageurs National Park, International Falls, MN 56649, USA MAX LARREUR, Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA ADAM A. AHLERS,1 Department of Horticulture and Natural Resources, Kansas State University, Manhattan, KS 66506, USA ABSTRACT An invasive hybrid cattail species, Typha  glauca (T.  glauca), is rapidly expanding across the United States and Canada.
    [Show full text]
  • Invasive Species of the Pacific Northwest
    Invasive Species of the Pacific Northwest: Green Sunfish Lepomis cyanellus Derek Arterburn FISH 423: Olden 12.5.14 Figure 1: Adult Green sunfish Lepomis cyanellus . Photo from http://www.freshwater-fishing- news.com/fish-species-north -america/green-sunfish/ Classification Lepomis cyanellus may have a few teeth, Order: Perciformes which can be found on the tongue. Family: Centrarchidae Additional distinguishing marks are the 7-12 Genus: Lepomis parallel diffused dark bars running ventral to Species: cyanellus dorsal along the side of L. cyanellus, and the bluish-green pattern. The bluish-green Identification coloration takes place on the mainly black/dark brown/olive body, composed of Adult Green Sunfish, Lepomis ctenoid scales, which fades to a lighter cyanellus, commonly reach a total length of ventral color. The dark sides of L. cyanellus 31cm, with juveniles ranging from 12-15cm. are contrast with a yellow/cream ventral Adult Green Sunfish have been known to coloration (Cockerell 1913). The thick reach a maximum weight of one kilogram caudal peduncle is without an adipose fin, (2.2lbs). L. cyanellus is a deep bodied, and the peduncle runs to a rounded, slightly laterally compressed species, with a lateral forked, homocercal caudal fin. The paired line running from the operculum to the fins on Lepomis cyanellus are derived in caudal peduncle. The posterior of the orientation. The Green Sunfish has lateral operculum has a characteristic dark spot placement of the pectoral fins with vertical relatively the same size as the eye, and the insertion, anterior pelvic fins, and spines same size spot may also be found at the base found on the anal and dorsal fins.
    [Show full text]
  • Biological and Biomechanical Principles of the Controlling
    Available online at www.worldscientificnews.com WSN 99 (2018) 71-83 EISSN 2392-2192 Biological and biomechanical principles of the controlling molluscs Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) in reservoirs of strategic importance Marenkov Oleh*, Batalov Kyrylo, Kriachek Olena Department of General Biology and Water Bioresources, Oles Honchar Dnipro National University, P.M.B. 49050, Dnipro, Ukraine *E-mail address: [email protected] ABSTRACT The article presents the results of complex laboratory investigations on the biological and biomechanical ways of control of Melanoides tuberculata (Müller 1774) and Tarebia granifera (Lamarck, 1822) molluscs in simulated conditions close to the conditions of the cooling pond of the Zaporizhia Nuclear Power Plant. It was determined that molluscs have naturalized in the Zaporizhia Nuclear Power Plant cooling pond, quickly increased their number and created a threat to hydraulic structures. Taking into account biological features of Thiaridae mollusks and technical and ecological features of Zaporizhia NPP, we carried out a series of experiments using biological control measures (the use of predatory species of hydrobionts) and mechanical means for controlling mollusks. Representatives of different taxons of the Animalia Kingdom were selected as predatory species of hydrobionts, which potentially can consume gastropods: Mollusca, Crustaceans and Fish. It has been found experimentally that the use of marbled crayfish Procambarus virginalis (Lyko, 2017), pumpkinseed Lepomis gibbosus (Linnaeus, 1758) and Botia lohachata Chaudhuri, 1912 has not given positive results in the development of measures to control the number of molluscs. Positive results were obtained in a series of experiments with predatory mollusc assassin snail Clea helena (von dem Busch, 1847), but it was noted that in the presence of more accessible feeds, assassin snail Clea helena (von dem Busch, 1847) consumes smaller quantities of Thiaridae mollusks.
    [Show full text]
  • Lepomis Spp. Technical Note Prepared by IUCN for the European Commission
    Information on measures and related costs in relation to species considered for inclusion on the Union list This technical note has been drafted by a team of experts under the supervision of IUCN within the framework of the contract No 07.0202/2016/739524/SER/ENV.D.2 “Technical and Scientific support in relation to the Implementation of Regulation 1143/2014 on Invasive Alien Species”. The information and views set out in this note do not necessarily reflect the official opinion of the Commission. The Commission does not guarantee the accuracy of the data included in this note. Neither the Commission nor any person acting on the Commission’s behalf may be held responsible for the use which may be made of the information contained therein. Reproduction is authorised provided the source is acknowledged. This document shall be cited as: Zogaris, S.2017. Information on measures and related costs in relation to species considered for inclusion on the Union list: Lepomis spp. Technical note prepared by IUCN for the European Commission. This technical note provides information on the effectiveness of measures, alongside the required effort and resources, used to prevent the introduction, and to undertake early detection, rapid eradication, and management for the invasive alien species under review. Each table represents a separate measure. Date of completion: 04/12/2017 Comments which could support improvement of this document are welcome. Please send your comments by e-mail to [email protected] Species (scientific name) Genus: Lepomis (Rafinesque,
    [Show full text]
  • (SSC) 2011 Report Environment Agen
    Table of Contents Framework Support for Implementing the Strategic Plan of the IUCN Species Survival Commission (SSC) 2011 Report to the Environment Agency ‐ Abu Dhabi 2011 Report Contents Introduction ............................................................................................................................................................ 3 Activity Reports ..................................................................................................................................................... 4 1. CEESP‐SSC Sustainable Use and Livelihoods Specialist Group ..................................................... 5 2. Reptile Assessment for the Arabian Peninsula .................................................................................... 7 3. Freshwater Biodiversity Assessment for the Arabian Peninsula ............................................... 10 4. IUCN Red List Training ................................................................................................................................ 11 5. Increasing Interoperability of the IUCN Red List and Global Invasive Species Database 15 6. Inclusion of the Magnolias on the IUCN Red List of Threatened Species ................................ 21 7. The Second Global Conifer Assessment ................................................................................................ 24 8. Completing the Global Cactus Assessment .......................................................................................... 27 9. Priority‐setting and Species
    [Show full text]
  • The Living Planet Index (Lpi) for Migratory Freshwater Fish Technical Report
    THE LIVING PLANET INDEX (LPI) FOR MIGRATORY FRESHWATER FISH LIVING PLANET INDEX TECHNICAL1 REPORT LIVING PLANET INDEXTECHNICAL REPORT ACKNOWLEDGEMENTS We are very grateful to a number of individuals and organisations who have worked with the LPD and/or shared their data. A full list of all partners and collaborators can be found on the LPI website. 2 INDEX TABLE OF CONTENTS Stefanie Deinet1, Kate Scott-Gatty1, Hannah Rotton1, PREFERRED CITATION 2 1 1 Deinet, S., Scott-Gatty, K., Rotton, H., Twardek, W. M., William M. Twardek , Valentina Marconi , Louise McRae , 5 GLOSSARY Lee J. Baumgartner3, Kerry Brink4, Julie E. Claussen5, Marconi, V., McRae, L., Baumgartner, L. J., Brink, K., Steven J. Cooke2, William Darwall6, Britas Klemens Claussen, J. E., Cooke, S. J., Darwall, W., Eriksson, B. K., Garcia Eriksson7, Carlos Garcia de Leaniz8, Zeb Hogan9, Joshua de Leaniz, C., Hogan, Z., Royte, J., Silva, L. G. M., Thieme, 6 SUMMARY 10 11, 12 13 M. L., Tickner, D., Waldman, J., Wanningen, H., Weyl, O. L. Royte , Luiz G. M. Silva , Michele L. Thieme , David Tickner14, John Waldman15, 16, Herman Wanningen4, Olaf F., Berkhuysen, A. (2020) The Living Planet Index (LPI) for 8 INTRODUCTION L. F. Weyl17, 18 , and Arjan Berkhuysen4 migratory freshwater fish - Technical Report. World Fish Migration Foundation, The Netherlands. 1 Indicators & Assessments Unit, Institute of Zoology, Zoological Society 11 RESULTS AND DISCUSSION of London, United Kingdom Edited by Mark van Heukelum 11 Data set 2 Fish Ecology and Conservation Physiology Laboratory, Department of Design Shapeshifter.nl Biology and Institute of Environmental Science, Carleton University, Drawings Jeroen Helmer 12 Global trend Ottawa, ON, Canada 15 Tropical and temperate zones 3 Institute for Land, Water and Society, Charles Sturt University, Albury, Photography We gratefully acknowledge all of the 17 Regions New South Wales, Australia photographers who gave us permission 20 Migration categories 4 World Fish Migration Foundation, The Netherlands to use their photographic material.
    [Show full text]
  • High Point Lake Somerset County
    Pennsylvania Fish & Boat Commission Biologist Report High Point Lake Somerset County April and May 2015, March 2016 High Point Lake is a 338 acre impoundment located in southern Somerset County near Mount Davis, the highest point in Pennsylvania. Additional and specific information about this lake can be found on the Pennsylvania Fish and Boat Commission (PFBC) website at http://www.fishandboat.com/water/lakes/high_point/00highpoint.htm. The PFBC owned lake is a popular impoundment for recreational fishing and boating and contains naturally reproducing populations of a variety of gamefish and panfish including Largemouth Bass, Smallmouth Bass, Northern Pike, Yellow Perch, Black Crappie, Bluegill, Pumpkinseed, and Brown Bullhead. Chain Pickerel, a non-native species in the Ohio River Basin, have also been introduced into the lake and are now naturally reproducing. Anglers are encouraged to harvest all legal sized Chain Pickerel. In addition to the naturally reproducing gamefish and panfish noted, supplemental stocking of Walleye fingerlings also occurs at High Point Lake. All fish species at High Point Lake are managed under statewide regulations. Biologists from the PFBC Area 8 Fisheries Management Office in Somerset surveyed High Point Lake in April and May 2015 and March 2016 using Pennsylvania style trap nets and night flatbottom boat electrofishing. Trap netting occurred in April 2015 and night electrofishing occurred in May 2015 and March 2016. The primary objective of the April and March surveys was to assess the success of the fingerling Walleye stocking program at the lake. Additional data on panfish and other gamefish was also collected during the April trap net survey.
    [Show full text]
  • Pumpkinseed Population Characteristics in Nebraska Sandhills Lakes (Pisces, Centrarchidae: Lepomis Gibbosus)
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences and Affiliated Societies Nebraska Academy of Sciences 2001 PUMPKINSEED POPULATION CHARACTERISTICS IN NEBRASKA SANDHILLS LAKES (PISCES, CENTRARCHIDAE: LEPOMIS GIBBOSUS) Jennifer C. Harrington South Dakota State University Craig P. Paukert South Dakota State University David W. Willis South Dakota State University Follow this and additional works at: https://digitalcommons.unl.edu/tnas Part of the Life Sciences Commons Harrington, Jennifer C.; Paukert, Craig P.; and Willis, David W., "PUMPKINSEED POPULATION CHARACTERISTICS IN NEBRASKA SANDHILLS LAKES (PISCES, CENTRARCHIDAE: LEPOMIS GIBBOSUS)" (2001). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 25. https://digitalcommons.unl.edu/tnas/25 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societiesy b an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 2001. Transactions of the Nebraska Academy of Sciences 27: 25-30 PUMPKINSEED POPULATION CHARACTERISTICS IN NEBRASKA SANDHILLS LAKES (PISCES, CENTRARCmDAE: LEPOMIS GIBBOSUS) Jennifer C. Harrington, Craig P. Paukert*, and David W. Willis Department of Wildlife and Fisheries Sciences South Dakota State University Brookings, South Dakota 57007-1696 * author for correspondence ABSTRACT macrochirus; black crappie, Pomoxis nigromaculatus; and yellow perch, Perca flavescens) populations, we We investigated pumpkinseed (Lepomis gibbosus) popu­ sampled fish communities, physical characteristics, and lation characteristics in Nebraska Sandhills lakes because invertebrate communities in 30 Nebraska Sandhills this region is near the southwestern edge of their native range.
    [Show full text]
  • Predation on Larval Suckers in the Williamson River Delta Revealed by Molecular Genetic Assays—A Pilot Study
    Predation on Larval Suckers in the Williamson River Delta Revealed by Molecular Genetic Assays—A Pilot Study Open-File Report 2016–1094 U.S. Department of the Interior U.S. Geological Survey Predation on Larval Suckers in the Williamson River Delta Revealed by Molecular Genetic Assays—A Pilot Study By Danielle M. Hereford, Carl O. Ostberg, and Summer M. Burdick Open-File Report 2016-1094 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Director U.S. Geological Survey, Reston, Virginia: 2016 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Hereford, D.M., Ostberg, C.O., and Burdick, S.M., 2016, Predation on larval suckers in the Williamson River Delta revealed by molecular genetic assays—A pilot study: U.S. Geological Survey Open-File Report 2016-1094, 16 p., http://dx.doi.org/10.3133/ofr20161094.
    [Show full text]
  • Introduction to Mollusca and the Class Gastropoda
    Author's personal copy Chapter 18 Introduction to Mollusca and the Class Gastropoda Mark Pyron Department of Biology, Ball State University, Muncie, IN, USA Kenneth M. Brown Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, USA Chapter Outline Introduction to Freshwater Members of the Phylum Snail Diets 399 Mollusca 383 Effects of Snail Feeding 401 Diversity 383 Dispersal 402 General Systematics and Phylogenetic Relationships Population Regulation 402 of Mollusca 384 Food Quality 402 Mollusc Anatomy and Physiology 384 Parasitism 402 Shell Morphology 384 Production Ecology 403 General Soft Anatomy 385 Ecological Determinants of Distribution and Digestive System 386 Assemblage Structure 404 Respiratory and Circulatory Systems 387 Watershed Connections and Chemical Composition 404 Excretory and Neural Systems 387 Biogeographic Factors 404 Environmental Physiology 388 Flow and Hydroperiod 405 Reproductive System and Larval Development 388 Predation 405 Freshwater Members of the Class Gastropoda 388 Competition 405 General Systematics and Phylogenetic Relationships 389 Snail Response to Predators 405 Recent Systematic Studies 391 Flexibility in Shell Architecture 408 Evolutionary Pathways 392 Conservation Ecology 408 Distribution and Diversity 392 Ecology of Pleuroceridae 409 Caenogastropods 393 Ecology of Hydrobiidae 410 Pulmonates 396 Conservation and Propagation 410 Reproduction and Life History 397 Invasive Species 411 Caenogastropoda 398 Collecting, Culturing, and Specimen Preparation 412 Pulmonata 398 Collecting 412 General Ecology and Behavior 399 Culturing 413 Habitat and Food Selection and Effects on Producers 399 Specimen Preparation and Identification 413 Habitat Choice 399 References 413 INTRODUCTION TO FRESHWATER shell. The phylum Mollusca has about 100,000 described MEMBERS OF THE PHYLUM MOLLUSCA species and potentially 100,000 species yet to be described (Strong et al., 2008).
    [Show full text]
  • Health and Condition of Endangered Juvenile Lost River and Shortnose
    Health and Condition of Endangered Juvenile Lost River and Shortnose Suckers Relative to Water Quality and Fish Assemblages in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California Open-File Report 2015–1217 U.S. Department of the Interior U.S. Geological Survey Health and Condition of Endangered Juvenile Lost River and Shortnose Suckers Relative to Water Quality and Fish Assemblages in Upper Klamath Lake, Oregon, and Clear Lake Reservoir, California By Summer M. Burdick, Diane G. Elliott, Carl O. Ostberg, Carla M. Conway, Amari Dolan-Caret, Marshal S. Hoy, Kevin P. Feltz, and Kathy R. Echols Open-File Report 2015-1217 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2015 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit http://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod/. To order USGS information products, visit http://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner.
    [Show full text]