Sclerochronological Studies in the Humboldt Current System, a Highly Variable Ecosystem
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gari Californica” (Bivalvia: Psammobiidae) from the North-Western Pacific
Ruthenica, 2009, vol. 19, No. 1: 19-26, ©Ruthenica, 2009 Published August 28, 2009. http://www.ruthenica.com On the identity of “Gari californica” (Bivalvia: Psammobiidae) from the North-Western Pacific K.A. LUTAENKO A.V. Zhirmunsky Institute of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690041, Palchevskogo Str., 17, RUSSIA, e-mail: [email protected] ABSTRACT. The validity of the north-western Pacific et al. [2000] synonimized G. kazusensis with G. Gari (Gobraeus) kazusensis (Yokoyama, 1922) (Psam- californica, thereby, extending the geographic range mobiidae) previously synonymized with Gari (Gob- of the latter species into the western Pacific and raeus) californica (Conrad, 1849) from the eastern establishing a new example of an amphi-Pacific Pacific is established with a re-description of the former species. The synonymy was followed by Lutaenko species provided with a detailed synonymy. Records [2003, 2005]. In light of a number of such synoni- of G. kazusensis from Kamchatka Peninsula and Kurile mizations in a comprehensive monograph by Coan Islands are doubtful, and the geographical distribution of this species is limited to northern China, Korea, et al. [2000], the problem of amphi-Pacific mollus- Japan and southern Primorye (north-western Sea of can distributions, their proportion in the entire North Japan). Pacific fauna, and origins gain a wide biogeographic interest. A comparative study on G. californica (52 lots, more than 60 specimens) and G. kazusensis under- taken here based on the collections of the California Introduction Academy of Sciences (San Francisco; hereafter First discovered in the Possjet Bay [Golikov and CAS) and Zoological Museum, Far East National Scarlato, 1967], Gari kazusensis (Yokoyama, 1922) University (Vladivostok; ZMFU) revealed signifi- is the only species of the genus Gari Schumacher, cant morphological differences between the two spe- 1817 (Bivavia: Psammobiidae) inhabiting Russian cies and confirmed that there are two separate spe- waters of the Sea of Japan (East Sea). -
Full Text in Pdf Format
Vol. 23: 265–274, 2015 AQUATIC BIOLOGY Published online April 1 doi: 10.3354/ab00626 Aquat Biol OPENPEN ACCESSCCESS Reproduction reduces HSP70 expression capacity in Argopecten purpuratus scallops subject to hypoxia and heat stress Katherina Brokordt*, Hernán Pérez, Catalina Herrera, Alvaro Gallardo Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Universidad Católica del Norte, Larrondo 1281, Coquimbo, Chile ABSTRACT: In scallops, gonad production is highly demanding energetically, and reproduction usually occurs during spring−summer, a period of strong environmental changes. The synthesis of heat-shock proteins (HSPs) is a major mechanism of stress tolerance in animals, including scal- lops, and HSP expression contributes considerably to cellular energy demand. Therefore, repro- ductive investment may limit the availability of energy (in terms of ATP) for the expression of HSP in organisms exposed to environmental stress. We evaluated the stress response capacity of adult Argopecten purpuratus scallops to high temperature and hypoxia. Stress response capacity was assessed through gene expression (for temperature stress) and protein induction of 70 kD HSP at 3 reproductive stages: immature, mature and spawned. We also evaluated the effect of reproduc- tive status on the cellular ATP provisioning capacity through citrate synthase activity. Immature scallops exposed to thermal stress showed 1.3- and 1.5-fold increases in hsp70 mRNA and HSP70 protein levels, respectively, and those exposed to hypoxia doubled their level of HSP70 compared to non-stressed immature scallops. However, following gonad maturation and spawning, hsp70 mRNA increased by only 0.49- and 0.65-fold, respectively, after thermal stress and HSP70 protein levels of scallops exposed to thermal and hypoxia stressors did not differ from those of non- stressed animals. -
Physiological Effects and Biotransformation of Paralytic
PHYSIOLOGICAL EFFECTS AND BIOTRANSFORMATION OF PARALYTIC SHELLFISH TOXINS IN NEW ZEALAND MARINE BIVALVES ______________________________________________________________ A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of Philosophy in Environmental Sciences in the University of Canterbury by Andrea M. Contreras 2010 Abstract Although there are no authenticated records of human illness due to PSP in New Zealand, nationwide phytoplankton and shellfish toxicity monitoring programmes have revealed that the incidence of PSP contamination and the occurrence of the toxic Alexandrium species are more common than previously realised (Mackenzie et al., 2004). A full understanding of the mechanism of uptake, accumulation and toxin dynamics of bivalves feeding on toxic algae is fundamental for improving future regulations in the shellfish toxicity monitoring program across the country. This thesis examines the effects of toxic dinoflagellates and PSP toxins on the physiology and behaviour of bivalve molluscs. This focus arose because these aspects have not been widely studied before in New Zealand. The basic hypothesis tested was that bivalve molluscs differ in their ability to metabolise PSP toxins produced by Alexandrium tamarense and are able to transform toxins and may have special mechanisms to avoid toxin uptake. To test this hypothesis, different physiological/behavioural experiments and quantification of PSP toxins in bivalves tissues were carried out on mussels ( Perna canaliculus ), clams ( Paphies donacina and Dosinia anus ), scallops ( Pecten novaezelandiae ) and oysters ( Ostrea chilensis ) from the South Island of New Zealand. Measurements of clearance rate were used to test the sensitivity of the bivalves to PSP toxins. Other studies that involved intoxication and detoxification periods were carried out on three species of bivalves ( P. -
Download PDF Version
MarLIN Marine Information Network Information on the species and habitats around the coasts and sea of the British Isles Lagoon cockle (Cerastoderma glaucum) MarLIN – Marine Life Information Network Biology and Sensitivity Key Information Review Nicola White 2002-07-15 A report from: The Marine Life Information Network, Marine Biological Association of the United Kingdom. Please note. This MarESA report is a dated version of the online review. Please refer to the website for the most up-to-date version [https://www.marlin.ac.uk/species/detail/1315]. All terms and the MarESA methodology are outlined on the website (https://www.marlin.ac.uk) This review can be cited as: White, N. 2002. Cerastoderma glaucum Lagoon cockle. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews, [on-line]. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinsp.1315.1 The information (TEXT ONLY) provided by the Marine Life Information Network (MarLIN) is licensed under a Creative Commons Attribution-Non-Commercial-Share Alike 2.0 UK: England & Wales License. Note that images and other media featured on this page are each governed by their own terms and conditions and they may or may not be available for reuse. Permissions beyond the scope of this license are available here. Based on a work at www.marlin.ac.uk (page left blank) Date: 2002-07-15 Lagoon cockle (Cerastoderma glaucum) - Marine Life Information Network See online review for distribution map Three Cerastoderma glaucum with siphons extended. Distribution data supplied by the Ocean Photographer: Dennis R. -
The Immune Response of the Scallop Argopecten Purpuratus Is Associated with Changes in the Host Microbiota Structure and Diversity T
Fish and Shellfish Immunology 91 (2019) 241–250 Contents lists available at ScienceDirect Fish and Shellfish Immunology journal homepage: www.elsevier.com/locate/fsi Full length article The immune response of the scallop Argopecten purpuratus is associated with changes in the host microbiota structure and diversity T K. Muñoza, P. Flores-Herreraa, A.T. Gonçalvesb, C. Rojasc, C. Yáñezc, L. Mercadoa, K. Brokordtd, ∗ P. Schmitta, a Laboratorio de Genética e Inmunología Molecular, Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile b Laboratorio de Biotecnología y Genómica Acuícola – Centro Interdisciplinario para la Investigación Acuícola (INCAR), Universidad de Concepción, Concepción, Chile c Laboratorio de Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile d Laboratory of Marine Physiology and Genetics (FIGEMA), Centro de Estudios Avanzados en Zonas Áridas (CEAZA) and Universidad Católica del Norte, Coquimbo, Chile ARTICLE INFO ABSTRACT Keywords: All organisms live in close association with a variety of microorganisms called microbiota. Furthermore, several 16S rDNA deep amplicon sequencing studies support a fundamental role of the microbiota on the host health and homeostasis. In this context, the aim Host-microbiota interactions of this work was to determine the structure and diversity of the microbiota associated with the scallop Argopecten Scallop purpuratus, and to assess changes in community composition and diversity during the host immune response. To Innate immune response do this, adult scallops were immune challenged and sampled after 24 and 48 h. Activation of the immune Antimicrobial effectors response was established by transcript overexpression of several scallop immune response genes in hemocytes and gills, and confirmed by protein detection of the antimicrobial peptide big defensin in gills of Vibrio-injected scallops at 24 h post-challenge. -
Spatial Variability in Recruitment of an Infaunal Bivalve
Spatial Variability in Recruitment of an Infaunal Bivalve: Experimental Effects of Predator Exclusion on the Softshell Clam (Mya arenaria L.) along Three Tidal Estuaries in Southern Maine, USA Author(s): Brian F. Beal, Chad R. Coffin, Sara F. Randall, Clint A. Goodenow Jr., Kyle E. Pepperman, Bennett W. Ellis, Cody B. Jourdet and George C. Protopopescu Source: Journal of Shellfish Research, 37(1):1-27. Published By: National Shellfisheries Association https://doi.org/10.2983/035.037.0101 URL: http://www.bioone.org/doi/full/10.2983/035.037.0101 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Journal of Shellfish Research, Vol. 37, No. 1, 1–27, 2018. SPATIAL VARIABILITY IN RECRUITMENT OF AN INFAUNAL BIVALVE: EXPERIMENTAL EFFECTS OF PREDATOR EXCLUSION ON THE SOFTSHELL CLAM (MYA ARENARIA L.) ALONG THREE TIDAL ESTUARIES IN SOUTHERN MAINE, USA 1,2 3 2 3 BRIAN F. -
Articulo De E Tarifeño
Revista de Biología Marina y Oceanografía 43(1): 51-61, abril de 2008 Efecto de la temperatura en el desarrollo embrionario y larval del mejillón, Mytilus galloprovincialis (Lamarck, 1819) Temperature effect in the embryonic and larval development of the mussel, Mytilus galloprovincialis (Lamarck, 1819) Maryori Ruiz1,2, Eduardo Tarifeño2,3, Alejandra Llanos-Rivera3, Christa Padget3 y Bernardita Campos4 1 Programa de Magíster en Ciencias, Departamento Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción. Casilla 160-C, Concepción, Chile 2 Departamento de Zoología, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Casilla 160-C, Concepción, Chile 3 Grupo ProMytilus. Proyecto FONDEF D03-1095, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Chile 4 Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Valparaíso, Chile Casilla 5080, Reñaca, Viña del Mar, Chile [email protected] Abstract.- The Mediterranean mussel (Mytilus Resumen.- El mejillón del Mediterráneo (Mytilus galloprovincialis Lamarck, 1819) has been recently registered galloprovincialis Lamarck, 1819) ha sido registrado for the Chilean coast, from Concepcion (36ºS) to the Magellan recientemente en las costas chilenas, desde Concepción (36ºS) Strait (54ºS). To determine the feasibility of the massive culture hasta el Estrecho de Magallanes (54ºS). En el estudio de factibilidad de su cultivo masivo en Chile (Proyecto FONDEF of M. galloprovincialis in Chile, a study of the temperature D05I-10258) se evaluó el efecto de la temperatura sobre su effects on the early development was carried out. Embryos and desarrollo temprano para modular empíricamente las tasas de larvae were raised at 12, 16 and 20ºC in laboratory facilities at crecimiento larval. -
South Carolina Department of Natural Resources
FOREWORD Abundant fish and wildlife, unbroken coastal vistas, miles of scenic rivers, swamps and mountains open to exploration, and well-tended forests and fields…these resources enhance the quality of life that makes South Carolina a place people want to call home. We know our state’s natural resources are a primary reason that individuals and businesses choose to locate here. They are drawn to the high quality natural resources that South Carolinians love and appreciate. The quality of our state’s natural resources is no accident. It is the result of hard work and sound stewardship on the part of many citizens and agencies. The 20th century brought many changes to South Carolina; some of these changes had devastating results to the land. However, people rose to the challenge of restoring our resources. Over the past several decades, deer, wood duck and wild turkey populations have been restored, striped bass populations have recovered, the bald eagle has returned and more than half a million acres of wildlife habitat has been conserved. We in South Carolina are particularly proud of our accomplishments as we prepare to celebrate, in 2006, the 100th anniversary of game and fish law enforcement and management by the state of South Carolina. Since its inception, the South Carolina Department of Natural Resources (SCDNR) has undergone several reorganizations and name changes; however, more has changed in this state than the department’s name. According to the US Census Bureau, the South Carolina’s population has almost doubled since 1950 and the majority of our citizens now live in urban areas. -
Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora)
Gulf of Mexico Science Volume 34 Article 4 Number 1 Number 1/2 (Combined Issue) 2018 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution Martha Reguero Universidad Nacional Autónoma de México Andrea Raz-Guzmán Universidad Nacional Autónoma de México DOI: 10.18785/goms.3401.04 Follow this and additional works at: https://aquila.usm.edu/goms Recommended Citation Reguero, M. and A. Raz-Guzmán. 2018. Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution. Gulf of Mexico Science 34 (1). Retrieved from https://aquila.usm.edu/goms/vol34/iss1/4 This Article is brought to you for free and open access by The Aquila Digital Community. It has been accepted for inclusion in Gulf of Mexico Science by an authorized editor of The Aquila Digital Community. For more information, please contact [email protected]. Reguero and Raz-Guzmán: Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Lagu Gulf of Mexico Science, 2018(1), pp. 32–55 Molluscs (Mollusca: Gastropoda, Bivalvia, Polyplacophora) of Laguna Madre, Tamaulipas, Mexico: Spatial and Temporal Distribution MARTHA REGUERO AND ANDREA RAZ-GUZMA´ N Molluscs were collected in Laguna Madre from seagrass beds, macroalgae, and bare substrates with a Renfro beam net and an otter trawl. The species list includes 96 species and 48 families. Six species are dominant (Bittiolum varium, Costoanachis semiplicata, Brachidontes exustus, Crassostrea virginica, Chione cancellata, and Mulinia lateralis) and 25 are commercially important (e.g., Strombus alatus, Busycoarctum coarctatum, Triplofusus giganteus, Anadara transversa, Noetia ponderosa, Brachidontes exustus, Crassostrea virginica, Argopecten irradians, Argopecten gibbus, Chione cancellata, Mercenaria campechiensis, and Rangia flexuosa). -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Embryonic and Larval Development of Ensis Arcuatus (Jeffreys, 1865) (Bivalvia: Pharidae)
EMBRYONIC AND LARVAL DEVELOPMENT OF ENSIS ARCUATUS (JEFFREYS, 1865) (BIVALVIA: PHARIDAE) FIZ DA COSTA, SUSANA DARRIBA AND DOROTEA MARTI´NEZ-PATIN˜O Centro de Investigacio´ns Marin˜as, Consellerı´a de Pesca e Asuntos Marı´timos, Xunta de Galicia, Apdo. 94, 27700 Ribadeo, Lugo, Spain (Received 5 December 2006; accepted 19 November 2007) ABSTRACT The razor clam Ensis arcuatus (Jeffreys, 1865) is distributed from Norway to Spain and along the British coast, where it lives buried in sand in low intertidal and subtidal areas. This work is the first study to research the embryology and larval development of this species of razor clam, using light and scanning electron microscopy. A new method, consisting of changing water levels using tide simulations with brief Downloaded from https://academic.oup.com/mollus/article/74/2/103/1161011 by guest on 23 September 2021 dry periods, was developed to induce spawning in this species. The blastula was the first motile stage and in the gastrula stage the vitelline coat was lost. The shell field appeared in the late gastrula. The trocho- phore developed by about 19 h post-fertilization (hpf) (198C). At 30 hpf the D-shaped larva showed a developed digestive system consisting of a mouth, a foregut, a digestive gland followed by an intestine and an anus. Larvae spontaneously settled after 20 days at a length of 378 mm. INTRODUCTION following families: Mytilidae (Redfearn, Chanley & Chanley, 1986; Fuller & Lutz, 1989; Bellolio, Toledo & Dupre´, 1996; Ensis arcuatus (Jeffreys, 1865) is the most abundant species of Hanyu et al., 2001), Ostreidae (Le Pennec & Coatanea, 1985; Pharidae in Spain. -
Species Identification in Mussels
Elsevier Editorial System(tm) for Food Control Manuscript Draft Manuscript Number: Title: Species identification in mussels (Mytilus spp.): a case study on products sold on the Italian market underlines issues and suggests strategies to face a not still solved problem Article Type: Short Communication Keywords: Mytilus chilensis, Mytilus galloprovincialis, Choromytilus chorus, seafood labelling, traceability, species identification, DNA- based methods Corresponding Author: Dr. Andrea Armani, Corresponding Author's Institution: University of Pisa First Author: Alice Giusti Order of Authors: Alice Giusti; Federica Tosi; Lara Tinacci; Lisa Guardone; Giuseppe Arcangeli; Andrea Armani Abstract: Based on a case study concerning mussel products suspected to be mislabelled, this work wants to highlight the difficulties encountered in their molecular identification and propose new strategies for solving these issues. In November 2019, the FishLab (Department of Veterinary Sciences) was consulted by a wholesaler for identifying products labelled as "Chilean mussels" (Mytilus chilensis). The batch had been molecularly identified first as M. chilensis by an external private lab and, subsequently, as Choromytilus chorus following a second analysis entrusted to another external lab by the customer company. In this work, the samples could only be identified as Mytilus spp by sequencing the mtDNA COI gene. The amplification of the Polyphenolic Adhesive Protein (PAP) gene, a nuclear marker reported as more informative for mussel allowed to suppose the presence of M. chilensis and M. galloprovincialis based on the length of the obtained fragment. In fact, both the species, which are reported as inhabiting Chilean waters, present the same 123 bp amplicon. The low sequences quality obtained for this short fragment, however, did not allow a discrimination of the aforesaid species as this is based on a single mutation point.