Megaloastia Zabka, 1995

Total Page:16

File Type:pdf, Size:1020Kb

Megaloastia Zabka, 1995 Megaloastia Zabka, 1995 Taxonomy Megaloastia has one Australian species, Megaloastia mainae. The genus is part of an Australasian clade (Maddison et al 2008) including Adoxotoma, Arasia, Astia, Astilodes, Helpis, Jacksonoides, Parahelpis, Sondra and Tauala. Genera from Indonesia (Katya) and the Philippines (Orthrus) may also be part of this group (Maddison 2015). Further information on Examples of live Megaloastia Illustrators (and ©) F. Soley (TR, BL), R. Mc the genus and described species can be found in Richardson and Żabka (2017). Ginley (TL), S. Collins, (BR) Description Megaloastia mainae is a medium to large-sized spider, body length 5 to 15 mm, with an elongated-ovate, tapering abdomen. The head, viewed from above, is rounded or pear-shaped with the widest point behind the posterior lateral eyes. The high cephalothorax has posterior lateral eyes on distinct peaks. Chelicerae have many (plurident) retromarginal teeth and three or more promarginal teeth on a mound. The legs are extremely long, spread laterally and armed with long spines. The first legs are longest (up to four times the length of the body). The other legs are also very long and of approximately equal length. Aspects of the general morphology of Megaloastia The male’s palpal tibia has a single, short, hooked, pointed retro-lateral tibial apophysis. The Illustrators (and ©) B.J. Richardson (CSIRO), tegulum is rounded, with a small proximal ledge. A short, thick embolus arises in the middle of M. Zabka (diag.) (WAMP) the tegulum and has a twisted end. Females have an epigynal atrium partly divided in two, with lateral sclerotised guides. The copulatory openings are on the antero-lateral edges of the atrium. The insemination ducts are long, joining the anterior edge of the spermathecae. The spermathecae are cup-shaped and lie behind the atria, close to the epigastric fold. References Gardzińska, J. & Żabka, M. 2010. A new genus and five new species of Astieae (Araneae: Salticidae) from Australia, with remarks on distribution. Zootaxa 2526: 37-53. Maddison, W.P. 2015. A phylogenetic classification of jumping spiders (Araneae: Salticidae). Palp morphology of Megaloastia Journal of Arachnology 43, 231-292. Illustrator (and ©) M. Zabka (WAMP) Maddison, W.P., Bodner, M.R. & Needham, K.M. 2008. Salticid spider phylogeny revisited, with the discovery of a large Australian clade (Araneae: Salticidae). Zootaxa 1893, 49-64. Richardson, B.J. & Żabka, M. 2016. Salticidae. Arachnida: Araneomorphae. Canberra, Australian Faunal Directory. Australian Biological Resources Study, at https://biodiversity.org.au/afd/taxa/SALTICIDAE. Soley, F.G., McGinley, R.H. Collins, S.R. & Taylor, P.W. 2016. Natural History observation and predatory behavior of a long-legged jumping spider, Megaloastia mainae (Aranaea: Salticidae). New Zealand Journal of Zoology 43, 65-84. Zabka, M. 1995. Salticidae (Arachnida: Araneae) of Oriental, Australian and Pacific Regions, XI. A new genus of Astieae from Western Australia. Records of the Western Australian Museum, Epigyne morphology of Megaloastia Illustrators (and ©) B.J. Richardson (CSIRO), Supplement 52, 159-164. M. Zabka (diag.) (WAMP) * The information sheet should be interpreted in the context of the associated diagrams and photographs. Diagrams explaining anatomical terms can be found in the ‘Salticidae’ pictures at the beginning of the list of genera..
Recommended publications
  • Australasian Arachnology 76 Features a Comprehensive Update on the Taxonomy Change of Address and Systematics of Jumping Spiders of Australia by Marek Zabka
    AAususttrraalaassiianan AArracachhnnoollogyogy Price$3 Number7376 ISSN0811-3696 January200607 Newsletterof NewsletteroftheAustralasianArachnologicalSociety Australasian Arachnology No. 76 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL The newsletter depends on your SOCIETY contributions! We encourage articles on a We aim to promote interest in the range of topics including current research ecology, behaviour and taxonomy of activities, student projects, upcoming arachnids of the Australasian region. events or behavioural observations. MEMBERSHIP Please send articles to the editor: Membership is open to amateurs, Volker Framenau students and professionals and is managed Department of Terrestrial Invertebrates by our administrator: Western Australian Museum Locked Bag 49 Richard J. Faulder Welshpool, W.A. 6986, Australia. Agricultural Institute [email protected] Yanco, New South Wales 2703. Australia Format: i) typed or legibly printed on A4 [email protected] paper or ii) as text or MS Word file on CD, Membership fees in Australian dollars 3½ floppy disk, or via email. (per 4 issues): LIBRARY *discount personal institutional Australia $8 $10 $12 The AAS has a large number of NZ / Asia $10 $12 $14 reference books, scientific journals and elsewhere $12 $14 $16 papers available for loan or as photocopies, for those members who do There is no agency discount. not have access to a scientific library. All postage is by airmail. Professional members are encouraged to *Discount rates apply to unemployed, pensioners and students (please provide proof of status). send in their arachnological reprints. Cheques are payable in Australian Contact our librarian: dollars to “Australasian Arachnological Society”. Any number of issues can be paid Jean-Claude Herremans PO Box 291 for in advance.
    [Show full text]
  • Myrmarachnine Jumping Spiders of the New Subtribe Levieina from Papua
    A peer-reviewed open-access journal ZooKeys 842: 85–112 (2019) New myrmarachnine jumping spiders 85 doi: 10.3897/zookeys.842.32970 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini) Wayne P. Maddison1, Tamás Szűts2 1 Departments of Zoology and Botany and Beaty Biodiversity Museum, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T 1Z4, Canada 2 Department of Ecology, University of Veterinary Medicine Budapest, Budapest, H1077, Rottenbiller u. 50, Hungary Corresponding author: Wayne P. Maddison (wayne.maddison@ ubc.ca) Academic editor: Jeremy Miller | Received 10 January 2019 | Accepted 12 March 2019 | Published 7 May 2019 http://zoobank.org/D911C055-FF4B-4900-877B-123951761AC1 Citation: Maddison WP, Szűts T (2019) Myrmarachnine jumping spiders of the new subtribe Levieina from Papua New Guinea (Araneae, Salticidae, Myrmarachnini). ZooKeys 842: 85–112. https://doi.org/10.3897/zookeys.842.32970 Abstract A previously unreported radiation of myrmarachnine jumping spiders from New Guinea is described, which, although having few known species, is remarkably diverse in body forms. This clade is the new subtribe Levieina, represented by seven new species in three new genera. Within Leviea gen. n. are three new species, L. herberti sp. n., L. lornae sp. n., and L. francesae sp. n., all of which are unusual among the myrmarachnines in appearing as typical salticids, not antlike. Papuamyr gen. n. superficially resembles Ligonipes Karsch, 1878 or Rhombonotus L. Koch, 1879 as a compact antlike spider, but lacks their laterally- compressed palp and bears an ectal spur on the paturon of the chelicera.
    [Show full text]
  • Bohol, Philippines 1Lynde E
    Salticidae species richness in Rajah Sikatuna Protected Landscape (RSPL), Bohol, Philippines 1Lynde E. Quiñones, 2Aimee L. Barrion-Dupo, 1Olga M. Nuñeza 1 Department of Biological Sciences, Mindanao State University-Iligan Institute of Technology, Tibanga, Iligan City, Philippines; 2 Environmental Biology Division, Institute of Biological Sciences, University of the Philippines Los Baňos, College, Laguna, Philippines. Corresponding author: L. E. Quiñones, [email protected] Abstract. The aim of this study was to determine the species richness of jumping spiders in Rajah Sikatuna Protected Landscape (RSPL), Bohol, Philippines. Field sampling was conducted on June 8-15, 2015 for 64 man-hours using beat-netting and vial-tapping methods from all the field layers. One hundred eighteen individuals belonging to 45 species and 21 genera were recorded. Highest species richness (H’ = 2.441) was recorded in barangay Nueva vida este. Cytaea sp. was the most abundant species. Emathis makilingensis was identified as a new record to Bohol. The result of this study showed high species diversity and greater evenness of salticids in RSPL. However, the overall estimated species richness in the study area is 148 species or more which means that there are still several species of jumping spiders in RSPL, Bohol Island to be discovered in future studies. Key Words: beat-netting, Cytaea, Emathis makilingensis, evenness, vial-tapping. Introduction. Jumping spiders (Salticidae) are the most speciose family of spiders, with more than 500 described genera and about 5,000 described species (Richman et al 2005). They are one of the expert silent predators in the tea and paddy ecosystems that feed on small insects like moths, butterflies, beetles, aphids, hoppers etc., which help maintain ecological equilibrium by suppressing insect pest (Chetia & Kalita 2012).
    [Show full text]
  • Between Species: Choreographing Human And
    BETWEEN SPECIES: CHOREOGRAPHING HUMAN AND NONHUMAN BODIES JONATHAN OSBORN A DISSERTATION SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY GRADUATE PROGRAM IN DANCE STUDIES YORK UNIVERSITY TORONTO, ONTARIO MAY, 2019 ã Jonathan Osborn, 2019 Abstract BETWEEN SPECIES: CHOREOGRAPHING HUMAN AND NONHUMAN BODIES is a dissertation project informed by practice-led and practice-based modes of engagement, which approaches the space of the zoo as a multispecies, choreographic, affective assemblage. Drawing from critical scholarship in dance literature, zoo studies, human-animal studies, posthuman philosophy, and experiential/somatic field studies, this work utilizes choreographic engagement, with the topography and inhabitants of the Toronto Zoo and the Berlin Zoologischer Garten, to investigate the potential for kinaesthetic exchanges between human and nonhuman subjects. In tracing these exchanges, BETWEEN SPECIES documents the creation of the zoomorphic choreographic works ARK and ARCHE and creatively mediates on: more-than-human choreography; the curatorial paradigms, embodied practices, and forms of zoological gardens; the staging of human and nonhuman bodies and bodies of knowledge; the resonances and dissonances between ethological research and dance ethnography; and, the anthropocentric constitution of the field of dance studies. ii Dedication Dedicated to the glowing memory of my nana, Patricia Maltby, who, through her relentless love and fervent belief in my potential, elegantly willed me into another phase of life, while she passed, with dignity and calm, into another realm of existence. iii Acknowledgements I would like to thank my phenomenal supervisor Dr. Barbara Sellers-Young and my amazing committee members Dr.
    [Show full text]
  • Classification of Animals
    Grade 3 Core Knowledge Language Arts® • Listening & Learning™ Strand Classification of Animals of Classification Tell It Again!™ Read-Aloud Anthology Read-Aloud Again!™ It Tell Classification of Animals Tell It Again!™ Read-Aloud Anthology Listening & Learning™ Strand GrAde 3 Core Knowledge Language Arts® Creative Commons Licensing This work is licensed under a Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License. You are free: to Share — to copy, distribute and transmit the work to Remix — to adapt the work Under the following conditions: Attribution — You must attribute the work in the following manner: This work is based on an original work of the Core Knowledge® Foundation made available through licensing under a Creative Commons Attribution- NonCommercial-ShareAlike 3.0 Unported License. This does not in any way imply that the Core Knowledge Foundation endorses this work. Noncommercial — You may not use this work for commercial purposes. Share Alike — If you alter, transform, or build upon this work, you may distribute the resulting work only under the same or similar license to this one. With the understanding that: For any reuse or distribution, you must make clear to others the license terms of this work. The best way to do this is with a link to this web page: http://creativecommons.org/licenses/by-nc-sa/3.0/ Copyright © 2013 Core Knowledge Foundation www.coreknowledge.org All Rights Reserved. Core Knowledge Language Arts, Listening & Learning, and Tell It Again! are trademarks of the Core Knowledge Foundation. Trademarks and trade names are shown in this book strictly for illustrative and educational purposes and are the property of their respective owners.
    [Show full text]
  • A Transitional Fossil Mite (Astigmata: Levantoglyphidae Fam. N.) from the Early Cretaceous Suggests Gradual Evolution of Phoresy‑Related Metamorphosis Pavel B
    www.nature.com/scientificreports OPEN A transitional fossil mite (Astigmata: Levantoglyphidae fam. n.) from the early Cretaceous suggests gradual evolution of phoresy‑related metamorphosis Pavel B. Klimov1,2*, Dmitry D. Vorontsov3, Dany Azar4, Ekaterina A. Sidorchuk1,5, Henk R. Braig2, Alexander A. Khaustov1 & Andrey V. Tolstikov1 Metamorphosis is a key innovation allowing the same species to inhabit diferent environments and accomplish diferent functions, leading to evolutionary success in many animal groups. Astigmata is a megadiverse lineage of mites that expanded into a great number of habitats via associations with invertebrate and vertebrate hosts (human associates include stored food mites, house dust mites, and scabies). The evolutionary success of Astigmata is linked to phoresy‑related metamorphosis, namely the origin of the heteromorphic deutonymph, which is highly specialized for phoresy (dispersal on hosts). The origin of this instar is enigmatic since it is morphologically divergent and no intermediate forms are known. Here we describe the heteromorphic deutonymph of Levantoglyphus sidorchukae n. gen. and sp. (Levantoglyphidae fam. n.) from early Cretaceous amber of Lebanon (129 Ma), which displays a transitional morphology. It is similar to extant phoretic deutonymphs in its modifcations for phoresy but has the masticatory system and other parts of the gnathosoma well‑ developed. These aspects point to a gradual evolution of the astigmatid heteromorphic morphology and metamorphosis. The presence of well‑developed presumably host‑seeking sensory elements on the gnathosoma suggests that the deutonymph was not feeding either during phoretic or pre‑ or postphoretic periods. Te evolution of metamorphosis is thought to have generated an incredible diversity of organisms, allowing them to exploit diferent habitats and perform diferent functions at diferent life stages1–5.
    [Show full text]
  • Helpis Simon, 1901
    Helpis Simon, 1901 Taxonomy Helpis has thirteen Australian species, Helpis colemani, H. foelixi, H. gracilis, H. kenilworthi, H. longipalpis, H. merriwa, H. minutabunda, H. occidentalis, H. risdonica, H. stargai, H. tasmanica, H. wanlessi and H. wisharti. The genus is part of an Australasian clade (Maddison et al 2008) including Adoxotoma, Arasia, Astia, Astilodes, Jacksonoides, Megaloastia, Parahelpis, Sondra Examples of live Helpis and Tauala. Genera from Indonesia (Katya) and the Philippines (Orthrus) may also be part of Illustrator (and ©) R. Whyte this group (Maddison 2015). Further information on the genus and described species can be found in Richardson and Żabka (2017) and Whyte and Anderson (2017). Description Helpis spp. are medium-sized spiders, length 4 to 9 mm, with an elongate-ovate abdomen. The head, viewed from above, is rather pear-shaped with a gentle posterior slope. The eye field widens posteriorly and there is often a transverse fringe above the anterior eyes. Paturons (bases of the chelicerae) are inclined forward with multiple (plurident) retromarginal teeth and several promarginal teeth. The legs are slender and as long as, or longer than, the body. The Aspects of the general morphology of first or fourth pair of legs is longest. Helpis Illustrators (and ©) B.J. Richardson (CSIRO), The male’s palp and female’s epigyne differ between species. The male’s palp has a cymbial M. Zabka (diag.) (QMB) flange and the tegulum is ovoid, with or without a tegular lobe. The embolus is usually bent or hook-like with a broad base. A single retro-lateral tibial apophysis is slightly bent or hooked.
    [Show full text]
  • WCO-Lite: Online World Catalogue of Harvestmen (Arachnida, Opiliones)
    WCO-Lite: online world catalogue of harvestmen (Arachnida, Opiliones). Version 1.0 Checklist of all valid nomina in Opiliones with authors and dates of publication up to 2018 Warning: this paper is duly registered in ZooBank and it constitutes a publication sensu ICZN. So, all nomenclatural acts contained herein are effective for nomenclatural purposes. WCO logo, color palette and eBook setup all by AB Kury (so that the reader knows who’s to blame in case he/she wants to wield an axe over someone’s head in protest against the colors). ZooBank register urn:lsid:zoobank.org:pub:B40334FC-98EA-492E-877B-D723F7998C22 Published on 12 September 2020. Cover photograph: Roquettea singularis Mello-Leitão, 1931, male, from Pará, Brazil, copyright © Arthur Anker, used with permission. “Basta de castillos de arena, hagamos edificios de hormigón armado (con una piscina en la terraza superior).” Miguel Angel Alonso-Zarazaga CATALOGAÇÃO NA FONTE K96w Kury, A. B., 1962 - WCO-Lite: online world catalogue of harvestmen (Arachnida, Opiliones). Version 1.0 — Checklist of all valid nomina in Opiliones with authors and dates of publica- tion up to 2018 / Adriano B. Kury ... [et al.]. — Rio de Janeiro: Ed. do autor, 2020. 1 recurso eletrônico (ii + 237 p.) Formato PDF/A ISBN 978-65-00-06706-4 1. Zoologia. 2. Aracnídeos. 3. Taxonomia. I. Kury, Adriano Brilhante. CDD: 595.4 CDU: 595.4 Mônica de Almeida Rocha - CRB7 2209 WCO-Lite: online world catalogue of harvest- men (Arachnida, Opiliones). Version 1.0 — Checklist of all valid nomina in Opiliones with authors and dates of publication up to 2018 Adriano B.
    [Show full text]
  • 1 Innate Aversion to Ants
    INNATE AVERSION TO ANTS (HYMENOPTERA: FORMICIDAE) AND ANT MIMICS: EXPERIMENTAL FINDINGS FROM MANTISES (MANTODEA) Running Title: Ant mimicry Ximena J. Nelson1, Robert R. Jackson1, Daiqin Li2, Alberto T. Barrion3, G. B. Edwards4 1School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Email: [email protected] Phone: 64-3-3642064 Fax: 64-3-3642950 2Department of Biological Sciences, National University of Singapore, Singapore 119260 3Entomology Division, International Rice Research Institute, Manila 1099, Philippines 4Florida State Collection of Arthropods, Division of Plant Industry, Gainesville, Florida 32614-7100, U.S.A. 1 ABSTRACT Field data suggest that ants may be important predators of mantises which, in turn, may be important predators of jumping spiders (Salticidae). Using a tropical fauna from the Philippines as a case study, the reactions of mantises to ants, myrmecomorphic salticids (i.e., jumping spiders that resemble ants) and ordinary salticids (i.e., jumping spiders that do not resemble ants) were investigated in the laboratory. Three mantis species (Loxomantis sp., Orthodera sp. and Statilia sp.) were tested with ten ant species, five species of Myrmarachne (i.e., myrmecomorphic salticids) and 23 ordinary salticid species. Two categories of the myrmecomorphic salticids were recognized: ‘typical Myrmarachne’ (four species with a strong resemblance to ants) and M. bakeri (a species with less strong resemblance to ants). Ants readily killed mantises in the laboratory, confirming that, for the mantises we studied, ants are dangerous. In alternate-day testing, the mantises routinely preyed on the ordinary salticids, but avoided ants. The mantises reacted to myrmecomorphic salticids similarly to how they reacted to ants (i.e., myrmecomorphic salticids appear to be, for mantises, Batesian mimics of ants).
    [Show full text]
  • Australasian Arachnology 72
    AAuusstrtraallaassiianan AArrachnachnoolloogygy Price $3 Number 72 ISSN 0811-3696 August 2005 Newsletter of Newsletter of the AustralasianArachnologicalSociety Australasian Arachnology No. 72 Page 2 THE AUSTRALASIAN ARTICLES ARACHNOLOGICAL SOCIETY The newsletter depends on your contributions! We encourage articles on a (www.australasian-arachnology.org) range of topics including current research activities, student projects, upcoming We aim to promote interest in the events or behavioural observations. ecology, behaviour and taxonomy of arachnids of the Australasian region. Please send articles to the editor: MEMBERSHIP Volker Framenau Department of Terrestrial Invertebrates Membership is open to amateurs, Western Australian Museum students and professionals, and is Locked Bag 49 managed by our Administrator: Welshpool, W.A. 6986, Australia. Richard J. Faulder [email protected] Agricultural Institute Yanco, New South Wales 2703. Format: i) typed or legibly printed on A4 Australia paper or ii) as text or MS Word file on email: [email protected] CD, 3½ floppy disk, or via email. Membership fees in Australian LIBRARY dollars, per 4 issues: The AAS has a large number of reference books, scientific journals and *discount standard institution papers available for loan or as Australia $8 $10 $12 photocopies, for those members who do NZ/PNG $10 $12 $14 not have access to a scientific library. elsewhere $12 $14 $16 Professional members are encouraged to There is no agency discount. send in their arachnological reprints. All postage is by airmail. *Discount rates apply to unemployed, pensioners Contact our librarian: and students (please provide proof of status). Jean-Claude Herremans Cheques are payable in Australian PO Box 291 dollars to “Australasian Arachnological Manly, New South Wales 1655.
    [Show full text]
  • KISHIDAIA, No.117, Aug
    KISHIDAIA Bulletin of Tokyo Spider Study Group No.117, Aug. 2020 ─ 目 次 ─ 奥村賢一:ヤチグモ類奇形個体の事例 ……………........................…………................………...….. 1 馬場友希・河野勝行:アマミホウシグモによるコヒゲジロハサミムシの捕食 …..................…….…. 4 馬場友希・吉田 譲:福島県からのババハシリグモの初記録 .....................................................… 7 新海 明:スズミグモの網構造の再検討 ………................................…………................…..…….. 9 鈴木佑弥:野外におけるシラホシコゲチャハエトリの雄間闘争の観察 …………...............………..… 14 鈴木佑弥・奥村賢一:静岡県におけるヤクチビヤチグモの記録 ................................................... 18 鈴木佑弥・安藤昭久:イッカクコブガシラヌカグモ (新称) の分布記録 ....................................... 22 平松毅久・嶋田順一:晩秋の奥武蔵にカネコトタテグモを探して ................................................ 27 平松毅久:埼玉県でムナアカナルコグモを採集 ......................................................................... 31 長井聡道:ヤスダコモリグモの生態 ........................................................................................ 34 平松毅久:本土産ナルコグモと卵のうが微妙に違う南西諸島産 Wendilgarda (カラカラグモ科) .... 39 DRAGLINES 馬場友希・中島 淳:福岡県におけるマダラフクログモの初記録 ….......................................... 44 馬場友希・中島 淳・奥村賢一:福岡県北九州市白島 (男島) におけるクモの追加記録 .............. 45 笹岡文雄:プランターから採集されたナナメケシグモ ..…………......…….…….…...............…….. 46 嶋田順一:「はやにえ」にされたジョロウクモを見て思うこと ….............................................. 46 嶋田順一・吉野光代:天覧山でクモタケが大量発生 …………...............…………......................... 48 加藤俊英・馬場友希:ワイノジハエトリの千葉県からの採集記録 …………..…..................………. 50 林 成多・馬場友希:島根県東部のイソハエトリ ...…………….…………………................………. 51 遠藤鴻明・内田翔太・篠部将太朗・谷川明男:南大東島で採集されたクモ ................................. 53 遠藤鴻明:青ヶ島で採集されたクモ …….....................................................................…….….
    [Show full text]
  • Nelson & Jackson R2 Also Unmarked
    Timid spider uses odor and visual cues to actively select protected nesting sites near ants Running head: Ants as protector species of spiders XIMENA J NELSON1 ROBERT R JACKSON1,2 1School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Email: [email protected] Phone: 64-3-3667001, extn. 4050 Fax: 64-3-364 2590 2International Centre of Insect Physiology and Ecology (ICIPE), Thomas Odhiambo Campus P.O. Box 30, Mbita Point, Kenya Keywords: mixed-species association, protector species, anti-predator defense, protective association, myrmecophily, salticid. 1 Abstract Associations in which a more vulnerable species gains protection by seeking out the company of a pugnacious ‘protector’ species capable of deterring predators are documented among mixed-species groups from various taxa, but experimental studies are rare. We consider an unusual arthropod-based example in which the associate species, Phintella piantensis, is a jumping spider (Salticidae) that associates with the territorial weaver ant Oecophylla smaragdina, which in turn is a potential predator of Phintella. However, the predator we consider in this mixed-species association is Scytodes sp., a spitting spider (Scytodae) that often targets salticids as prey. Scytodes adopts a strategy of building its web over salticid nests and then preying on resident salticids when they leave or return to their nests. Our experiments show that, on the basis of olfactory cues, Scytodes is deterred from the vicinity of O. smaragdina. Phintella builds dense ant-proof nests to minimize the risk of being killed by Oecophylla, and we show that olfactory as well as visual cues of ants elicit nest building by Phintella.
    [Show full text]