<<

The Biogeography and Age of Salticid Radiations with the Introduction of a New African Group (Araneae: Salticidae).

by

Melissa R. Bodner

B.A. (Honours) Lewis and Clark College, 2004

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The Faculty of Graduate Studies

(Zoology)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

July 2009

© Melissa R. Bodner 2009

ABSTRACT

Globally dispersed, jumping (Salticidae) are -rich and morphologically diverse. I use both penalized likelihood (PL) and Bayesian methods to create the first dated phylogeny for Salticidae generated with a broad geographic sampling and including fauna from the Afrotropics. The most notable result of the phylogeny concerns the placement of many

Central and West African forest species into a single clade, which I informally name the thiratoscirtines. I identify a large Afro-Eurasian clade that includes the Aelurilloida,

Plexippoida, the group, the Hasarieae/Heliophaninae clade and the Leptorchesteae

(APPHHL clade). The APPHHL clade may also include the Euophryinae. The region specific nature of the thiratoscirtine clade supports past studies, which show major salticid groups are confined or mostly confined to Afro-Eurasia, Australasia or the . The regional isolation of major salticid clades is concordant with my dating analysis, which shows the family evolved in the Eocene, a time when these three regions were isolated from each other. I date the age of Salticidae to be between 55.2 Ma (PL) and 50.1 Ma (Bayesian). At this time the earth was warmer with expanded megathermal forests and diverse with herbivores. The two oldest region-specific clades are the South American (41.1 Ma PL and 33.4 Ma Bayesian) and the Afro-Eurasian APPHHL clade (44.5 Ma PL and 33.8 Ma Bayesian), while the

Australasian “core” astioids are younger (36.9 Ma PL and 27.3 Ma Bayesian). Mixing of fauna from isolated regions has been limited as large clades are geographically restricted, yet some more recent long-range dispersal events, such as the arrival of the to the New

World, have occurred.

ii TABLE OF CONTENTS

ABSTRACT ...... ii TABLE OF CONTENTS...... iii LIST OF TABLES...... v LIST OF FIGURES...... vi ACKNOWLEDGEMENTS...... vii DEDICATION ...... viii CO-AUTHORSHIP STATEMENT...... ix

CHAPTER 1 An Introduction to Salticidae, Fossil Spiders and Molecular Dating Methods ...... 1 1.1 Introduction ...... 1 1.2 Literature Review...... 2 1.2.1 The State of the Salticid Phylogeny...... 2 1.2.2 Review of African Salticid Studies...... 3 1.2.3 African Salticids from Arid Environments...... 4 1.2.4 Salticids from the Afrotropics...... 5 1.2.5 A Review of Fossil Spiders in Amber ...... 6 1.2.6 Fossils and Molecular Dating Analyses in Spiders...... 6 1.3 R8s and BEAST Dating Methods ...... 7 1.3.1 Penalized Likelihood Implemented in R8s...... 7 1.3.2 BEAST: Bayesian Evolutionary Analysis Sampling Trees...... 8 1.4 Objectives and Hypotheses...... 9 1.4.1 Phylogeny, Age and Global Distribution of Salticidae...... 9 1.4.2 The Age of Salticidae...... 9 1.5 References ...... 11

CHAPTER 2 The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae) ...... 18 2.1 Introduction ...... 18 2.2 Methods...... 20 2.2.1 Taxon Sampling...... 20 2.2.2 DNA Extraction ...... 21 2.2.3 PCR Amplification and Sequencing ...... 21 2.2.4 Sequence Alignment ...... 23 2.2.5 Phylogenetic Reconstruction ...... 26 2.2.6 Divergence Time Estimation ...... 27 2.3 Results ...... 36 2.3.1 Model choice...... 36 2.3.2 Phylogeny from the All-Genes Analysis ...... 36 2.3.3 Phylogenies from Individual Gene Regions ...... 37 2.3.4 Estimating Divergence Times...... 39 2.4 Discussion...... 42 2.4.1 The Thiratoscirtines: an African Radiation...... 42 2.4.2 Gabonese Salticid Fauna...... 43 2.4.3 Other Aspects of the Salticid Phylogeny ...... 44 2.4.4 Calibration Points...... 46 2.4.5 Age and Diversity of Salticidae in Comparison to Other Radiations ...... 49 iii 2.4.6 The Family Evolved at a Time of Expanded Megathermal Forests ...... 50 2.4.7 Regional Isolation of Major Salticid Groups...... 51 2.4.8 Biogeographic History of Region Specific Clades ...... 54 2.4.9 The Thiratoscirtines are an Afrotropical Forest Group...... 59 2.4.10 Age Alone Does Not Explain the Size of Salticid Radiations...... 60 2.5 References ...... 87

Chapter 3 Salticidae: A Framework for Evolutionary Studies...... 95 3.1 The Salticid Radiation ...... 95 3.2 Reconstructing and Dating the Salticid Phylogeny...... 95 3.2.1 Strengths of the Thesis...... 95 3.2.2 Challenges of Reconstructing the Salticid Phylogeny...... 96 3.2.3 Dating and Gaps in the Fossil Record ...... 96 3.3 Exploring Community Level Convergences Using the Salticids...... 97 3.4 Working Hypotheses...... 98 3.4.1 Number of Dispersals Between Isolated Regions...... 98 3.4.2 Ecomorphology...... 99 3.5 Continuing to Build the Salticid Tree of Life ...... 99 3.6 The Potential Use of Actin 5C ...... 100 3.7 Future Research ...... 100 3.7.1 The Thiratoscirtine Phylogeny...... 100 3.7.2 The Age of Basal Salticids...... 101 3.8 References ...... 102 Appendix A...... 104 ! !

iv LIST OF TABLES

Table 2.1 List of Species Used in Phylogenetic Analysis...... 62! Table 2.2 Age and Description of Amber Deposits ...... 69! Table 2.3 Summary of Calibration Points ...... 70!

v LIST OF FIGURES ! Figure 2.1 Phylogeny from All-Genes ...... 71! Figure 2.2 Phylogeny from 28S Random Order Taxa Alignment...... 72! Figure 2.3 Phylogeny from 28S Original Alignment...... 73! Figure 2.4 Phylogeny from 16SND1...... 74! Figure 2.5 Phylogeny from CO1 ...... 75! Figure 2.6 Phylogeny from Actin 5C ...... 76! Figure 2.7 Starting Tree for R8s Dating Analysis...... 77! Figure 2.8 BEAST Dating Tree Topology (Analysis 1)...... 78! Figure 2.9 BEAST Analysis 1...... 79! Figure 2.10 95% HPD Interval Bars of BEAST Analysis 1...... 80! Figure 2.11 BEAST Analysis 2...... 81! Figure 2.12 BEAST Analysis 3...... 82! Figure 2.13 BEAST Analysis 4...... 83! Figure 2.14 R8s Analysis 3 ...... 84! Figure 2.15 Photos of Thiratoscirtine Genera ...... 85! Figure 2.16 Map and Phylogeny (BEAST Analysis 1) ...... 86! Appendix A Figure 1. R8s Analysis 2...... 106! Appendix A Figure 2. R8s Analysis 1...... 107! Appendix A Figure 3. R8s Analysis 4...... 108!

vi

ACKNOWLEDGEMENTS

I am grateful to the faculty, staff and graduate students of the Zoology Department at UBC. I would like to extend a special thanks to Dr. Wayne Maddison, without whose knowledge, expertise, intuition and insight this thesis would not be possible. I offer my gratitude to Karen Needham and members of the UBC Maddison lab, past and present: Dr. Ingi Agnarsson, Dr. Damian Elias, Dr. Peter Midford, Junxia Zhang and Gwylim Blackburn for their insight and support. I would like to thank the members of my committee: Dr. Chris Harley, Dr. Dolph Schluter, Dr. Arne Moores and Dr. Wayne Maddison for their time and critique of my work. I thank Dr. Luke Harmon for helping me construct a conceptual framework to direct my research.

I would also like to acknowledge the work of those who collected specimens used in this study: Dr. Marshall Hedin, Dr. Gita Bodner, Dr. Ingi Agnarsson, Junxia Zhang and others. I extend a special thanks to Domir De Bakker of the Royal Museum for Central in Tervuren, Belgium for help with Gabonese spider collection. I also thank him for his help obtaining literature on African salticid fauna.

I would like to thank Dr. Ludovic Ngok Banak (IRET & CENAREST) for in-country support and permit assistance in and Jean Pierre Vande Weghe (WCS) for logistical expertise and transportation in Gabon. I also thank: Gustave Mayi (SEEG), Dr. Lee White (WCS), Ghislain Ella (IRET), as well as Gaspard Abitsi (WCS) and the support crew at Parc national de la Waka, Ngounié Province, Gabon.

I am grateful to Jennifer Guevara for her friendship, laughter and support throughout my time at UBC. I would like to thank Dr. Greta Binford for her insight and help during my Undergraduate degree—much of which shaped this graduate work. I would like to thank my Grandmother, Sue McKinney, for her financial support during my B.A., without which my advanced degree would not be possible. Finally, I thank my mother, father, brother and sister for encouraging me in my educational endeavors.

This work was funded by an NSERC grant to W.P. Maddison.

! !

vii

DEDICATION

To those who have gone before And those who will come after To learn about the natural world And to admire life’s treasure—its diversity

viii

CO-AUTHORSHIP STATEMENT

The second chapter of this thesis is a collaboration between M.R. Bodner and W.P. Maddison. The research project was identified and designed by Bodner and Maddison. Both contributed to the research by collecting specimens. Maddison selected and identified specimens for the analysis. Bodner performed the data analysis and prepared the manuscript with input from Maddison.

ix CHAPTER 1 An Introduction to Salticidae, Fossil Spiders and Molecular Dating Methods.

1.1 Introduction

There are over 3,600 recognized genera of spiders (Araneae) in 108 families

(Platnick 2009). Jumping spiders (Salticidae) make up the most species-rich family with more than 5,000 of the 40,000 known species of spiders (Platnick 2009). This family is delimited by a pair of large anterior eyes found at the front of their carapace, which gives them excellent vision and allows them to find prey and mates using visual cues (Jackson

& Pollard 1996). Jumping spiders, unlike many of their web hunting counterparts, are diurnal, roaming hunters (Foelix 1996; Jackson & Pollard 1996). Although most jumping spider species do not hunt using webs, they use silk to balloon, lay draglines and build egg cases and nests for protection (Foelix 1996).

Jumping spiders come in a range of diverse body forms and colorations

(Prószy!ski 2009). Most range in size from 3-10 mm (Foelix 1996), but can vary greatly in shape. Some have thick, robust legs and a fat abdomen, while others are long with thin legs and abdomens (Prószy!ski 2009). Others mimic beetles or in form and behavior (Peckham & Peckham 1892; Galiano 1986; Cutler 1987; Cushing 1997;

Ceccarelli & Crozier 2007; Ceccarelli 2008; Richman 2008). Globally distributed, salticids are most diverse in tropical forests, and are found in temperate forests, mangroves, estuaries, marshes, grasslands and savannas (Coddington & Levi 1991).

Some species show a preference for microhabitat type (i.e. tree trunk vs. tree ), while other species are habitat generalists (Cumming & Wesolowska 2004).

1

1.2 Literature Review

While work remains to document and describe species in an evolutionary framework, progress is being made towards understanding the salticid family tree and the phylogenies of individual groups (Hedin & Maddison 2001; Maddison & Hedin 2003;

Maddison & Needham 2006; Zhang et al. 2006; Maddison et al. 2008; Maddison 2009).

An understanding of evolutionary relationships will open up the door for comparative studies in behavior, ecology and evolution (for examples see Ceccarelli & Crozier 2007;

Su et al. 2007).

! 1.2.1 The State of the Salticid Phylogeny

The phylogeny of salticids has been reconstructed using molecular and morphology data (Hedin & Maddison 2001; Maddison & Hedin 2003; Maddison &

Needham 2006; Maddison et al. 2008). Initial morphological work focused on characters of both the genitalia and (Simon 1901; Prószy!ski 1976). Numerous morphological shared, derived characters (synapomorphies)—including those of the eyes—have been used to separate the Salticoida (see Maddison 1988 for a detailed description; Maddison 1996), which contain 90% of salticid species, from the basal jumping spider lineages (Wanless 1980, 1982, 1984; Blest & Sigmund 1984). This division has been supported by various molecular studies (Maddison & Hedin 2003;

Maddison & Needham 2006; Zhang et al. 2006; Maddison et al. 2007; Maddison 2009).

2 Within Salticidae synapomorphies of the male palp have been used to identify groups (for examples see Griswold 1987; Maddison 1988, 1996, 2009; Prószy!ski 2009).

Molecular phylogenies of the family have typically incorporated data from four gene regions (Hedin & Maddison 2001). These include three mitochondrial regions: ~1050 bp from cytochrome oxidase 1 (CO1), ~560 bp of the large ribosomal subunit 16S (with adjacent tRNA) and ~400 bp of NADH1 dehydrogenase (ND1), and one region of nuclear DNA: ~750 bp of the large ribosomal subunit 28S (Hedin & Maddison 2001).

The rates of evolution of these genes vary (ND1 >> COI >> 16S >> 28S) (Hedin &

Maddison 2001). 28S tends to provide the most resolution and in combination these genes resolve the tree at various levels (Hedin & Maddison 2001).

In recent years published molecular phylogenies have sampled taxa from the

Americas, Australasia and other localities in the Old World (Maddison & Hedin 2003;

Maddison et al. 2008). Until this study, limited work had been done on the placement of fauna from the Afrotropics using molecular data (Maddison & Hedin 2003).

Additionally, while Actin 5C sequences have been obtained for broader spider studies this is the first study using the gene Actin 5C for salticid systematics (Vink et al. 2008).

1.2.2 Review of African Salticid Studies

In general, study of African salticids has focused on species from arid environments (Wesolowska & Russell-Smith 2000). Many of these surveys focus on quantifying overall diversity and abundance with less attention paid to faunal composition. In two detailed studies of African salticid fauna, Wesolowska & Russell-

3 Smith (2000) describe 69 species from the woodland, bush land and open grasslands of

Tanzania and Wesolowska & Haddad (2009) describe 72 species from the Ndumo Game

Reserve, . Knowledge of jumping spider diversity has been enhanced by general spider surveys in South Africa (van den Berg & Dippenaai-Schoeman 1991; van der Merwe 1996; Lotz et al. 1991; Dippenaar et al. 2008, Foord et al. 2002; Dippenaar-

Schoeman & Leroy 2003, Dippenaar-Schoeman et al. 2005; Modiba et al. 2005),

Namibia (Russell-Smith 2002; Wesolowsk 2006), (Russell-Smith 1981) and

Kenya (Warui et al. 2004; Russell-Smith et al. 1987). Central and West African jumping spider knowledge comes from studies in high-altitude meadows and savannahs in the

Nimba Mountains, (Rollard & Wesolowsk 2002) and spider surveys in the woodland savannahs of the (Blandin & Célérier 1981) and Katanga,

Democratic Republic of the Congo (formally Shaba Province, Zaire) (Malaisse & Benoit

1979).

1.2.3 African Salticids from Arid Environments

Of the ground-dwelling savannah salticids, the aelurillines, an Old World group is the most prevalent—comprising a large portion of the ground diversity (43% and 33% of species in Botswana and , respectively) (Russell-Smith 1981; Wesolowska &

Russell-Smith 2000). Also present in arid environments are a number of plexippoid genera (including, but not limited to , , , , Thyene and

Pellenes), heliophainines (Wesolwska 2003), euophryines, myrmarachnines and a few dendryphantines (Marpissoida), as well as other groups (Wesolowska & Russell-Smith

2000; Warui et al. 2004; Foord et al. 2002; Dippenaar-Schoeman & Leroy 2003;

4 Dippenaar-Schoeman et al. 2005). Also part of the fauna is the basal salticid Portia

(Modiba et al. 2005) and the beetle-mimicking genus Pachyballus (Foord et al. 2002).

1.2.4 Salticids from the Afrotropics

What is known about African tropical forest salticids comes from studies looking at spiders from the Ivory Coast (Wanless & Clark 1975; Berland & Millot 1941; Szüts &

Jocqué 2001), and Guinea (Berland & Millot 1941). Species in these studies include several aelurilline genera: , and ; a number of plexippoid genera: Hyllus, Thyene, Telamonia and and members of the Philaeus group: Tusitala and Philaeus (Wanless and Clark 1975; Berland & Millot 1941). Other genera including “,” Portia (non-Salticoida), Rhene (Marpissoida), Pharacocerus,

Schenkelia, Tecuna, Pochyta, Saraina and the -like and Pachyballus

(Wanless and Clark 1975; Berland & Millot 1941). More recently there have been descriptions of the genus Bacelarella from the Ivory Coast (Szüts & Jocqué 2001);

Enoplomischus from the Democratic Republic of the Congo, the Ivory Coast, and

(Wesolowska & Szeremeta 2001; Wesolowska 2005); and Alfenus, Pellolesserta, Saraina and Stenaelurillus in (Szüts & Scharff 2005). Based on molecular work,

Maddison et al. (2008) propose a Bacelarella group that includes Phlegra, Pochyta and

Nimbarus genera from and suggest that the aelurillines, freyines and the

Bacelarella group form a clade—the Aelurilloida.

5

1.2.5 A Review of Fossil Spiders in Amber

The oldest spider fossil is of a spinneret found in rock from the Middle

(Shear et al. 1989; Selden et al. 2008). Mesozoic spider fossils are rare compared to fossils in younger ambers (Penney et al. 2003), but there is a fossil Mesothele spider from

295 Ma (Selden 1996). Mesothele spiders are primitive in many respects compared to their sister group, the Opistholthelae, which contains all other spider groups (Selden

1996). The oldest Opistholthelae is from the (240 Ma) (Selden & Gall 1992).

Many families show up as fossils in the or Cenozoic and most Cretacous suborders survived the KT extinction (Penney et al. 2003), although some families are as young as the Neogene (Penney 2008). Salticidae show up in the Eocene (Penney 2006;

2008) and Penney (2006) notes it is odd that salticids—a spider group with an active ecology—would not show up earlier in Cretaceous ambers if indeed they had already evolved.

1.2.6 Fossils and Molecular Dating Analyses in Spiders

A study on Hawaiian and a separate study on Pholcus in , used the age of islands within an archipelago as a calibration to date a phylogeny (Arnedo

& Gillespie 2006; Dimitrov et al. 2008). By using fossil calibration points the ages of older lineages can be dated. Recently, Binford et al. (2008) used fossil spiders preserved in amber to date the divergence times of the Loxosceles and Sicarius spider lineages and

Hendrixson & Bond (2007) used a Cretaceous fossil to date the Antrodiaetus, an old

6 genus of Mygalomorph spiders. Andriamalala (2007) dated the age of some salticid lineages using a single basal salticid fossil.

1.3 R8s and BEAST Dating Methods

Divergence times can be estimated using either a global molecular clock, which assumes one rate for the whole tree, or a method permitting rate heterogeneity, which allows local rates to vary across a tree (Rutschmann 2006). Most often global molecular clocks models are not appropriate as rates vary substantially on a tree (Rutschmann

2006). R8s (Sanderson 2003) and BEAST (Drummond et al. 2007) are programs used to date molecular phylogenies and can incorporate calibration point information. Both programs can incorporate rate heterogeneity models.

1.3.1 Penalized Likelihood Implemented in R8s

In r8s the age of nodes are estimated on a user supplied starting tree with either a

Langley-Fitch global molecular clock (Langley & Fitch 1974) or relaxed molecular clock model using a penalized likelihood (PL) (Sanderson 2002) or nonparametric rate smoothing (NPRS) (Sanderson 1997) model. NPRS smoothes the rapidness of the rate of change along a lineage by penalizing rates that change too quickly in comparison to the rates of neighboring branches (Rutschmann 2006). PL (Sanderson 2002) uses the NPRS function (Sanderson 1997), but adds a roughness penalty that affects the smoothing parameter and prevents an over fit of the data which sometimes occurs with NPRS

(Rutschmann 2006). The data are used to find the optimal level of smoothing— with a

7 large smoothing value the roughness penalty dominates the NPRS function and the methods acts like a global molecular clock and with a small value smoothing is effectively unrestrained and the method acts more like NPRS (Rutschmann 2006). PL and NPRS can be implemented in r8s using several algorithms (POWELL, TN and

QNEWT) (Sanderson 2004). When using the program, nodes can be either fixed at a certain age or allowed to move unfixed around a set of minimum and maximum constraints, which often better reflects fossil data (Sanderson 2004). The TN algorithm is recommended for fossil constraint reconstructions, as it is faster than the POWELL algorithm and more stringent (Sanderson 2004).

1.3.2 BEAST: Bayesian Evolutionary Analysis Sampling Trees

BEAST is a phylogenetic program that uses a Bayesian MCMC chain to estimate a phylogeny, while simultaneously estimating divergence times (Drummond et al. 2007).

It generates a starting tree with a topology that will change as the MCMC chain runs

(Drummond et al. 2007). The tree can be generated using a global or relaxed clock model, which can be run with an exponential or lognormal distribution (Drummond et al.

2007). For species-level phylogenies a Yule model prior with a constant speciation rate is recommended (Drummond et al. 2007). BEAST also allows for the following calibration distributions: uniform, normal, lognormal, exponential or gamma (Drummond et al. 2007). The uniform prior can be used to set an upper and lower bound on a node

(Drummond et al. 2007), much like the maximum and minimum bounds used in r8s.

Nodes in BEAST can be assigned as monophyletic or unrestricted tMRCA (time to the

8 most recent common ancestor) (Drummond et al. 2007). A Maximum clade credibility tree can be used to summarize the age distribution generated by BEAST on the tree that has the maximum sum of posterior probabilities (Drummond et al. 2007). It generates a

95% HPD (highest posterior density) interval, which is the shortest interval that contains

95% of the sampled values (Drummond et al. 2007).

1.4 Objectives and Hypotheses

1.4.1 Phylogeny, Age and Global Distribution of Salticidae

The objective of this thesis is to present an updated family-level phylogeny of

Salticidae with the broadest geographic sampling to date including fauna from the little sampled tropical forests of Central Africa. Using this phylogeny I date the family and the major groups of Salticoida and look at their biogeographic history to explore why groups are mostly or entirely restricted to one geographic region: the New World, Australasia and Afro-Eurasia.

1.4.2 The Age of Salticidae

Salticidae may be a relatively young spider lineage, as they are not present in the

Cretaceous fossil record (Penney 2006, 2008) and there are no salticids in the fossil-rich

Eocene amber from Le Quesnoy, (Nel et al. 2004; Penney 2006, 2008). Our knowledge of salticid fauna is incomplete as there are limited amber inclusions with fossil spiders from 76.5-53 Ma (Penney 2008). Given our sparse understanding of fauna from this time the family may be older than the Eocene, but given the lack of fossils in

9 Cretaceous amber from before 76.5 Ma, I suspect they are not mid-Cretaceous. Based on

Maddison & Hedin (2003), New and Old World distribution patterns reflect a post- continental break-up scenario, also suggesting the family is late or post-Cretaceous.

Furthermore, Andriamalala (2007) dated the age of some salticid lineages and found they were all younger than ~38 Ma and found some large lineages to be quite young (e.g. the plexippoids were dated to 3.76 Ma). While it would be surprising if highly diverse groups like the plexippoids were truly only a few million years old, based on the information given above, I hypothesize the family evolved in or after the late Cretaceous.

10

1.5 References

Andriamalala, D. (2007). Revision of the genus Padilla Peckham and Peckham, 1894 (Araneae: Salticidae) — Convergent evolution of secondary sexual characters due to sexual selection and rates of molecular evolution of jumping spiders. Proceedings of the California Academy of Sciences, 58(13), 243-330.

Arnedo, M. & Gillespie, R. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószy!ski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41(2), 472-495.

Berland, I. & Millot, J. (1941). Les araignées de l'Afrique occidentale française. 1. Les Salticides. Mémoires du Muséum, 12, 297-424.

Binford, G.J., Callahan, M.S., Bodner, M.R., Rynerson, M.R., Nuñez, P.B., Ellison, C.E. & Duncan, R.P. (2008). Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. Molecular Phylogenetics & Evolution, 49(2), 538-53.

Blandin P. & Célérier, M.L., (1981). Les araignées des savanes de Lamto (Côte d’Ivoire). Publications du Laboratoire de Zoologie. École Normale Supérieure, 21(2), 505- 586.

Blest, A.D. & Sigmund, C. (1984). Retinal mosaics of the principal eyes of two primitive jumping spiders, Yaginumanis and : clues to the evolution of Salticid vision. Proceedings of the Royal Society of London, Series B, 221, 111-125.

Ceccarelli, F.S. & Crozier, R.H. (2007). Dynamics of the evolution of Batesian mimicry: molecular phylogenetic analysis of ant-mimicking Myrmarachne (Araneae: Salticidae) species and their ant models. Journal of evolutionary biology, 20(1), 286-295.

Ceccarelli, F.S. (2008). Behavioral mimicry in Myrmarachne species (Araneae, Salticidae) from North . Journal of Arachnology, 36(2), 344-351.

Coddington, J.A. & Levi, H.W. (1991). Systematics and evolution of spiders (Araneae). Annual Review Ecology & Systematics, 22, 565-592.

Cumming, M.S. & Wesolowska, W. (2004). Habitat separation in a species-rich assemblage of jumping spiders (Araneae: Salticidae) in a suburban study site in . Journal of Zoology, 262(1), 1-10.

Cushing, P. E. (1997). Myrmecomorphy and myrmecophily in spiders: a review. The Florida Entomologist, 80(2), 165-193.

11

Cutler, B. (1987). A Revision of the American Species of the Antlike Jumping Spider Genus Synageles (Araneae, Salticidae). Journal of Arachnology, 15(3), 321-348.

Dimitrov, D., Arnedoa, M.A. & Ribera, C. (2008). Colonization and diversification of the spider genus Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos: evidence for long-term occupancy yet rapid recent speciation. Molecular Phylogenetics and Evolution, 48(2), 596-614.

Dippenaar-Schoeman A.S. & Leroy, A. (2003). A checklist of the spiders of the Kruger National Park, South Africa (Arachnida: Araneae). Koedoe: African Protected Area Conservation and Science, 46(1), 91-100.

Dippenaar-Schoeman, A.S., van der Walt, A.E., de Jager, M., le Roux, E. & van den Berg, A. (2005). The spiders of the Swartberg Nature Reserve in South Africa (Arachnida, Araneae). Koedoe: African Protected Area Conservation and Science, 48(1), 77-86.

Dippenaar, S.M., Dippenaar-Schoeman, A.S., Mogadi, M.A. & Khoza, T.K. (2008). A checklist of the spiders (Arachnida, Araneae) of the Polokwane Nature Reserve, Limpopo Province, South Africa. Koedoe- African Protected Area Conservation and Science, 50(1), 10-17.

Drummond, A.J., Ho, S.Y.W., Rawlence, N. & Rambaut, A. (2007). A Rough Guide to BEAST 1.4. Institute of Evolutionary Biology University of Edinburgh, Edinburgh, United Kingdom.

Foelix, R.F. (1996). Biology of Spiders. 2nd edition. Oxford University Press, Oxford, England.

Foord, S.H., Dippenaar-Schoeman, A.S. & van der Merwe, M. (2002). A checklist of the spider fauna of the Western Soutpansberg, South Africa (Arachnida: Araneae). Koedoe: African Protected Area Conservation and Science, 45(2), 35-43.

Galiano, M.E. (1986). Salticidae (Araneae) Formiciformes. 16. Especies nuevas o poco conocidas de Simprulla, Fluda, Descanso y Peckhamia, 44(107), 129-139.

Griswold, C.E. (1987). A revision of the jumping spider genus Habronattus F. O. P. – Cambridge (Araneae: Salticidae), with phenetic and cladistic analyses. University of California Publications in Entomology, 107, 1-345.

Hedin, M.C. & Maddison, W.P. (2001). A Combined Molecular Approach to Phylogeny of the Jumping Spider Subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 18(3), 386-403.

12 Hendrixson, B.E. & Bond, E.J. (2007). Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus). Molecular Phylogenetics and Evolution, 42(3), 738-755.

Jackson, R.R. & Pollard, S.D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287-308.

Langley, C.H. & Fitch, W.M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161-177.

Lotz, L.N., Seaman, M.T. & Kok, D.J. (1991). Surface-active spiders (Araneae) of a site in semi-arid central South Africa. Navorsinge van die Nasionale Museum Bleomfontein, 7, 530-540.

Maddison, W.P. (1988). A revision of jumping spider species groups formerly placed in the genus Metaphidippus, with a discussion of salticid phylogeny (Araneae). PhD Thesis. (Harvard University: Cambridge, MA.)

Maddison, W.P. (1996). Franganillo and other jumping spiders formely placed in the genus Metaphidippus (Araneae: Salticidae). Bulletin of the Museum of Comparative Zoology, 154, 215-368.

Maddison W.P. & Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529-549.

Maddison, W.P. & Needham, K. (2006). Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa, 1255, 37-55.

Maddison W.P., Zhang J.X. & Bodner, M.R. (2007). A basal Phylogenetic Placement for the Salticid Spider , with Descriptions of Two New Species (Araneae: Salticidae). Zootaxa, 1432, 22-33.

Maddison, W.P., Bodner, M.R. & Needham, K. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae) Zootaxa, 1893, 49–64.

Maddison, W.P. (2009). New cocalodine jumping spiders from Papua (Araneae: Salticidae: Cocalodinae). Zootaxa, 2021, 1-22.

Malaisse F., & Benoit P.L.G. (1979). Contribution à l’étude de l’ecosystéme forêt Claire (Miombo) au Shaba (Zaïre). Revue de Zoologie Africaine, 93, 485-499.

Modiba, M.A., Dippenaar, S.M., and Dippenaar-Schoeman (2005). A Checklist of spiders from Sovenga Hill, an inselberg in the Savanna Biome, Limpopo Province, South Africa (Arachnida: Araneae). Koedoe: African Protected Area Conservation and Science, 48(2), 109-115.

13

Nel, A., de Ploëg, G., Millet, J., Menier, J. J. & Waller, A. (2004). The French ambers: a general conspectus and the lowermost Eocene amber deposit of Le Quesnoy in the Paris basin. Geologica Acta, 2(1), 3-8.

Peckham, G. W. & E. G. Peckham. (1892). Ant-like spiders of the family Attidae. Occasional Papers of the Natural History Society of Wisconsin, 2(1), 1–84.

Penney, D., Wheater, C.P. & Selden, P.A. (2003). Resistance of Spiders to Cretaceous- Tertiary Extinction Events. Evolution, 57(11), 2599-2607.

Penney D. (2006). A new fossil Oonopid spider in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. African Invertebrates, 48(1), 71-75.

Penney D. (2008). Dominican Amber Spiders: A comparative palaeontological- neontological approach to identification, faunistics, ecology and biogeography. Siri Scientific Press.

Platnick, N.I. (2009). The World Spider Catalog, Version 8.5. The American Museum of Natural History.

Prószy!ski, J. (1976). Studium systematyczno-zoogeograficzne nad rodzina Salticidae (Aranei) Regionow Palearktycznego I Nearktycznego. Wyzsza Szkola Pedagogiczna w Siedlcach Rozprawy, 6, 1-260.

Prószy!ski, J. (2009). The Salticidae (Araneae) of the World. Prepared with the assistance of the Museum and Institute of Zoology, Polish Academy of Sciences Warsaw, POLAND. Available at http://www.miiz.waw.pl/salticid/main.htm.

Richman, D.B. (2008). Revision of the jumping spider genus Sassacus (Araneae, Salticidae, Dendryphantinae) in . Journal of Arachnology, 36(1), 26-48.

Rollard, C. & Wesolowska, W. (2002). Jumping spiders (Arachnida, Araneae, Salticidae) from the Nimba Mountains in Guinae. Zoosystema, 24(2), 283-307.

Russell-Smith, A. (1981). Seasonal activity and diversity of ground-living spiders in two African savanna habitats. Bulletin of the British Arachnological Society, 5, 145- 154.

Russell-Smith A., Ritchie J.M. & Collins N.M. (1987). The surface-active spider fauna of arid bushland in Kora reserve, Kenya. Bulletin of the British Arachnological Society, 7, 171-174.

14 Russell-Smith A. (2002). A Comparison of the Diversity and Composition of Ground- Active Spiders in Mkomazi Game Reserve, Tanzania and Etosha National Park, . The Journal of Arachnology, 30, 383-388.

Rutschmann, F. (2006). Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergences times. Diversity and Distributions, 12, 35-48.

Sanderson, M.J. (1997). A nonparametric approach to estimating divergence times in the absense of rate constancy. Molecular Biology & Evolution, 14, 1218-1231.

Sanderson, M. J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19, 1 01-109.

Sanderson, M.J. (2003). R8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics, 19, 301- 302.

Sanderson, M.J. (2004). r8s, version 1.70 User’s Manual. Section of Evolution and Ecology, University of California, Davis, USA.

Selden P.A. & Gall, J.-C.(1992). A Triassic mygalomorph spider from the northern Vosges, France. Palaeontology, 35, 211-235.

Selden, P.A. (1996). Fossil mesothele spiders. Nature, 379, 498-499.

Selden, P.A., Shear, W.A. & Sutton, M.D. (2008). Fossil evidence for the origin of spider spinnerets, and a proposed order. Proceedings of the National Academy of Sciences, 105(52), 20781-20785.

Shear, W. A., Palmer, J.M., Coddington, J.A. and Bonamo, P.M. (1989). A Devonian Spinneret: Early Evidence of Spiders and Silk Use. Science, 246(4929), 479-481.

Simon, E. (1901). Histoire Naturelle des Araignées. Deuxième edition. Tome 2, fasc. 3, 381-68.

Su, K.F., Meier, R., Jackson, R.R., Harland, D.P. & Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. European Society for Evolutionary Biology, 20, 1478-1489.

Szüts, T. & Jocqué, R. (2001). New Species in the Genus Bacelarella (Araneae, Salticidae) from Côte d’Ivoire. Annales du Musee Royal de I'Afrique Centrale (Sciences Zoologiques), 285, 77-92.

15 Szüts, T. & Scharff, N. (2005). Redescriptions of Little Known Jumping Spider Genera (Araneae: Salticidae) From . Acta Zoologica Academiae Scientiarum Hungaricae, 51(4), 357-378. van den Berg A. & Dippenaar-Schoeman A.S. (1991). Ground-living spiders from an area where the harvester termite Hodotermes mossambicus occurs in South Africa. Phytophylactica, 23, 247-253. van der Merwe M., Dippenaar-Schoeman A.S. & Scholtz CH. (1996). Diversity of ground-living spiders at Ngome State Forest, Kwazulu/Natal: a comparative survey in indigenous forest and pin plantations. African Journal of Ecology, 34, 342-350.

Vink, C.J., Hedin, M., Bodner, M.R., Maddison, W.P., Hayashi, C.Y. & Garb, J.E. (2005). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution, 48(1), 377-382.

Wanless, F.R. & Clark, D.J. (1975). On a collection of spiders of the family Salticidae from the Ivory Coast. Revue de Zoologie africaine, 89, 273-296.

Wanless, F.R. (1980). A revision of the spider genera Asemonea and Pandisus (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zoology), 39, 213- 257.

Wanless, F.R. (1982). A revision of the spider genus Cocalodes with a description of a new related genus (Araneae: Salticidae). Bulletin of the British Museum of Natural History (Zoology), 42, 263-298.

Wanless, F.R. (1984). A revision of the spider subfamily nom. n. (Araneae: Salticidae) with descriptions of six new genera. Bulletin of the British Museum of Natural History (Zoology), 46, 135-205.

Warui, C.M., Villet, M.H. & Young, T.P. (2004). Spiders (Araneae) from black cotton soil habitats of a highland savanna in Laikipia, central Kenya. Journal of Afrotropical Zoology, 1, 9-20.

Wesolowska, W. & Russell-Smith, A.R. (2000). Jumping spiders from Mkomazi Game Reserve in Tanzania (Araneae Salticidae). Tropical Zoology, 13, 11-127.

Wesolowska, W. & Szeremeta, M. (2001). A revision of the ant-like salticids genera Enoplomischus Giltay, 1931, Kima Peckham and Peckham, 1902 and Leptorchestes Thorell, 1870 (Araneae: Salticidae). Insect Systematic Evolution, 32, 217-240.

Wesolowska, W. (2003). New data on African species with descriptions of new species (Araneae: Salticidae). Genus, 14(2), 249-294.

16 Wesolowska, W. (2005). A new species of Enoplomischus from Kenya (Araneae: Salticidae: Leptorchestinae). Genus, 16(2), 307-311.

Wesolowska, W. (2006). Jumping spiders from the Brandberg massif in Namibia (Araneae: Salticidae). African Entomology, 14(2), 225-256.

Wesolowska, W. & Haddad, C.R. (2009). Jumping spiders (Araneae: Salticidae) of the Ndumo Game Reserve, Maputaland, South Africa. African Invertebrates, 50(1), 13-103.

Zhang, J.X., Woon, Jeremy R. W. & Li, Daiqin. (2006). A New Genus and Species of Jumping Spiders (Araneae: Salticidae: Spartaeinae) from . The Raffles Bulletin of Zoology, 54(2), 241-244.

17 CHAPTER 2 The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae). 1

2.1 Introduction

Globally dispersed, jumping spiders (Salticidae) make up the most species-rich family of spiders with more than 5,000 of the earth’s 40,000 known species of spiders

(Prószy!ski 2009; Platnick 2009). The group has acute vision and is delimited by a pair of large anterior median eyes (Jackson & Pollard 1996). Jumping spiders are found in a variety of habitats and microhabitats and are distributed worldwide except in extreme polar regions (Cutler 1982). They have a wide array of body forms and colorations

(Prószy!ski 2009). Despite this remarkable diversity we do not know how and when they diversified globally. Several authors have suggested the family is relatively young

(Cretaceous or Eocene) (Penney 2006; Penney 2008; Andriamalala 2007) and that diversification of the family happened after the separation of the New and Old World continents (Maddison & Hedin 2003; Maddison et al. 2008).

Combined morphological and molecular studies have revealed a division between the Salticoida, which contain 90% of extant salticid species and the majority of the subfamilies, from the basal salticid groups (spartaeines, lyssomanines, lapsiines, hisponines, Holcolaetis, Sonoita, Cocalodes, Allococalodes and Eupoa) (Maddison &

Hedin 2003; Maddison & Needham 2006; Zhang et al. 2006; Maddison 2009). The

1 A version of this chapter will be submitted for publication. Bodner, M.R., & Maddison, W.P. The Biogeography and Age of Salticid Spider Radiations with the Introduction of a New African Group (Araneae: Salticidae).

18 majority of Salticoida groups are each mostly or entirely restricted to one of several continental regions (Maddison & Hedin 2003; Maddison et al. 2008). For example the

Amycoida are almost entirely Neotropical, while the Plexippoida (plexippines and pellenines) are mostly Afro-Eurasian, with the exception of the genus Habronattus in

North America and a few other groups (Maddison & Hedin 2003). American groups include the Marpissoida (dendryphantines and marpissines) and the freyines, Afro-

Eurasian groups include the heliophanines, aelurillines, Leptorchesteae and the Philaeus group and the Astioida are dominant in Australasia (Hedin & Maddison 2003; Maddison et al. 2008). The Euophryinae are an exception to this pattern, being found in the New and Old World (Maddison & Hedin 2003; Maddison et al. 2008).

Perhaps the biggest gap in sampling for phylogenetic reconstruction has been the

Afrotropics. In general, taxonomic sampling of African salticids has focused on species from arid environments (Wesolowska & Russell-Smith 2000). In this paper we explore the fauna of the tropical forests of Gabon by examining the placement of these salticids within the phylogeny of the family. With a more complete geographic sampling of salticids we can date a molecular tree. Knowing the time of diversification will allow us to address global distribution patterns in light of continental biogeographic history.

Maddison et al. (2003) suggest that the family may have evolved after the break- up of the continents in the late Mesozoic because major groups are each restricted to one continental region (Maddison & Hedin 2003). Similarly, Penney (2006, 2008) notes the family may be relatively young, because no salticids have been found in Cretaceous

19 amber, and members of the family are only known from Eocene Baltic amber. Based on the given information given we hypothesize the family evolved in or after the late

Cretaceous (<65 Ma).

To test if the origin of the family is late or post-Cretaceous, we use multiple fossil spider calibration points to estimate the divergence times of major groups on a phylogenetic tree with a broad geographic sampling of salticids. We present the first dated molecular tree for Salticidae and consider the biogeographic distribution of major groups within the family in light of divergence time estimates. The only previous attempt to date the family was by Andriamalala (2007), who fixed the age of Salticidae to 65 Ma and used a single fossil minimum in a penalized likelihood analysis of the 28S gene to estimate ages for major salticid groups. All groups were found to be younger than 38.7

Ma and many large groups like the plexippoids were found to be very young (< 4 Ma)

(Andriamalala 2007). We hope to build on this important first analysis by adding calibration points and increasing taxon sampling.

2.2 Methods

2.2.1 Taxon Sampling

Sequences were obtained from a subset of Gabon species that represented the diversity we found and combined with new taxa from across the phylogeny and a number of sequences from previous studies (see Table 2.1 for names, collection locality, gene information and GenBank accession numbers) (Maddison & Hedin 2003; Maddison &

Needham 2006; Maddison et al. 2007; Maddison et al. 2008). These taxa represent a

20 broad geographic sampling of the family. African samples were collected from tropical wet forests between 600 and 700 meters in elevation in the Parc national des Monts de

Cristal, Estuaire Province and Parc national de la Waka, Ngounié Province, Gabon.

Additional samples where collected from the Cape Esterias region of the Northwest coast, Estuaire Province. We did not sample for diversity within species because sampling was broadly dispersed across clades of thousands of species.

Samples were collected from foliage using a beat sheet method and from grasses using a sweep net and using visual searches of litter, stream banks, tree trunks and fallen logs. Samples were preserved in 100% EtOH and stored long term at –80°C. All morphological specimens and DNA vouchers are stored in the Spencer Entomological

Collection at the Beaty Museum, University of British Columbia.

2.2.2 DNA Extraction

Depending on the size of the specimen, 1-4 legs were removed for DNA. In a few instances the carapace was also used in addition to all available legs. Genomic DNA was extracted using the Puregene DNA Purification Kit (Gentra Systems). A few samples were processed using the DNAeasy Kit (Qiagen). Based on initial tissue volume some samples where diluted before being amplified.

2.2.3 PCR Amplification and Sequencing

Four gene regions were amplified, sequenced and used in phylogenetic analysis.

They include the nuclear regions 28S (~1200 bp) and Actin 5C (~730 bp coding region

21 with a ~85-400 bp internal intron) and the mitochondrial regions CO1 (~1050 bp) and

16S (~650 bp), ND1 (~400 bp). For 16SND1 the following primers were used: forward

N1-J-12261 (Hedin 1997) and reverse LR-N-13398 (Simon et al. 1994); for COI forward

C1-J-1718 “SPID” (Simon et al. 1994) and reverse C1-N-2776 (Hedin & Maddison

2001); for 28S forward 28S“O” (Hedin & Maddison 2001) or ZX1 (van der Auwera et al.

1994 with the 11th bp changed from a Y to T) and for 28S reverse 28S“C” (Hedin &

Maddison 2001). A new forward primer was designed for Actin 5C, ActMBF2 5'-GCT

CCY TTR AAT CCH AAA G -3' and Actin-R1B (Vink et al. 2008) was used as the reverse primer. The protocols used to amplify 28S, Actin 5C and CO1 included a 2 m

95°C denaturation and 35 cycles of 45 s at 95°C, a 45 s annealing step at 48/49°C (28S),

48/55°C (Actin 5C) or 48/50°C (CO1), 1 m at 72°C and one 10 m extension step at 72°C.

For 16SND1 there was a 2 m 94°C denaturation and 35 cycles of 45 s at 94°C, a 20 s, 35 s or 45 s annealing step at 48°C, 1 m at 65°C and one 10 m extension step at 65°C (see

Hedin & Maddison 2001; Maddison & Needham 2006; Maddison et al. 2007; Maddison et al. 2008 for the protocols of previously published sequences). Most PCR experiments were run using Taq DNA Polymerase (Invitrogen), and a minimal number of samples were run using Paq5000 DNA Polymerase (Agilent Technologies), with their respective buffers. Invitrogen supplied the dNTPs and Oligo supplied the primers. All PCR products were stored at -20°C and those with a DNA concentration " 50 ng were sent to

Macrogen Inc. () to be sequenced in both directions using the 3730xl DNA analyzer.

22 DNA sequences were imported as .ab1 chromatogram files into Mesquite 2.01+

(Maddison & Maddison 2008). The chromaseq package (D. Maddison & W. Maddison in prep.) for Mesquite (Maddison & Maddison 2008) was used to obtain sequences using

Phred (Ewing & Green 1998; Ewing et al. 1998; Green & Ewing 2002) and Phrap (Green

1999). Chromatograms were viewed and hand-corrected using the “Color Cells by

Quality from Phred/Phrap” module in Mesquite (Maddison & Maddison 2008). In most cases contigs consisted of both the forward and reverse sequences. In some instances one read was of good quality, while the other was poor. In these cases only the single reads of exceptional quality were also included in the final dataset.

2.2.4 Sequence Alignment

Alignments included 230 taxa for 28S, 228 taxa for 16SND1, 181 taxa for COI,

93 taxa for Actin 5C and 230 taxa for the All-Genes matrix (individual gene data are missing from some taxa).

Protein Coding Genes

ND1, CO1 and Actin 5C nucleotide sequences were viewed using the “Color

Nucleotide by Amino Acid” option in Mesquite (Maddison & Maddison 2008). These sequences were aligned via amino acid read, but left as nucleotide data. In the case of

Actin 5C, the intron, which began at bp 226 of the coding region, was aligned using a gap opening cost of 24 and gap extension cost of 6 (24/6 ratio) (Hedin & Maddison 2001) in

CLUSTALW (1.83.1) (Higgins & Sharp 1988; Thompson et al. 1994). Most Actin 5C

23 sequences had ~85 bp intron. A few intron sequences were +400 bp long. In these long cases, the long introns aligned closely with the other intron sequences, but had an extended region either before or after this well-aligned area.

There are believed to be at least four copies of the Actin gene in spiders (Vink et al. 2008). To ensure that the new primer set amplified a single copy of the gene, we translated the coding region of the alignment to amino acids and looked for variation among sequences. Since an exhaustive search of the whole genome was not possible,

Vink et al. (2008) used amino acid variation in Drosophila melangogaster Actin as a comparison for determining copy number in spiders. There are six copies of Actin in D. melanogaster and the copies differ by 2-16 aa (Vink et al. 2008). Our data set contained

4 sequences that had one, unique amino acid change. This led us to conclude the Actin sample being amplified was indeed a single copy as the amino acid sequences had high identity with the exception of single amino acid changes in a few sequences. It should be noted that our data set had 27 amino acids that were inconclusive, meaning that one of the nucleotides of the codon was ambiguous and thus definitively identifying the amino acid was not possible. We used a NCBI Global nucleotide BLAST and a BLASTN search against the D. melanogaster genome to confirm that the copy was Actin 5C.

Ribosomal Genes

We used CLUSTALW (1.83.1) (Higgins & Sharp 1988; Thompson et al. 1994) to align the non-coding region of 16S (plus the adjacent tRNA) and the 28S gene using an

24 alignment with a 24/6 (cost of gap opening/cost of gap extension) penalty ratio following

Maddison & Hedin (2001). We randomized the order of the addition of 28S taxa using

Mesquite (Maddison & Maddison 2008) because we were concerned the order of the taxa biased the alignment (i.e. taxa added first aligned together more than taxa added later despite overall similarity). This produced two 28S alignments—one with the original taxa order (28S Original) and a second with a randomized order (28S Random Taxa

Order). 28S has a stem-loop structure (Gillespie el al. 2006) and while 28S stems are conserved and align with little uncertainty, loop regions can be more variable. After the two 28S data sets had been globally aligned with CLUSTALW (Higgins & Sharp 1988;

Thompson et al. 1994) we used the “Highlight Apparently Slightly Misaligned Regions” tool in Mesquite to identify misaligned regions, which we then selected and realigned locally using the 24/6 ratio. The 28S Original alignment was locally aligned between the following bp regions of the initial alignment: 989-1195 (realigned again 1007-1195),

984-1016 (realigned again 1005-1020), 953-973, 665-853 (realigned again 810-838),

730-751, 691-707, 388-486 (realigned again 441-488 and 474-494), 455-474, 423-442,

392-429, 400-439 (realigned again 425-442) and 0-197 bp. The 28S Random Taxa Order alignment was locally aligned between the following regions of the initial alignment:

1011-1192 (realigned again 1002-1021 and 993-1009), 956-1018, 668-836 (realigned again 771-840, 763-812, 713-752), 391-489 (realigned again 439-497, 461-487, 396-451,

423-444, 447-488), 391-433 (realigned again 409-431, 392-417, 397-424, 410-432) and

1-365 bp. Both data sets were then hand-corrected with minimal changes.

25

All-Genes Data Set

A concatenated data set was generated using the 28S Random Taxa Order (locally corrected), 16SND1, CO1 and Actin 5C (with the intron removed) alignments. The 28S

Random Taxa Order alignment was chosen for the consensus tree to eliminate alignment bias due to the order of taxa in the alignment. In the All-Genes alignment 28S contributed the most sequences followed by 16SND1, CO1 and Actin 5C, respectively.

2.2.5 Phylogenetic Reconstruction

Estimating Model Parameters

For each individual gene region (28S, CO1, 16SND1 and Actin 5C) and the All-

Genes set we used MrModeltest v2.3 (Nylander 2004) to find the best model of evolution using the Akaike Information Criterion (AIC).

Bayesian Analysis

The 28S, CO1, 16SND1 and Actin 5C data sets were run in MrBayes

(Huelsenbeck et al. 2001; Ronquist & Huelsenbeck 2003) using a GTR model (nst=6 rates=invgamma). GTR model parameters were allowed to vary across partitions. For the individual gene analyses the partitions were: 28S; 16S and ND1 first, second, third codon; CO1 first, second, third codon; Actin 5C first, second, third codon and the intron.

26 For the All-Genes analysis partitions were: 28S, 16S, ND1/CO1 (mitochondrial) first, second, third codon and Actin 5C first, second, third codon (the intron was eliminated to save computational time). All Bayesian analyses were run using the following parameters: mcmcp ngen= 200,000,000 samplefreq=1,000 nchains= 4 and a burn-in value of 0.25 (25%). Some analyses where stopped before reaching 200,000,000 generations. A majority rule consensus tree using the resulting MrBayes trees was generated in PAUP (Swofford 2002) and the posterior probabilities of the trees estimated

(Huelsenbeck et al. 2001; Ronquist & Huelsenbeck 2003).

2.2.6 Divergence Time Estimation

Data File Preparation

The 28S Random Taxa Order and 16SND1 alignments were combined and run in a Bayesian analysis to generate a starting tree for r8s. Five 16SND1 Havaika sequences obtained from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) from Arnedo and

Gillespie (2006) were added to 230 taxa from this study, so that Havaika could be used as a calibration point in our dating analysis (see Calibration Points). The 28S/16SND1

Bayesian analysis was run with the same GTR model as the other analyses and was allowed to vary across the following partitions: 28S/16S, ND1 first, second and third codon positions. The Bayesian analysis was run using the following parameters: mcmcp ngen= 200,000,000 samplefreq=1,000 nchains= 4 and a burn-in value of 0.25 (25%). The

28S/16SND1 alignment was also used as the input file to run the BEAST dating analysis.

27 To generate a starting tree in which to estimate the age of nodes in r8s the

28S/16SND1 Bayesian trees (including the Havaika sequences) were harvested after

91,098,000 generations (stdDev of clade frequencies = 0.009). The first 25% of the trees were discarded as post analysis burn-in and the tree with the second highest posterior probability (Tree 85,728,000 LnL -98434.000) was chosen as the starting tree for the r8s analysis. This tree was chosen, rather than the tree of highest probability, because the topology, especially that of the Salticoida, matched more closely the dating tree generated by BEAST. This allowed us to better compare the results of the two dating analyses.

Calibration Points

Three calibration points (Salticidae, Salticoida and /Spartaeinae) were chosen based on fossil spiders preserved in amber (see Table 2.2 for a summary of salticid fossils in amber) and one point was chosen based on the biogeography of the

Havaika genus of . These calibration points were used in the BEAST and r8s analyses.

For the Salticidae calibration we used a 44 Ma minimum and a 100 Ma maximum constraint. The oldest known amber salticids are from Baltic amber (Petrunkevitch 1950,

1958). The deposit is estimated to be 44-49 Ma old (Weitschat & Wichard 2002 as cited in Penney 2008), making salticids at least 44 Ma old. There are currently no known salticid fossils older than those from Baltic amber (Penney 2006, 2008). Salticidae have not been found in the 240+ spider inclusions (Penney 2006, 2008) from the Le Quesnoy,

28 French amber of the Late Eocene (53 Ma) (Nel et al. 2004). Additionally, no salticids have been found in amber from the Cretaceous period, including in deposits from France

(Penney 2006; Perrichot et al. 2007), (Grimaldi et al. 2002; Penney 2006),

New Jersey, USA (Penney 2002, 2006), (Alonso et al. 2000; Penney 2006, 2008),

Alberta, (McAlpine & Martin 1969; Penney 2008) and , (Zherikhin

& Eskvo 1999 as cited in Penney 2008) (all > 76.5 Ma) (Penney 2008). With these dates we hypothesize the family to be no older than 100 Ma and set the maximum age calibration of Salticidae to this value.

For the Salticoida calibration we used a 16 Ma minimum and a 49 Ma maximum constraint. The fauna of Baltic amber are comprised of members of the extant, but basal

(non-salticoid) subfamily (referred to as Gorgopsininae in Petrunkevitch

1950, 1958; Wunderlich 2004) and other basal salticids that cannot be placed in any extant group (Wunderlich 2004). There are no Salticoida from this amber deposit

(Wunderlich 2004). Salticoids could have existed elsewhere during the Eocene, a possibility we cover in the discussion. In the absence of other fossil information, we constrain Salticoida (the non-basal salticids) to be no older than the oldest age of the

Baltic amber, which is 49 Ma (Weitschat & Wichard 2002 as cited in Penney 2008). We set the minimum age calibration to 16 Ma, since the salticoids show up abundantly in the

Miocene Dominican Republic amber dating to this time (Iturralde-Vincent 2001; Penney

2008) indicating they are no younger than the deposit.

29 For the Lyssomaninae/Spartaeinae calibration we used a 22 Ma minimum and a

100 Ma maximum constraint. Garciá-Villafuerte and Penney (2003) identified one

Lyssomanes (basal salticid) from Chiapas (Simojovel) Mexican amber dating to 22-26

Ma (Berggren & van Couvering 1974); however, no synapomorphy was listed that could be used to place the fossil within any extant genera in the Lyssomaninae and there are currently two genera from this subfamily known from the New World (Maddison &

Needham 2006). The unclear placement of this fossil means that we placed the calibration point at the base of the Lyssomaninae/Spartaeinae node of the dating tree. As such, we estimated the Lyssomaninae/Spartaeinae node to be no younger than the youngest age of the Chiapas amber, which is a minimum of 22 Ma old (Berggren & van

Couvering 1974). The maximum age calibration point was set to be 100 Ma or the maximum age of Salticidae.

Finally, we used the Havaika phylogeny of Arnedo and Gillespie (2006) as a reference to place a maximum age of 0.5 Ma to the common ancestor of Nui morph

D and the Hawaiian Big Island H. cruciata clade (see node 15 Figure 5 from Arnedo &

Gillespie 2006). We chose this node rather than others that dated to roughly the same time because we were able to resolve this node in our 28S/16SND1 Bayesian analyses.

Our analyses differ from Andriamalala (2007) in several ways. First,

Andriamalala (2007) fixed the age of Salticidae to be 65 Ma. In our analyses we constrained Salticidae to a minimum of 44 Ma and a maximum of 100 Ma, but allowed the node age of Salticidae to be estimated in the analyses. Similar to Andriamalala

30 (2007) we used the Lyssomanes fossil from Mexican amber as a minimum calibration point, although we used 22 Ma rather than 30 Ma as the youngest age of the amber based on the date given by Berggren & van Couvering (1974) (Penney 2008). We also added the Salticoida and Havaika minimum and maximum fossil constraints and ran a BEAST dating analysis in addition to r8s.

BEAST (Bayesian Evolutionary Analysis Sampling Trees)

BEAST v1.4.8 (Drummond & Rambaut 2007) was used to generate a phylogenetic tree and a posterior distribution of rates and times for the 28S/16SND1 data set using a Bayesian MCMC chain and a relaxed molecular clock model. BEAUti v1.4.8

(Drummond & Rambaut 2007) was used to make a XML input file for BEAST with the appropriate analysis parameters. A relaxed clock with an uncorrelated lognormal distribution was run using a GTR Gamma + invariant site base-frequency model and 6 gamma rate categories as estimated in MrModeltest v2.3 (Nylander 2004). The “Fixed

Mean Substitution Rate” command was turned off, so that the calibration points could be used as priors to estimate the age of nodes on the tree in millions of years. The following tMRCA (time to most recent common ancestor) priors were established: Salticidae,

Salticoida, Lyssomaninae/Spartaeinae and Havaika. These tMRCAs were not restricted to be monophyletic and the out-groups were pruned from the tree prior to analysis.

In BEAST, strong priors are required to generate an initial starting tree with a non-zero likelihood (Drummond & Rambaut 2007). We found that using the original

31 MCMC priors to generate a starting tree returned an initial tree with a log likelihood of –

Inf (essentially a zero likelihood). This is a common problem with large taxonomic data sets (Drummond & Rambaut 2007). To generate a starting tree with an appropriate likelihood, we used a different set of tMRCA priors than the MCMC tMRCA priors used to run the analyses. A uniform distribution was used to set the minimum and maximum

(refered to as “lower” and “upper” when using BEAST) age specifications for all tMRCA priors. The tMRCA priors of the starting tree were as follows for all analyses: Salticidae uniform minimum 44.0 Ma/maximum 50.0 Ma, Salticoida uniform minimum 16.0 Ma

/maximum 49.0 Ma, Lyssomaninae/Spartaeinae uniform minimum 22.0 Ma /maximum

49.0 Ma and Havaika uniform minimum 0.0 Ma /maximum 0.5 Ma.

Using the above starting tree we ran four analyses using several combinations of

MCMC chain tMRCA priors, the most constrained of which incorporates all calibration points and set the limits as Salticidae minimum 44.0 Ma/maximum 100.0 Ma, Salticoida minimum 16.0 Ma/maximum 49.0 Ma, Lyssomaninae/Spartaeinae minimum 22.0

Ma/maximum 100.0 Ma and Havaika minimum 0.0 Ma/maximum 0.5 Ma (Analysis 1).

We then loosened these constraints in several ways to understand the influence of different calibration hypotheses on the outcome of the dating analysis (Table 2.3).

Specifically, we were interested in understanding how the Havaika and Salticoida maximum calibration points affected the tree dates. In the first analysis, both the

Havaika and the Salticoida maximum calibration points were left intact (i.e. 0.5 Ma for

Havaika and 49 Ma for Salticoida). In the second analysis, the Havaika calibration point was left in place, while the Salticoida maximum calibration point was essentially

32 removed by setting the maximum age to 100 Ma (a very generous maximum, as the amber suggests the group is much younger). In the third analysis, the Salticoida 49 Ma maximum was left intact, but the Havaika calibration point was eliminated. In the forth analysis both the Havaika and Salticoida calibration maximums were removed

(Salticoida was again set to 100 Ma and the Havaika point was not included). In all analyses the Lyssomaninae/Spartaeinae and Salticidae maximum bounds were set at 100

Ma (based off of the absence of these groups in older amber deposits). For all analyses a speciation “Birth-Death Process” (Gernhard 2008) was used to estimate the tree prior

(Drummond & Rambaut 2007). The appropriate operators were edited as specified in the

BEAST manual— these changes did not affect the outcome of the tree, only the speed of the analyses. Each analysis was run for 8 iterations of 20,000,000 generations (post analysis burn-in=0.25). The 8 iterations were then combined into one data set for summary using the LogCombiner v1.4.8 program (Drummond & Rambaut 2007). The trees were then summarized into a Maximum Clade Credibility Tree in TreeAnnotator v1.4.8 available in the BEAST v1.4.8 package (Drummond & Rambaut 2007) and displayed with age calibrations in millions of years using FigTree v1.2. (Rambaut 2008).

Penalized likelihood implemented in r8s

The Bayesian tree with the second highest posterior probability (Tree 85,728,000

LnL -98434.000) from the 28S/16SND1 data set was used as a starting tree in r8s. A cross-validation procedure was used to choose between the Langley-Fitch (LF) (Langley

& Fitch 1974) and Penalized Likelihood (PL) (Sanderson 2002) molecular clock models

33 in r8s (Sanderson 2004). LF implements a strict clock-like model (Rutschmann 2006).

PL is a relaxed clock method, where the effect of the smoothing penalty can cause the function to range from clock-like to effectively unrestrained (Rutschmann 2006). During cross-validation we had r8s estimate 8 smoothing parameters for the PL analysis

(crossv=yes cvinc=0.5 cvnum=8) under the additive or log roughness parameters. LF and PL analyses were run using the TN algorithm as suggested in the r8s manual

(Sanderson 2004). The analysis with the smallest Chi-squared value was chosen as the best clock model (Sanderson 2004).

The cross-validation procedure was used on all analyses. Based on the cross- validation, a PL model with a TN algorithm and a smoothing parameter of 1.0 for analyses 1, 3 and 4 (3.2 e+0.2 for analysis 2) was used. An additive penalty was selected because the Chi-squared values of the cross-validation were the same between PLTN analyses run with either the additive or log penalty functions and the outcome of the analyses were identical. We pruned the outgroups using the prune taxon command and collapsed any zero branch lengths nodes. As with BEAST, we ran four analyses using the same combinations of minimum and maximum values for the Salticidae, Salticoida,

Lyssomaninae/Spartaeinae and Havaika calibration points, to test various dating hypotheses (see the “BEAST” section in 2.2.6 Divergence Time Estimation and Table

2.3). We were interested in understanding how the Havaika and Salticoida maximum calibration points affected the tree dates.

34 The solution of the PLTN analyses using the additive penalty was checked in r8s using the checkGradient command. The checkGradient command allows the user to determine whether or not the algorithm has found the peak where the set of derivatives of the objective function (gradient) equals zero (Sanderson 2004). An objective function of or close to zero indicates a correct solution. Our analyses used multiple age constraints, which can prevent the derivatives of the objective function from reaching zero

(Sanderson 2004). These ‘active’ constraints can create walls in parameter space, but if the algorithm is able to approach these walls without violating the wall (i.e. violating an age constraint) then it can be assumed that the algorithm has found the best solution for the analysis given the age constraint even if that solution is non-zero (Sanderson 2004).

Therefore, we checked for ‘active’ constraints that resulted in the appropriate sign (+ for maximum and – for minimum) at the calibration point, rather than the zero gradient solution. We allowed r8s to determine if a constraint is active by using the activeEpsilon value command, which determines, based on the age of the root of the tree, how close a solution has to be to the constraint to be considered correct (even if it is non-zero)(set checkGradient=yes; activeEpsilon=real_numbervalue) (Sanderson 2004). Finally we used the set num_time_guesses command to run 8 initial starting conditions to make sure the full range of parameter space was examined.

35 2.3 Results

2.3.1 Model choice

For each individual gene region (28S, CO1, 16SND1 and Actin 5C) and the All-

Genes data set we used MrModeltest (Nylander 2004) to find the best model of evolution.

For all analyses the model with the best score based on the Akaike Information Criterion

(AIC) was the GTR+I+G model (nst=6 rates=invgamma).

2.3.2 Phylogeny from the All-Genes Analysis

The All-Genes matrix contained 230 taxa and 3956 sites. The MrBayes consensus tree was sampled from 172,178,000 ngens (stdDev of clade frequencies = 0.029; post analysis burn-in=0.25) (Figure 2.1). The All-Genes data set supports many groups identified in previous work (Maddison & Hedin 2003), including the recently identified

Australasian radiation of Astioida (Maddison et al. 2008).

Our data provide strong support (posterior probability = 1.0) for a radiation of

African salticids in the forests of Central Africa. This clade was recovered in the All-

Genes and all of the individual gene phylogenies with strong support (posterior probability = 1.0). We informally name this group the thiratoscirtines (unspecified rank) and we explain the group in the discussion (see 2.4.1 “The Thiratoscirtines: an African

Radiation”).

36 In the All-Genes analysis there is high Bayesian posterior probability support for the Salticoida and within this group the Amycoida as sister to the rest of the salticoids

(posterior probability=1.0). There is strong support for the monophyly of the Amycoida,

Astioida, Marpissoida, Leptorchesteae, Hasarieae, Aelurilloida (including the thiratoscirtines), Heliophaninae and the Philaeus group excluding (posterior probability=1.0) (see Maddison & Hedin 2003; Maddison et al. 2008 for the definitions of these groups). There is also high support for several super clades including the

Astioida/Marpissoida/ballines/Bavia clade and the Euophryinae/Plexippoida/Philaeus clade (posterior probability=1.0). Our data support the sister relationship between the

Hasarieae and Heliophaninae (posterior probability=0.981), but differ from previous studies in that they place Leptorchesteae at the base of this clade (c.f. Maddison et al.

2008). The node uniting the Euophryinae/Plexippoida clade and Aelurilloida clade has weak support (posterior probability=0.622). The low probability support in the All-

Genes analysis may be due to a polytomy between Euophryinae and two other clades in the 28S Random Taxa Order alignment, which was the 28S alignment used in the All-

Genes analysis.

2.3.3 Phylogenies from Individual Gene Regions

While the 28S alignments were able to recover most of the subfamilies identified in past work and relationships deep within the tree, the relationships mid-level in the tree were not as well resolved. As with other studies 16SND1, CO1 and Actin 5C genes gave some resolution at the subfamily level, but were messy in other places (Maddison &

Hedin 2003; Maddison et al. 2007; Maddison et al. 2008).

37

The 28S Random Taxa Order (Figure 2.2) and 28S Original alignments (Figure

2.3) contained 230 taxa and had 1226 and 1250 bps respectively. The 28S Random Taxa

Order MrBayes analysis was sampled for 121,164,000 ngens (stdDev of clade frequencies = 0.007; 25% post analysis burn-in). The 28S Original alignment MrBayes analysis was sampled for 162,402,000 ngens (stdDev of clade frequencies = 0.008; 25% post analysis burn-in). The MrBayes Majority Rule consensus trees for each of the two

28S alignments gave different tree topologies, indicating order of taxa did affect the outcome of the phylogenetic tree. When compared to the All-Genes Majority Rule tree

(Figure 2.1) the topology of the tree most closely resembled that of the 28S Original alignment, even though the 28S Random Taxa Order alignment was used to generate the

All-Genes tree, indicating that the choice of 28S alignment did not greatly affect the topology of the All-Genes tree.

The 16SND1 alignment contained 226 taxa and was made up of 652 bps of 16S

(and adjacent tRNA) and 398 bps of ND1. The MrBayes Majority rule consensus tree sampled from 200,000,000 ngens (stdDev of clade frequencies = 0.027; 25% post analysis burn-in) showed a large polytomy and split up some of the major subfamilies

(Figure 2.4). The COI alignment was of 181 taxa and 1051 sites. The MrBayes COI

Majority Rule consensus tree of 129,627,000 ngens (stdDev of clade frequencies = 0.020;

25% post analysis burn-in) did not resolve deep level relationships and only provided limited resolution at the tip of the tree (Figure 2.5). This level of resolution was consistent with that of previous studies (Hedin & Maddison 2001).

38

The Actin 5C alignment had 93 taxa and was 1091 bp long including a 466 bp long intron. The MrBayes consensus tree sampled from 193,812,000 ngens (stdDev of clade frequencies = 0.005; 25% post analysis burn-in) did not resolve among subfamily relationships, however some large clades including the Plexippoida and thiratoscirtines were recovered (Figure 2.6). Increasing the taxonomic sampling of this gene may increase the resolution of the tree.

2.3.4 Estimating Divergence Times

The BEAST and r8s Dating Trees

The 28S/16SND1 alignment was used to make the BEAST and r8s Dating trees.

This alignment had 235 taxa (including 5 Havaika 16SND1 sequences from GenBank) and 2308 sites. The BEAST dating trees were obtained by running each individual analysis on the 28S/16SND1 data set for 160,000,000 generations (8 single runs of

20,000,000 ngens; burnin=0.25) in BEAST (Drummond & Rambaut 2007). Four analyses were run with the different calibration priors listed in Table 2.3. A Maximum

Clade Credibility tree of 120,000 sampled trees with node dates was used to summarize each of the four analyses (Drummond & Rambaut 2007). The 95% Highest Probability

Density (95% HPD) values were summarized on a Maximum Clade Credibility tree from

BEAST Analysis 1.

39 The r8s starting tree was obtained from the MrBayes run of the 28S/16SND1 data set. The 28S/16SND1 alignment was run for 91,098,000 ngens (stdDev of clade frequencies = 0.009; 25% post analysis burn-in). The 28S/16SND1 MrBayes tree of second highest posterior probability (Tree 85,728,000; LnL -98434.000) was used as a starting tree for the r8s analysis because the topology of this tree, especially that of the

Salticoida, matched more closely the BEAST dating trees, than did the tree of highest posterior probability. This allowed us to compare the dates of the Salticoida clades between the r8s and BEAST analyses directly. The r8s starting tree and the tree generated by BEAST were similar in topology to the All-Genes tree. The trees differed from the

All-Genes tree in the placement of Euophryinae and the ballines and did not contain outgroups. The r8s and BEAST tree differed from one another in the placement of some members of the basal salticids (Figures 2.7 and 2.8).

BEAST Analyses Results

In BEAST Analysis 1 (with all maximum calibration points) the age of Salticidae was 50.1 Ma (Figure 2.9 and Figure 2.10 for the 95% HPD (highest posterior density) interval for BEAST Analysis 1). In BEAST Analysis 2 the age of Salticidae increased with the elimination of the 49 Ma bound, but only to 51.5 Ma and the age of Salticoida decreased from 41.2 Ma to 39.0 Ma (Figure 2.11). Eliminating the Havaika bound in

Analysis 3 made the internal nodes of the BEAST analysis deeper than when all fossil bounds were used in Analysis 1 (Figure 2.12). Finally, when both the Havaika and

Salticoida maximum bounds were eliminated in Analysis 4 the age of the Salticidae

40 greatly increased to 70.0 Ma according to BEAST (Figure 2.13). The results of the r8s analysis were similar to BEAST. In r8s Analysis 3, in which the Salticoida maximum fossil calibration point was used, the age of Salticidae was 55.2 Ma (Figure 2.14). The

Havaika calibration point could not be implemented in the r8s analysis (see Appendix A for details).

BEAST and r8s ages

In general, BEAST estimated younger ages than r8s when all calibration points were used (Analysis 1), although both put the origin of Salticidae post-KT boundary.

Despite the discrepancy in age among the r8s and BEAST analyses similar patterns emerged. Both analyses found the Amycoida (41.1 Ma r8s and 33.4 Ma BEAST) and the

Astioida (including and Myrmarachne) (43.9 Ma r8s and 30.5 Ma BEAST) to be similar in age. The Amycoida and Astioida are roughly the same age as the most recent common ancestor (MRCA) of a clade that contains the Aelurilloida/Plexippoida/Philaeus group, the Hasarieae/Heliophaninae/Leptorchesteae clade (referred to as the APPHHL clade) (44.5 Ma r8s and 33.8 Ma BEAST). The dating analysis found the Euophryinae to be slightly younger than these other large clades (35 Ma r8s and 26.9 Ma BEAST).

Within the Aelurilloida, our analyses show the aelurillines (26.3 Ma r8s and 17.2 Ma

BEAST) and the African thiratoscirtines (28.9 Ma r8s and 17.4 Ma BEAST) to be relatively young radiations. The freyines (Aelurilloida) are 34.6 Ma (r8s) and 22.5 Ma

(BEAST). This is similar in age to the Marpissoida (35.4 Ma r8s and 22.5 Ma BEAST) and the Plexippoida (32.0 Ma r8s and 20.2 Ma BEAST). The genus Myrmarachne dates

41 to 18.0 Ma (r8s) and 16.2 (BEAST) (Platnick 2009). The MRCA of Myrmarachne and another ant mimic genus, Ligonipes, dates to 37.0 Ma (r8s) and 25.2 Ma BEAST.

2.4 Discussion

2.4.1 The Thiratoscirtines: an African Radiation

The most notable new result in the phylogeny concerns the placement of many of the Central and West African forest species into a single clade, which we informally name the thiratoscirtines (unspecified rank). The thiratoscirtines correspond to the

Bacelarella group of Maddison et al. (2008); however, this study shows the group is much larger than previously recognized. In addition to containing members of the genus

Bacelarella, known from Ghana, the Ivory Coast (Szüts & Jocqué 2001) and

(Platnick 2009), the thiratoscirtines also include the genera Pochyta, Longarenus,

Malloneta, Tarne, Thiratoscirtus, Saraina, Alfenus and possibly other genera currently undescribed (Figure 2.15). Species of the genus Pochyta have been found in Equatorial

Guinea, , Príncipe, Guinea-Bissau, , Zimbabwe and South Africa

(Platnick 2009). Saraina is known from the Ivory Coast, , Cameroon and the

Democratic Republic of the Congo (Szüts & Scharff 2005). The other genera are known from West and Central Africa (Platnick 2009). Many of the jumping spiders found in the

Central and West African forests belong to the thiratoscirtines and the group maybe primarily a forest radiation, as thiratoscirtine genera are not prevalent outside of the

Afrotropics.

42 The phylogenetic relationships among the thiratoscirtine genera remain to be explored. The taxa collected in this study will be described in a later publication. As with the Bacelerella group, the genitalia of the thiratocirtines group are remarkably diverse, warranting, perhaps, subfamily rank or higher (Maddison et al. 2008). Maddison et al. (2008) propose the group Aelurilloida to include the freyines, aelurillines and the

Bacelarella group. In agreement, we found the thiratoscirtines grouped with the aelurillines in the All-Genes analysis. This means that Aelurilloida is more diverse than previously recognized as the group contains the thiratoscirtines (including the Bacelarella group), in addition to the freyines and aelurillines.

2.4.2 Gabonese Salticid Fauna

The majority of forest salticids in Gabon are thiratoscirtines. We also found members of the Plexippoida (Evarcha, Telamonia, Hermotimus, Mogrus, Plexippus),

Heliophaninae and Astioida (Myrmarachne) and also basal members of the Spartaeinae

(Portia), and hisponines (Tomocyrba)—all of which are entirely or primarily Old World groups (Maddison et al. 2003; Maddison & Needham 2006; Maddison et al. 2008). We also found members of the Lyssomaninae and Rhene (Marpissoida). The Marpissoida are primarily an American group (Maddison et al. 2008) and Lyssomaninae are found in both the New and Old World, but the monophyly of the subfamily is unclear (Maddison

& Needham 2006). Though we did not gather quantitative habitat data, all but one thiratoscirtine species were found in forest habitat. Most of the non-thiratoscirtines collected in Gabon were found in more open habitats, including disturbed areas.

43 We found, as suggested by Wesolowska & Szeremeta (2001), the ant-mimicking genus Enoplomischus (Gabon) to group with Leptorchestes, another Old World ant- mimic. Our results suggest these genera are a part of Leptorchesteae, which includes

Paramarpissa from the deserts of North America and , an Old World ground- dwelling genus (Maddison et al. 2008). Our analyses differ from previous studies in that they place Leptorchesteae at the base of the Hasarieae/Heliophaninae clade (Bayesian posterior probability=0.897) (Maddison et al. 2008). Another ant-mimicking group,

Myrmarachne, is extremely diverse in Southeast (Maddison et al. 2008).

Unsurprisingly, we found Gabonese Myrmarachne are monophyletic with the rest of the genus. The genus as a whole is an incredibly diverse group of ant-mimics with more than

200 described species (Platnick 2009) and dates to 18.0 Ma (r8s) and 16.2 Ma (BEAST).

The MRCA of Myrmarachne and Ligonipes (another ant-mimic) dates to 37.0 Ma (r8s) and 25.2 Ma (BEAST) suggesting ant-mimicry in jumping spiders did not recently evolve.

2.4.3 Other Aspects of the Salticid Phylogeny

Of interest is the placement of several species of “Viciria” in our phylogeny.

“Viciria” are found in and Africa (Prószy!ski 1984b; Platnick 2009).

Prószy!ski (1984b) states that the genus as described by Simon (1897-1903) is not monophyletic and should be, based on genitalic structure, split into multiple genera with some species being transferred to currently described groups. In our analysis the

“African Viciria” (one species from Ghana and two species that would be identified as

“Viciria” from Gabon) fell within the plexippines (Plexippoida) forming a clade with

44 members of the genus Telamonia from Malaysia and the . In the past, species identified as “Viciria” have been transferred to the genera Telamonia, Epeus, Hyllus and

Evarcha (all are plexippine genera), and into Malloneta (thiratoscirtines) by various taxonomists (for examples see Prószy!ski 1984a; Prószy!ski 1984b; Zabka 1985;

Platnick 2009). Our study suggests that “Viciria” may not be in Africa at all and that so- called “African Viciria” may indeed belong to other Afro-Eurasian groups. The only

Viciria species in our analysis that is close to the type species, and hence a true Viciria, was from Malaysia and fell within the Astioida. Greater attention to the monophyly of

Viciria and a formal revision of the genus is needed to understand the delimitations and placement of its species within the phylogeny of the family.

As in other studies, we found strong support for the following taxonomic groupings: Marpissoida, Amycoida, Plexippoida, Aelurilloida, Heliophaninae,

Euophryinae, Hasarieae, Leptorchesteae and the Philaeus group (Maddison & Hedin

2003; Maddison et al. 2008). We also found a large Afro-Eurasian clade that includes the

Aelurilloida, Plexippoida, the Philaeus group, the Hasarieae/Heliophaninae clade and the

Leptorchesteae. Throughout we refer to this clade as the APPHHL clade. Based on the results of the All-Genes Bayesian analysis, the APPHHL clade may also include the widespread Euophryinae. The placement of several genera has been confirmed by our data including the relationship between Salticus and the Philaeus group (Maddison et al.

2008). We also place the Mantisatta with the ballines as the sister group of the

Marpissoida, indicating the genus may not belong to the Astioida (it never grouped with

Neon in the present analyses), a possibility suggested by Maddison et al. (2008).

45 Maddison et al. (2008) found that Bavia was sometimes sister to the Marpissoida and in other cases was sister to the Astioida. In the All-Genes analysis we found that the Bavia group fell at the base of the balline/Marpissoida clade (Bayesian posterior probability=0.973). In body form the Bavia look like several Marpissoida genera

(Maddison et al. 2008). We found the Bavia to be sister to the Astioida in the 28S

Original alignment.

As in other studies (Maddison et al. 2008), the placement of Cheliceroides is unclear, as is did not group closely with any taxa with high support in the All-Genes tree.

Likewise, Nannenus and Idastrandia grouped together, but did not have a high posterior probability with their neighboring clade (All-Genes Bayesian posterior probability=0.686). Additionally, we found Enoplomischus to be sister to Leptorchestes

(All-Genes Bayesian posterior probability= 0.948). Both are ant-like genera.

2.4.4 Calibration Points

BEAST analyses run with either the Salticoida or Havaika maximum calibration point yielded similar results to the analysis in which both maximum calibration points were used. In BEAST Analysis 2, the removal of the Salticoida maximum bound (and the inclusion of the Havaika maximum) increased the age of the Salticidae by only a few million years from 50.1 Ma to 51.5 Ma and decreased the age of Salticoida from 41.2 Ma to 39 Ma (relative to the analysis with both maximums). In BEAST Analysis 3, even though the age of the family was not greatly affected by the removal of the Havaika maximum calibration point when compared to the analysis with both maximums, the

46 internal node dates were affected. In general, the ages of the internal nodes were around

5-6 Ma deeper without the Havaika maximum, indicating the Havaika maximum calibration point pulled internal node dates shallower than the analysis with only the

Salticoida maximum calibration point. The removal of the Havaika maximum point caused the BEAST analysis to act more like the r8s analyses (where only the Salticoida maximum was included). The younger ages generated by the BEAST analysis in comparison to r8s are probably a result of the inclusion of the Havaika maximum calibration point and its behavior in the analysis.

The fossil record shows there are no basal salticids or salticoids from the fossil rich Eocene Le Quesnoy amber of Paris from 53 Ma (Nel et al. 2004; Penney 2006).

There are also no salticids from the many amber deposits of the Cretaceous, but there is a large gap in our knowledge of salticid fauna (or lack there of) in ambers between the

French Eocene and the youngest Cretaceous amber (between 53 and 76.5 Ma) (Penney

2008). The discovery of fossil fauna from this time may alter the age of the root of

Salticidae. In our analysis we used mostly Salticoida taxa. The topologies of the BEAST and r8s trees were not the same among the basal salticids. Despite this discrepancy in topology, the analyses indicate that the common ancestor of the Lyssomaninae and

Spartaeinae is older than the Salticoida (50.4 Ma r8s and 44 Ma BEAST). Increasing our sampling of basal salticids will help us to resolve the basal part of the tree and may alter the age estimate of the family, if indeed older basal clades exist that have not been represented on the tree.

47 When the Havaika calibration is not used (r8s dating analysis and BEAST

Analysis 3) the results are dependent on the Salticoida maximum calibration point and are therefore contingent on the hypothesis that the Salticoida had not yet evolved 49 Ma, as indicated by their absence in Baltic amber. It is however entirely possible that

Salticoida had evolved in a geographically distinct area, and had yet to reach the Baltic amber deposits by the Eocene. The oldest region-specific clades of Salticoida are from

South America and Afro-Eurasia, suggesting early Salticidae were already in geographically distinct areas. It is not clear how widespread or numerous they were within these regions. If the early Salticoida were not yet widespread their absence in

Eocene amber from Paris and the Baltic may not be surprising. What is needed to place a more accurate date on the origins of the Salticoida is an exploration of Late

Cretaceous/Early Eocene amber inclusions.

It is important to note the BEAST analysis using only the Havaika maximum found the Salticidae to be young, therefore the relatively young age we obtained for the family is not based only on the observed absence of Salticoida from the Baltic amber or other calibration points generated from the fossil record. Furthermore, we did not use the absence of salticids from the Eocene amber of Paris to calibrate our tree and yet our results are concordant with the observation that salticids are younger than this Paris amber deposit.

The ages obtained from our dating analysis are older than those obtained by

Andriamalala (2007). We found the Salticoida to be 49 Ma (r8s) and 41.2 Ma (BEAST),

48 while Andriamalala (2007) found the group to be 31.67 Ma. The difference in ages between our analysis and Andriamalala (2007) are greater for groups such as the

Marpissoida, Plexippoida, Euophryinae and freyines. For example we find the

Marpissoida to be 35.4 Ma (r8s) and 22.5 Ma (BEAST), while Andriamalala (2007) found the group to be 3.99 Ma. In our paper we use multiple fossil spider calibration points to estimate the divergence times and two markers, 28S and 16SND1.

Andriamalala (2007) used the 28S gene and a single fossil minimum in an analysis where the age of Salticidae was fixed to be 65 Ma. We allowed the age of Salticidae to be estimated and believe the differences in our analyses are likely due to the difference in calibration points used, primarily the use of the Salticoida and Havaika maximum calibration points.

2.4.5 Age and Diversity of Salticidae in Comparison to Other Radiations

We date the age of Salticidae to be between 55.2 Ma r8s and 50.1 Ma BEAST.

Since then, the group has radiated to contain over 5,000 known species (Platnick

2009)—although their numbers are probably much higher, as a great deal of salticid diversity is still unknown and tropical collecting typically reveals a large percentage of new species. In comparison to other radiations, jumping spiders have more species than mammals (>4,500 species), but are not as numerous as the ants (>11,800 species)

(Moreau et al. 2006; Bininda-Emonds et al. 2007). The passeriforme radiation (wrens, crows, robins, birds of paradise, finches, warblers, manakins and flycatchers, etc.) is perhaps the best analog to the Salticidae in terms of age, size, biogeography and morphological, behavioral and ecological diversity (Barker et al. 2004). Although the

49 full number of species is not yet known, jumping spiders almost certainly have more species than the passerines (>5,700 species), which comprise >50% of extant bird species and make-up the largest avian order (Sibley & Monroe 1990; Barker et al. 2004).

Passerines evolved 82 Ma ago, and while they are older than Salticidae, which are of

Early Eocene origin, most of their diversity arose after the Late Cretaceous/Eocene

(Barker et al. 2004). Both groups are globally dispersed and have a biogeographic pattern in which major groups are isolated to different continental regions (the New

World, Afro-Eurasia, and Australasia) (Barker et al. 2004). Furthermore, both groups are remarkably rich in morphological, behavioral and ecological diversity. Using this comparison, dating the salticidae family tree is like trying to date and understand the phylogeny and biogeographic history of passerines. While a number of groups are working on passerines (cf. Ericson et al. 2002; Barker et al. 2004) much remains to be learned about their global biogeographic history. Even more remains to be discovered about salticid diversity.

2.4.6 The Family Evolved at a Time of Expanded Megathermal Forests

Our analyses show the family evolved in the Eocene—a time of expanded megathermal forests and presumably abundant prey. Our analyses found Salticidae to be

55.2 Ma (r8s) and 50.1 Ma old (BEAST) and the Salticoida, to have evolved 6-8 Ma later between 49 Ma (r8s) and 41.2 Ma (BEAST). Starting in the Paleocene (around 66 Ma) there was an expansion of tropical forests due to the warming of the earth (Morley 2000).

This persisted throughout the Eocene (the thermal maximum occurring at the

Paleocene/Eocene boundary) (Morely 2000). This rise in global temperatures resulted in

50 three megathermal (frost limited tropical angiosperm) vegetation belts: the Boreotropical

(North America, and a more isolated region in Asia), the Palmae (,

Africa, and Southeast Asia) and the Southern Megathermal Province (southern

South America, , Madagascar and Australia) (Morley 2000). Today jumping spiders are more abundant in tropical rain forests than in other regions.

A rise in angiosperm diversity around 100 Ma was followed by a rise in herbivorous including coleopterans (beetles) and hemipterans (true bugs), so that by the beginning of the Paleocene/Eocene the world was already diverse with insect herbivores (Farrell 1998; Wilson & Hölldobler 2005; Moreau et al. 2006). All members of the family have greater spatial acuity than other spiders and the Salticoida and the basal genus Portia have independently evolved eye structures that give them a higher acuity (#0.04˚) than other basal salticids (Su et al. 2007). By comparison the highest spatial acuity in insects of similar size is #0.4˚ (Land & Nilsson 2002 as cited in Su et al.

2007). This vision—unparalleled among spiders— would have allowed jumping spiders, to exploit the rich diversity of prey in the Eocene. The expansion of Megathermal forest could have facilitated the immediate radiation of the family by providing a wide range of niches and increasing the habitat of spiders and their prey in nearly every region during the early evolutionary history of the family.

2.4.7 Regional Isolation of Major Salticid Groups

The discovery of the thiratoscirtine African radiation supports past studies, which show major salticid groups are confined, or mostly confined to one region (Maddison &

51 Hedin 2003; Maddison et al. 2008). Groups have distributions that can be described as

American (North, Central and South America), Afro-Eurasian (Africa, Europe and Asia), and Australasian (Australia and Papua New Guinea) (Figure 2.16). Some groups are concentrated in smaller regions including Africa, Southeast Asia and South America.

One exception to this pattern is the large subfamily the Euophryinae, which is species- rich in the New and Old World; however, it remains to be seen whether the euophryines are phylogenetically divided by hemisphere or intermixed (Maddison & Hedin 2003;

Maddison et al. 2008).

Our analyses date the family to the Eocene, a time when Afro-Eurasia, Australasia and the New World were isolated from each other. In the Americas, the Amycoida is dominant in the Neotropics (Maddison & Hedin 2003). The freyines are a smaller radiation also found in South America (Maddison & Hedin 2003). The Marpissoida

(marpissines and dendryphantines) are found throughout the Americas, but are not as diverse in South America as the Amycoida (Maddison & Hedin 2003; Maddison et al.

2008).

In Afro-Eurasia, the Aelurilloida form a clade with the Plexippoida, the Philaeus group, Hasarieae/Heliophaninae and Leptorchesteae (referred to as the APPHHL clade).

The APPHHL clade is predominantly Afro-Eurasian with the exception of the freyines, the genus Paramarpissa (Leptorchesteae), the species rich genus Habronattus

(pellenines) and a few other plexippoids, a few genera of heliophanines (Helvetia,

Theriella, , Yepoella) and one species of Phlegra (aelurilline), which are found

52 in the New World (Prószy!ski 2009) and some heliophanines and plexippoids in

Australasia (Richardson et al. 2006). Otherwise, members of the APPHHL clade have an

Afro-Eurasian distribution with the exception of the thiratoscirtines, which are currently known only from Africa.

In Australasia, the dominant group in the fauna is the Astioida (Maddison et al.

2008). In this paper we will exclude Myrmarachne and Neon when looking at regional biogeographic patterns in the Astioida, as it is not clear these two genera belong to the

“core” Astioida (Maddison et al. 2008). Even if Myrmarachne and Neon belong to the

Astioida they are widespread and fall outside of the Australasian region (Maddison et al.

2008).

Despite the geographic distance between Afro-Eurasia, Australasia and the New

World during the Cenozoic, some long-range dispersal events between these three regions occurred throughout the history of the family. The freyines are the only New

World Aelurilloida and appear to have dispersed from Afro-Eurasia to South America and subsequently diversified in that region. Movement between isolated regions separated by bodies of water could have occurred via ballooning or rafting on pieces of debris. Jumping spiders, like many other spiders, have the ability to “balloon” or fly aerially on a silk thread using drag-induced lift and the family is considered one that frequently balloons (Bell et al. 2005). In this manner they are able to travel over long distances and have been recorded to go 900 km (Bell et al. 2005). Other spiders have been recorded to travel up to 3200 km (Bell et al. 2005). While their ability to make

53 intercontinental crossings without “stepping-stone” landmasses has not been confirmed, longer dispersal events (i.e. the freyines or Habronattus to the New World) have occured.

Additionally, the ability to balloon may have helped the family overcome smaller barriers that would have hindered the dispersal of other landlocked, terrestrial invertebrates (i.e. exchanges between Eurasia and Africa before the Late Oligocene see 2.4.8

“Biogeographic History of Region Specific Clades”)(Bell et al. 2005).

2.4.8 Biogeographic History of Region Specific Clades

The Amycoida (41.1 Ma r8s and 33.4 Ma BEAST) and Afro-Eurasian

Plexippoida, Philaeus group, Hasarieae/Heliophaninae and Leptorchesteae (APPHHL) clade (44.5 Ma r8s and 33.8 Ma BEAST) are the two oldest region-specific salticoid clades. The Australasian “core” astioids (excluding the widespread Myrmarachne and

Neon) are younger than these two clades (36.9 Ma r8s and 27.3 Ma BEAST). The ages of the Amycoida and the Astioida are consistent with times when South America and

Australasia were biogeographically isolated from other continents. Likewise, the

APPHHL clade dates to a time when Africa and Eurasia were in close geographic proximity and later joined by a continuous land connection.

South America

Around 40 Ma South America was geographically isolated from Africa, Europe and Asia by oceanic barriers. Furthermore, there was no long-term continuous land connection between North and South America until 3-4 Ma when the Isthmus of

54 formed (Webb 1997). Several discontinuous routes between the two continents may have existed at different times in the Cretaceous and Cenozoic. From Late Cretaceous to the

Middle Eocene (~65-39 Ma) Columbia may have been linked to the Yucatan via a discontinuous Cuban Island Arc (Morley 2003). A route called GAARlandia (Greater

Antilles and Aves Ridge) formed at the Eocene/Oligocene boundary, but only briefly

(Iturralde-Vincent & MacPhee 1999; Morley 2003), and later in the Miocene (~15 Ma) the Panama Island Arc formed (Sanmartín & Ronquist 2004). Despite these intermittent routes, in the Eocene the only continuous land connection between South America and another continent was with the west end of Antarctica at Patagonia (Reguero et al. 2002).

This connection was severed in the Late Eocene, 34-36 Ma, with the opening of the

Drake Passage between the two continents (Reguero et al. 2002; DeConto & Pollard

2003; Sanmartín & Ronquist 2004; Gheerbrant & Rage 2006). When the Drake Passage opened, the Antarctic Circumpolar Current caused the first glaciations in Antarctica, but before this the region had temperate forests (Sanmartín & Ronquist 2004).

Therefore, before 36 Ma movement of jumping spiders between South America and other continents could have occurred via land migration from Antarctica (and consequently Australasia) and short-range dispersals from North America. Dispersals to and from Africa or Eurasia would have been less likely because of oceanic barriers.

After 36 Ma the oceanic dispersal distance between South America and Antarctica would have increased, restricting direct movement between these landmasses—the glaciations of Antarctica presumably creating a physiological barrier to spider dispersal as well.

Accordingly, after the Eocene/Oligocene boundary South America was relatively isolated

55 from other continents and movement to and from South America would have been limited to chance long-range dispersals in the case of Africa, Eurasia and Australasia and shorter overwater dispersals via North America.

According to our analyses, the Amycoida diversified in South America in the

Eocene 41.1 Ma (r8s) or in the Oligocene 33.4 Ma (BEAST). Regardless of the exact date the isolation of the continent, especially after the Eocene/Oligocene boundary, would have limited the spread of the Amycoida to other regions, explaining the region specific nature of this group. This geographic isolation would have decreased the likelihood of other groups arriving, yet the topology of our phylogeny suggests that the freyines dispersed to the continent from the Afro-Eurasian APPHHL clade about 8-10 Ma after the Amycoida evolved (34.6 Ma r8s and 22.5 Ma BEAST) and the Marpissoida were present somewhere in the Americas after 35.4 Ma (r8s) or 22.5 Ma (BEAST). This indicates that some mixing of fauna from geographically isolated regions did occur.

Australasia

Similarly, the Astioida radiated in a region that became isolated from other continents. Around 55 Ma, Australasia (Australia and New Guinea) lay south of its current position (Hall 2002). During the Eocene Australia was separated from Southeast

Asia, Africa, Europe, and North America, but southern Australia was geographically close to east Antarctica (the two lay in parallel) (Hall 2002). The narrow opening of the

Tasman Sea separated the two continents (Hall 2002), although there is disagreement

56 about the time of last contact—with some suggesting the two continents were in contact until the Late Eocene (Sanmartín & Ronquist 2004). From the Late Eocene on, Australia,

New Guinea and associated islands, gradually moved closer towards the islands of present-day Southeast Asia, until the Australasian plate collided with the East Philippine-

Halmahera-South Caroline Arc at north New Guinea margin around the

Oligocene/Miocene boundary (about 25 Ma) (Hall 2002; Morley 2003).

Therefore between the Late Eocene and Early Miocene Australasia was separate from all other continents by oceanic barriers (Hall 2002). Like in South America, the close proximity of Australasia with Antarctica could have allowed dispersal between the two continents earlier in the Eocene. After the Late Eocene oceanic dispersal distance between Australia and Antarctica would have increased. The r8s date of Australasian

“core” Astioida (36.9 Ma) suggests the Astioida branched off around the time Australia began to move away from Antarctica (Hall 2002). The BEAST date (27.3 Ma) also suggests the “core” Astioida evolved during a time when the continent was isolated, but that they branched off later, when Australasia was closer to Southeast Asia (Hall 2002).

As Australasia approached Southeast Asia the chance of successful oceanic or island stepping-stone dispersals would have increased (Metcalfe et al. 2001). Between

25 and 10 Ma faunal dispersals between these regions were limited due to the changing dynamics of submerged land areas (i.e. New Guinea and , etc.) and the movement of islands due to dynamic shifts in microplate tectonics (Metcalfe et al. 2001;

Hall 2002). Around 10 Ma the water level in the Arafura Sea between New Guinea and

Australia dropped decreasing distances between these regions (Metcalfe et al. 2001). It

57 has long been noted that there is a biogeographic transition zone (traditionally called the

Wallace Line) where Australasian and Asian flora and fauna meet in the region (Metcalfe et al. 2001). In jumping spiders, while the Astioida are largely concentrated in

Australasia, a few genera from the group, such as , Simaetha, Viciria and

Orthrus, are known from mainland Asia (Maddison et al. 2008). This suggests dispersals between these regions have occurred, although broadly speaking, these two jumping spider faunal regions remain distinct in terms of species composition.

Afro-Eurasia

The MRCA of the APPHHL clade dates to 44.5 Ma (r8s) and 33.8 Ma (BEAST).

Before Africa and Europe were connected in the Oligocene/Miocene, discontinuous connections between Africa and Europe existed that could have facilitated movement between the regions (Gheerbrant & Rage 2006). During the early Eocene the Afro-

Arabian plate moved north towards Europe (Harzhausera et al. 2007). In the Middle to

Late Eocene the Mediterranean Tethys Seaway closed, creating a stepping-stone route between Eurasia and Africa on sills across the seaway (Morley 2003; Gheerbrant & Rage

2006). This route was regulated by sea levels and several exchanges of mammalian groups and megathermal angiosperm taxa are recorded from this time (Morley 2003;

Gheerbrant & Rage 2006). In the Late Oligocene (Aquitanian), brief continuous routes allowed the exchange of land mammals (Antoine et al. 2003; Harzhausera et al. 2007).

Therefore, although Africa and Europe were separated before the Oligocene/Miocene, the close proximity of these two regions and the availability of stepping-stone routes could

58 have permitted short-range dispersals across water barriers. Africa and Eurasia were finally connected in the Early Miocene (19 Ma) with the formation of the

Gomphotherium-landbridge (Rögl 1999; Harzhausera et al. 2007; Koufos & Bonis 2008).

After the formation of this landbridge jumping spiders could migrate between Africa and

Eurasia over land. Exchanges with Indian fauna was possible throughout the history of the APPHHL clade, as India crashed into the Asian continent, with Greater India making contact in the Paleocene and completely attaching 42-55 Ma in the Eocene (Briggs 2003).

2.4.9 The Thiratoscirtines are an Afrotropical Forest Group

Unlike other more widespread groups in the APPHHL clade, the thiratoscirtines are restricted to Africa. At the end of the Eocene a cooling event occurred that contracted all megathermal forests (Morley 2000). The African forests shrunk into a smaller belt that extended across the continent at the equator (Morely 2000). The thiratoscirtines, a relatively young radiation (28.9 Ma r8s and 17.4 Ma BEAST) evolved after the isolation of the Afrotropical forests in the Eocene. Since they are a forest group the restriction of the West and Central African forests probably limited the ecological range of the group.

Conversely, the aelurillines, a younger group (26.3 Ma r8s and 17.2 Ma BEAST), are more widespread across Africa and Eurasia. Aelurilloids are often found in more arid environments (Russell-Smith 2002), which may be why they have a wider Afro-Eurasian range and are not limited to the Afrotropical region like the thiratoscirtines.

59

2.4.10 Age Alone Does Not Explain the Size of Salticid Radiations

Age alone does not explain the size of individual salticid radiations. The amycoid radiation is the largest and oldest South American radiation. The large size of this radiation in comparison to others in the region may be a result of the isolation of the

Amycoida (due to the biogeographic isolation of South America) or it could be directly related to age (older lineages have had longer to diversify). It is interesting to note that although the Marpissoida and freyines radiated at the same time in the Americas, the

Marpissoida dispersed widely across North, Central and South America, while the freyines remained a smaller radiation in South America (neither group is as diverse as the

Amycoida in South America). The small size of the freyines may be a consequence of lack of open niches in South America because of the amycoid radiation.

A few other genera from the Old World show up in North America around the same time as the Marpissoida, but are not nearly as diverse, suggesting some groups simply are more successful than others. The North American Paramarpissa (bark- dwelling) and sister group Yllenus (ground-dwelling) are most closely related to two sister ant-mimicking African genera, Enoplomischus and Leptorchestes. The two clades appear to have diverged around the same time (33.7 Ma r8s and 24.7 Ma BEAST) as the

Marpissoida and the balline/Bavia group, but the New World Paramarpissa/Yllenus clade never diversified to the same extent as the Marpissoida. Conversely, the ground-dwelling genus Habronattus (with over 100 species), appear to have split from Old World taxa much later (11.6 Ma r8s and 8.6 Ma BEAST) than the Paramarpissa/Yllenus clade, yet

60 they are incredibly diverse across North America. Species in the genus Habronattus are known for their elaborate courtship behaviors and male ornamentation, which may explain why this genus is more diverse than older North American genera. These examples suggest age, behavior, ecology and the availability of open niches all impact the size of jumping spider radiations.

Finally, the Salticidae is younger than other diverse spider families (Penney

2008). For example the Linyphidae and Araneidae (4,350 and 3,000 known species, respectively) (Platnick 2009) show up in the fossil record in the Early Cretaceous period around 125 Ma (Penney 2008). Other families including the Tetragnathidae, Nephilidae and Oonopidae, also appear around this time (Penney 2008). However, some diverse families like the Lycosidae and the Gnaphosidae show up in the fossil record in the

Paleocene (Penney 2008). Furthermore, some of the oldest families, like the

Hexathelidae, which date back to the Triassic 240 Ma (Penney 2008), only have 84 known species today (Platnick 2009).

61 Table 2.1 List of Species Used in Phylogenetic Analysis. List of names, specimen ID numbers, collection localities, GPS and gene information. (X) Denotes gene sequence obtained. (*) Denotes Genbank accession numbers of previously published sequences.

Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1

Aelurillines d140 Aelurillus cf. ater (Kroneberg) : Almaty Region N 43.643 E 75.805 (753) EU815504* X (757) EU815564* (968) EU815615* s251 (Hahn) USA: Missouri (748)AY297288* (393)AY297351* (578)AY296706* (960)AY297451* MRB099 sp. South Africa: Mpumalanga Province S 26.02.519 E 31.00.781 X X X MRB097 Langelurillus nigritus (Berland & Millot) Ghana: North of Cape Coast, Kakum Forest N 05.349 W 01.383 X X X MRB098 Phlegra cf. bresnieri (Lucas) Ghana: Cape Coast, UCC Campus N 5.119 W 1.290 X X MRB261 Langelurillus sp. Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X d139 Stenaelurillus sp. [S. Afr.] South Africa: Limpopo, Soutpansberg S 23.034 E 30.013 (752) EU815503* (965) EU815614* MRB094 Asianellus sp. : Hebei, Yu County X Amycoids MRB024 thiodinine indet. [Ecu.] 1 : Morona-Santiago S 3.0108 W 78.6150 X X X X s177 Zuniga cf. magna Peckham & Peckham Ecuador: Manabi (748)AY297247* X (476)AY296671* (1047)AY297377* s165 Scopocira cf. tenella Simon Ecuador: Sucumbios (742) AY297245* X (393)AY297312* (582)AY296668* (1047)AY297374* s169 cf. Agelista Ecuador: Manabi (745) AY297234* (393)AY297300* (580)AY296656* (900)AY297364* s162 Jollas sp. Ecuador: Sucumbios (734)AY297241* (393)AY297308* (580)AY296664* (1047)AY297370* s213 Hurius vulpinus Ecuador: Pichincha (743)AY297239* (393)AY297306* (578)AY296662* (1047)AY297368* s176 Sarinda sp. Ecuador: Sucumbios (750)AY297244* (393)AY297311* (578)AY296667* (1047)AY297373* s184/s159 Thiodina sp. 1 USA: Arizona (745)AF327930* (390)AF328017* (581)AF327958* X s175 cf. Arachnomura Ecuador: Sucumbios (744)AY297235* (393)AY297302* (577)AY296658* (1047)AY297366* s168 Encolpius sp. 1 Ecuador: Sucumbios (748)AY297238* (393)AY297305* (578)AY296661* (1047)AY297367* s220 Sitticus sp. Ecuador: Manabi (755)AY297246* (393)AY297313* (577)AY296669* (954)AY297375* s247 Mago steindachneri (Taczanowski) Ecuador: Sucumbios (393)AY297242* (393)AY297309* (576)AY296665* (966)AY297371* s217 mystacalis (Taczanowski) Ecuador: Manabi (745)AY297240* (393)AY297307* (562)AY296663* (1047)AY297369* s255/s277 Noegus cf. rufus Simon Ecuador: Sucumbios (752)AY297243* (393)AY297310* (572)AY296666* d156 Hurius cf. vulpinus Simon Ecuador: East of Gualaceo S 2.906 W 78.737 X MRB131 thiodinine indet.[Ecu.] 2 Ecuador: Morona-Santiago S 3.0069 W 78.6425 X MRB193 Sarinda cutleri (Richman) USA: Arizona X X X MRB009 Zuniga cf. laeta (Peckham & Peckham) Ecuador: Pichincha S 0.0732 W 78.7542 X X X MRB161 Noegus transversalis Simon : Commune of Régina N 4.0691 W 52.6689 X X X MRB038 amycoid indet. [Ecu.] Ecuador: Morona-Santiago S 3.0069 W 78.6425 X X X MRB023 Thiodina sp. 2 Ecuador: Napo S 0.8382 W 77.7781 X X MRB132 cf. Hypaeus [Ecu.] 1 Ecuador: Morona-Santiago S 2.9962 W 78.4558 X X X MRB137 cf. Acragus Ecuador: Napo S 1.0466 W 77.7430 X X MRB134 cf. Hypaeus [Ecu.] 2 Ecuador: Morona-Santiago S 3.0060 W 78.4997 X X d030 Sitticus palustris Peckham & Peckham Canada: Nova Scotia N 44.4318 W 64.6075 (721) DQ665778* (770) DQ665729* (971) DQ665760* d130 Acragus sp. [Ecu.] Ecuador: Napo S 1.067 W 77.617 (754) EU815499* X JXZ174 Sitticus dorsatus USA: California N 35.0545 W 120.5007 X MRB002 Fluda sp. Ecuador: Pichincha N 0.1493 W 79.0317 X MRB004 Synemosyna cf. lucasi (Taczanowski) Ecuador: Napo S 0.8382 W 77.7781 X MRB124 Encolpius sp. 2 French Guiana: Commune of Régina N 4.0691 W 52.6689 X s326 Cylistella sp. Costa Rica (393)AY297303* (578)AY296659* MRB143 Noegus sp. Ecuador: Napo S 0.6049 W 77.8886 X MRB147 Zuniga sp. Ecuador: Napo S 0.1781 W 77.6815 X MRB149 Amycus sp. Ecuador: Napo S 1.067 W 77.617 X s223/s172 cf. Cyllodania Ecuador: Manabi (393)AY297304 (574)AY296660 MRB029 Cotinusa sp. Ecuador: Pichincha N 0.1493 W 79.0317 X

(continued next page) 62 Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1 Astioids d027 Simaetha sp. [Aus.] Australia: Queensland S 16.2 E 145.4 (683) EU815477* X (899) EU815546* (981) EU815592* d175 Ligurra latidens (Doleschall) : Labrador Park N 1.27 E 103.80 X X X X d046 Arasia mollicoma (L. Koch) Australia: New South Wale (659) EU815483 X (597) EU815550* (976) EU815598* d021 "Breda" jovialis (L. Koch) Australia: S 34.9 E 138.6 (749) EU815473 X (901) EU815544* X s197 Trite planiceps Simon (750)AY297290* (393)AY297353* (581)AY296708* (960)AY297417* s194/s195 Helpis minitabunda (L. Koch) New Zealand (748)AY297282* (393)AY297345* (579)AY296700* s192 Orthrus bicolor Simon Philippines: Luzon (734)AY297286* (390)AY297349* (578)AY296704* (954)AY297413* s310 Neon nelli Peckham & Peckham USA: Massachusetts (748)AF327931* (390)AF328018* (578)AF327959* (1047)AF327988* s266 Heratemita alboplagiata (Simon) Philippines: Luzon (754)AF327934* (393)AF328021* (572)AF327962* (1047)AF327991* d048 Ligonipes sp. [Aus.] Australia: Ku-ring-gai Chase National Park (533) EU815484* (921) EU815551* (965) EU815599* d206 Trite ignipilosa Berland : Aoupinie S 21.17 E 165.32 (719) EU815520* (906) EU815576* (930) EU815624* d202 cf. Mopsus [N. Cal.] New Caledonia: Prony S 22.32 E166.82 (746) EU815518* (905) EU815574* (970) EU815623* d035 Trite pennata Simon New Caledonia: Mt. Koghis S 22.18 E 166.02 (708) EU815478* (899) EU815547* (902) EU815593* d018 Mopsus mormon Karsch Australia: Queensland, Cow Bay S 16.226 E 145.437 (745) EU815470* X (979) EU815586* d015 Ophisthoncus kochi Zabka Australia: South Australia: Adelaide S 34.9 E 138.6 (748) EU815468* X (968) EU815584* d122 Penionomus sp. [N. Cal.] New Caledonia: Mt. Do summit S 21.75 E 166.00 (759) EU815498* (838) EU815561* (978) EU815610* d024 Tauala lepidus Wanless Australia: Queensland, Cow Bay S 16.2 E 145.4 (700)EU815474* X (971)EU815589* d183 Viciria praemandibularis (Hasselt) Singapore: Upper Peirce Reservoir N 1.38 E 103.81 X X MRB118 Belippo cf. ibadan Wanless Ghana: North of Cape Coast, Kakum Forest N 05.349 W 01.383 X X d045 Holoplatys cf. planissima (L. Koch) Australia: (734) EU815482* (967) EU815597* d177 Simaetha sp. [Mal.] Malaysia: Pahang N 4.515 E 101.383 X X MRB113 Myrmarachne sp. (tristis group) South Africa: Mpumalanga Province X X X s149 Myrmarachne assimilis Banks Philippines: Luzon (741)AY297284 (393)AY297347* (582)AY296702* (948)AY297412* d162 Myrmarachne sp. 1 [Mal.] Malaysia: Pahang N 4.46 E 101.40 (749) EU815507* X (814) EU815565* (972) EU815616* MRB116 Myrmarachne sp. 2 [Mal.] Malaysia: Selangor N 3.244 E 101.695 X MRB254 Myrmarachne foenisex Simon GABON: Ngounié, Waka National Park S 1.132 E 11.150 X X X MRB117 Myrmarachne cf. gedongensis Badcock Malaysia: Pahang N 4.46 E 101.40 X X X MRB119 Myrmarachne sp. [Sing.] Singapore: Chek Jawa N 1.407 E 103.991 X X X MRB114 Myrmarachne plataleoides O. P.-Cambridge Singapore: Chek Jawa N 1.407 E 103.991 X X X MRB249 Myrmarachne evidens Rower GABON: Ngounié, Waka National Park S 1.132 E 11.150 X X MRB111 Myrmarachne cf. malayana 1 Malaysia: Pahang N 3.400 E 101.777 X Edmunds & Proszynski MRB115 Myrmarachne cf. malayana 2 Malaysia: Pahang N 3.400 E 101.777 X Edmunds & Proszynski MRB152 Myrmarachne cf. mocamboensis Galiano Ecuador: Morona-Santiago S 2.9962 W 78.4558 X MRB166 cf. Simaetha [N. Cal.] New Caledonia 22.1 S 166.65 E X MRB174 antlike.MRB174 indet. [N.Cal.] New Caledonia 22.1833 S 166.0167 E X d023 severus (L. Koch) Australia: New South Wales (901) EU815544* d054 cf. Lystrocteissa sp. [N.Cal.] New Caledonia: Col d'Amieu S 21.55 E 165.85 (603) EU815552* Ballines MRB262 Afromarengo sp. [Gab.] Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X X X d199 Peplometus sp. [Gha.] Ghana: North of Cape Coast, Kakum Forest N 05.349 W 01.383 (758) EU815515* X (745) EU815572* (942) EU815621* s325 Pachyballus sp. [Zim.] Zimbabwe (393)AY297335* (578)AY296691* d141 Pachyballus sp. [S.Afr.] South Africa: Kwazulu-Natal Province S 28.237 E 32.410 (752) EU815505* X MRB045 Leikung cf. porosa (Wanless) Malaysia: Pahang N 4.46 E 101.40 X X d228 Padilla mitohy Andriamalala Madagascar: Forêt d'Analalava S 22.5917 E 45.1283 X X X d229 Goleta workmani (Peckham & Peckahm) Madagascar: Parc National Andasibe S 18.943 E 48.4176 X X MRB043 cf. Colaxes 1 [Mal.] Malaysia: Pahang N 4.515 E 101.383 X s209 Mantisatta longicauda Cutler & Wanless Philippines: Luzon (767)AY297270* (390)AY297333* (583)AY296689* (1047)AY297399* Baviines s202 Stagetilus sp. [Phil.] Philippines: Luzon (658)AY297291* (393)AY297354* (586)AY296709* (969)AY297418* d079 Bavia cf. aericeps Simon Malaysia: (746) EU815490* (972) EU815603* (continued next page) 63 Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1 d107 Stagetilus sp. [Mal.] Malaysia: Sabah N 05.832 E 117.225 (763) EU815495* (952) EU815607* MRB079 Stagetilus sp. 2 [Mal.] Malaysia: Selangor N 3.325 E 101.753 X Euophryines s153 Chalcotropis luceroi Barrion & Litsinger Philippines: Luzon (755)AY297257* (393)AY297320* (594)AY296677* (969)AY297418* s262 Lepidemathis haemorroidalis (Simon) Philippines: Luzon (693)AY297260* (393)AY297323* (580)AY296680* (1041)AY297389* s157 Thiania viscaensis Barrion & Litsinger Philippines: Luzon (758)AY297263* (393)AY297326* (580)AY296683* (954)AY297392* s222 Corythalia cf. tropica (Mello-Leitao) Ecuador: Manabi (760)AY297258* (390)AY297321* (582)AY296678* (969)AY297387* s118 Mexigonus sp. USA: Arizona (750)AY297261* (393)AY297324* (579)AY296681* (912)AY297390* s119/s120 pulex 2 (Hentz) USA: Massachusetts (755)AY297262* (393)AY297325* (577)AY296682* (1047)AY297391* JXZ081 1 (Hentz) USA: Massachusetts X X X s190 ' parvula Bryant New Zealand (754)AY297259* (393)AY297322* (575)AY296679* (1047)AY297388* s147 cf. Thorelliola Philippines: Luzon (753)AY297264* (393)AY297327* (577)AY296684* (1047)AY297393* s152 Lagnus sp. Philippines: Luzon (769)AY297283* (393)AY297346* (580)AY296701* (1047)AY297411* JXZ135 Thiania bhamoensis Singapore: Labrador Park N 1.27 E 103.80 X X JXZ136 Zenodorus orbiculatus (Keyserling) Australia: Queensland, Stratbroke Island X X MRB179 Colyttus sp. Malaysia: Selangor N 3.325 E 101.753 X JXZ020 Thiania bhamoensis Thorell Singapore: Labrador Park N 1.27 E 103.80 X JXZ088 Zenodorus orbiculatus (Keyserling) Australia: Queensland, near Atherton X MRB140 Euophryine indet. [Ecu.] Ecuador: Napo S 0.6387 W 77.8069 X JXZ178 Neonella vinnula Florida: Duval County, Fort George Island X Freyines s148/s308 Freya regia (Peckham & Peckham) Ecuador: Sucumbios (752)AY297278* (393)AY297341* (584)AY296696* s210 Frigga crocuta (Taczanowski) Ecuador: Manabi (748)AY297275* (393)AY297338* (581)AY296693* (969)AY297402* s179 Nycerella neglecta Galiano Ecuador: Manabi (755)AY297276* (390)AY297339* (581)AY296694* (1047)AY297403* s180 Pachomius cf. flavescens Ecuador: Sucumbios (749)AY297274* (393)AY297337* (578)AY296692* (951)AY297401* (Peckham & Peckham) s170 Chira cf. spinipes Mello-Leitao Ecuador: Sucumbios (749)AY297277* (393)AY297340* (576)AY296695* (1047)AY297404* MRB129 Capidava cf. rufithorax Simon Ecuador: Napo S 1.067 W 77.617 X MRB133 Eustiromastix cf. major Simon Ecuador: Napo S 1.067 W 77.617 X MRB139 freyine indet. [Ecu.] Ecuador: Pichincha N 0.1493 W 79.0317 X MRB154 Freya cf. prominens French Guiana: Commune of Régina N 4.0691 W 52.6689 X F.O. Pickard-Cambridge s274 Rishaschia sp. Ecuador: Sucumbios (768)AY297279* (393)AY297343* (583)AY296698* d211 Freya decorata (C.L. Koch) Ecuador: Napo S 1.067 W 77.617 (757) EU815521* X X MRB270 Trydarssus cf. nobilitatus (Nicolet) Gabon: Moyen-Ogooué, Lambaréné S 0.698 E 10.230 X MRB155 indet. MRB155 [F. Gui.] French Guiana: Commune of Régina N 4.0691 W 52.6689 X Hasariines d132 Habrocestum cf. albimanum Simon South Africa: Western Cape Province S 32.36.179 E 19.02.411 (755) EU815500* (829) EU815562* (972) EU815611* s130/s131/s324 (Audouin) USA: Hawaii; Isreal (749)AY297281* d009 Chinattus parvulus (Banks) USA: North Carolina N 35.341 W 83.878 (755) EU815464* X (965) EU815581* MRB090 Gedea cf. tibialis Zabka Malaysia: Selangor N 3.244 E 101.695 X MRB089 Echeclus sp. Malaysia: Selangor N 3.244 E 101.695 X d209 Diplocanthopoda marina Abraham Singapore: Labrador Park N 1.27 E 103.80 X X Heliophanines s124/s270 Phintella piatensis Barrion & Litsinger Philippines: Luzon (746)AY297276* (393)AY297330* (582)AY296687* s133 Phintella sp. USA: Hawaii (749)AY297268* (387)AY297331* (957)AY297397* s271 Helvetia cf. zonata Simon Ecuador: Sucumbios (746)AY297265* (387)AY297328* (587)AY296684* (1047)AY297394* s13/s225 Menemerus bivittatus (Dufour) : Loreto & Ecuador: Manabi (745)AY297266* (387)AY297329* (585)AY296686* d006 Cosmophasis micarioides (L. Koch) Australia: Queensland, Cow Bay S 16.2 E 145.4 (705) EU815463* (907) EU815540* (974) EU815580* d137 reiskindi Proszynski : East Kalimantan (565) EU815502* (832) EU815563* (956) EU815613* d037 Mexcala elegans Peckham & Peckham South Africa: Kwazulu-Natal Province S 27.543 E 32.664 (675) EU815479* X (959) EU815594* d044 Heliophanus cupreus Walckenaer Poland: Mielik N 52.331 E 23.042 (534) DQ665769* X (975) DQ665756* d227 cf. Phintella Madagascar X X (continued next page) 64 Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1 Leptorchestines s313pa Paramarpissa sp. USA: Arizona (748)AY297287* (390)AY297350* (591)AY296705* (831)AY297414* d086 Leptorchestes berolinensis (C.L. Koch) Poland: Lublin (750) EU815467* (903) EU815541* (739) EU815583* d013 Yllenus arenarius 1 Menge Poland: Kozki N 52.361 E 22.870 JXZ173 Yllenus arenarius 2 Poland: Kozki X X X MRB241 Enoplomischus sp. Gabon: Ngounié, Waka National Park S 1.132 E 11.150 X Lyssomanines s160 Lyssomanes viridis (Walckenaer) USA: Florida (754)AY297231* (390)AY297297* (577)AY296652* (891)AY297360* MRB085 sp. [China] China: Guangxi, Fangchenggang City N 21.7041 E 107.6475 X X X d051 Goleba lyra Maddison & Zhang Madagascar: Fianarantsoa S 22.592 E 45.128 (771) DQ665768* X (964) DQ665755* X MRB083 Asemonea sp. [S.Afr.] South Africa: Kwazulu-Natal S 26.979 E 32.400 X X MRB086 Lyssomanes longipes (Taczanowski) French Guiana: Commune of Régina N 4.0691 W 52.6689 X d129 Lyssomanes viridis (Walckenaer) USA: Mississippi X X X Marpissoids s97 Attidops youngi (Peckham & Peckham) USA: Missouri (762)AF327933* (393)AF328020* (579)AF327961* (1047)AF327990* s181 Itata sp. Ecuador: Manabi (752)AF327932* (393)AF328019* (578)AF327960* (1047)AF327989* s87 intermedia Barnes USA: Alabama (754)AY297269* (393)AY297332* (577)AY296688* (960)AY297398* s313pe Peckhamia sp. USA: Arizona (751)AF327938* (393)AF328025* (577)AF327966* (1047)AF327995* s307 sp. USA: Arizona (749)AF327946* (393)AF328033* (576)AF327974* (1047)AF327946* s289 Terralonus mylothrus (Chamberlin) USA: Colorado (748)AF327943* (393)AF328030* (575)AF327971* (1047)AF328001* s240 militaris (Hentz) Canada: Ontario (746)AF327942* (393)AF328029* (575)AF327970* (966)AF328000* s294/s299 pikei (Peckham & Peckham) USA: Arizona (749)AF327936* (388)AF328032* (574)AF327964* s182/s183 Pelegrina chalceola Maddison, Pelegrina USA: Arizona (750)AF327939* (393)AF328026* (574)AF327967* verecunda (Chamberlin & Gertsch) s72 undatus (De Geer) USA: Florida (748)AF327935* (387)AF328022* (580)AF327963* (1047)AF327992* s227 Psecas cf. viridipurpureus Simon Ecuador: Sucumbios (750)AY297273* (393)AY297336* (963)AY297400* s142 Zygoballus rufipes Peckham & Peckham USA: Massachusetts (749)AF327944* (393)AF328031* (573)AF327972* (1047)AF328002* s158/s293 sp. USA: Arizona (745)AF327940* (363)AF328027* (574)AF327968* MRB082 sp. China: Guangxi X d224 cf. Marpissine indet. Malaysia X X X s298 taeniola (Hentz) USA: Arizona (393)AY297334* (573)AY296690* d005 Ghelna canadensis (Banks) U.S.A.: North Carolina N 35.70446 W 82.37339 (744) DQ665767* X NA aurantius (Lucas) USA: Arizona EU522686 Nannenines d108 Idastrandia orientalis (Szombathy) Malaysia: Sabah: Mt. Kinabalu N 06.008 E 116.543 (766)EU815535 X (838)EU815560 (975)EU815608 MRB041 indet. MRB041 [Mal.] Malaysia: Johor N 2.025 E 103.344 X d105 Nannenus lyriger Simon Malaysia: Pahang: Taman Negara N 04.381 E 102.399 (777) EU815493* X (898) EU815558* d182 Langerra cf. longicymbium Song & Chai Malaysia X MRB040 nannenine indet. [Sing.] Singapore: Timah Nature Reserve N 1.355 E 103.78 X Philaeines (720) EU815475* (1449) (925) (958) EU815590* d025 (Poda) : Calabria (Gozza) N 38.413 E 16.335 X EU815530* EU815545* MRB226 Tusitala lyrata (Simon) Gabon: Ngounié, Waka National Park S 1.124 E 11.13 X X X X s140 Carrhotus sp. Philippines: Luzon (663)AY297280* (390)AY297344* (584)AY296699* (1047)AY297408* d041 Pignus sp. South Africa: Kwazulu-Natal Province S 26.979 E 32.400 (641) EU815481* (911) EU815549* (970) EU815596* d106 Carrhotus sp. (Mal.) Malaysia: Sabah: Mt. Kinabalu N 06.008 E 116.543 (516) EU815494* (874) EU815559* (968) EU815606* d192 Mogrus mathisi (Berland & Millot) South Africa: Northern Province S 23.894 E 29.499 (673) EU815508* X (908) EU815566* d080 Tusitala hirsuta Peckham & Peckham South Africa: Mpumalanga Province X (906) EU815555* Plexippoids MRB070 Evarcha sp. Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X d017 Bianor maculatus (Keyserling) Australia: South Australia: Glenelg S 34.973 138.511 (691) EU815469* X (893) EU815542* (971) EU815585* (continued next page) 65 Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1 d040 Hyllus treleaveni Peckham & Peckham South Africa: Kwazulu-Natal Province S 26.866 E 32.274 (755) EU815480* X (907) EU815548* (980) EU815595* MRB016 Plexippus paykulli 1 (Adouin) Singapore: Nee Soon Swamp Forest N 1.39 E 103.81 X X X X s191 Epeus sp. Philippines: Luzon (750)AY297248* (393)AY297315* (585)AY296672* (969)AY297378* s269 Telamonia masinloc Barrion & Litsinger Philippines: Luzon (750)AY297256* (285)AY296676* (584)AY296676* (960)AY297385* s73 Plexippus paykulli 2 (Audouin) USA: Florida (748)AY297254* (390)AY297317* (584)AY296674* (957)AY297384* HA88A Habronattus cf. paratus Ecuador: Manabi (753)AY297250* (393)AF477276* (581)AF477276* (753)AY297250* (Peckham & Peckham) HA496A Habronattus mexicanus USA: (749)AY297251* (393)AF477353* (581)AF477353* (909)AY297381* (Peckham & Peckham) MRB183 sp. 1 Singapore: Upper Peirce Reservoir N 1.38 E 103.81 X X X MRB186 Burmattus sp. Singapore: Nee Soon Swamp N 1.39 E 103.81 X X X d103 Anarrhotus fossulatus Simon Malaysia: Pahang: Taman Negara (749) EU815492* (916) EU815557* (949) EU815605* MRB176 Telamonia dimidiata (Simon) Singapore: Upper Peirce Reservoir N 1.38 E 103.81 X X X MRB178 Telamonia cf. festiva Thorell Malaysia: Johor N 1.900 E 104.104 X X X MRB192 "Viciria" cf. fuscimana Simon Ghana: Cape Coast, UCC Campus X X X MRB127 regius Wesolowska China: Hebei, Yu County X X X d074 Schenkelia modesta Lessert South Africa: Kwazulu-Natal Province S 26.866 E 32.274 (755) EU815487* (908) EU815554* (972) EU815601* d197 Polemus cf. chrysochirus Simon Ghana: Central Region N 05.349 W 01.383 (755) EU815513* (905) EU815570* (977) EU815619* MRB055 Bianor sp. China: Tianjin N 24.4833 E 106.35 X X X MRB058 cf. brachiatus (Thorell) Malaysia: Selangor N 3.325 E 101.753 X X X d198 Schenkelia cf. modesta Lessert Ghana: Central Region N 05.349 W 01.383 (755) EU815514* (897) EU815571* (997) EU815620* d200 Hyllus tuberculatus Wanless & Clark Ghana: Central Region N 05.349 W 01.383 (756) EU815516* (875) EU815573* (970) EU815622* d073 Thyene sp. (S. Afr.) South Africa: Kwazulu-Natal Province S 26.866 E 32.274 (755) EU815486* (855) EU815553* (960) EU815600* MRB073 "Viciria" cf. besanconi Berland & Millot Ghana: N. of Cape Coast, Kakum Forest N 05.349 W 01.383 X X X MRB184 Pancorius sp. 2 Malaysia: Pahang N 4.46 E 101.40 X X s127 Havaika sp. USA: Hawaii (748)AY297252* (581)AF477249* (1047)AY297382* MRB185 Evarcha cf. orientalis 2 (Song & Chai) Singapore: Chek Jawa N 1.407 E 103.991 X d004 (Blackwall) Canada: Nova Scotia X X MRB269 plexippine indet. [Gab.] 1 Gabon: Estuaire N 0.638 E 10.406 X X X MRB235 Hyllus sp. Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X X MRB266 plexippine indet. [Gab.] 2 Gabon: Ngounié, Waka National Park S 1.183 E 11.140 X X d096 Evarcha proszynskii Marusik & Logunov Canada: British Columbia: Richmond (781) DQ665765* X (939) DQ665723* (971) EU815612* MRB218 Hermotimus sp. Gabon: Ngounié, Waka National Park S 1.124 E 11.13 X X X d057 Pellenes peninsularis Emerton Canada: Nova Scotia N 45.5862 W 62.2271 (702) DQ665774* X MRB072 Brancus viciriaeformis Berland & Millot Ghana: N. of Cape Coast, Kakum Forest N 05.349 W 01.383 X MRB239 "Viciria" longiuscula (Thorell) Gabon: Ngounié, Waka National Park S 1.132 E 11.150 X X d134 Baryphas ahenus Simon South Africa: Kwazulu-Natal Province S 26.979 E 32.400 (587) EU815501* (971) EU815612* MRB238 Evarcha/Hyllus sp. Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X d075 Pellenes bulawayoensis Wesolowska South Africa: Kwazulu-Natal Province S 27.54 E 32.66 (755) EU815488* MRB247 "Viciria" thoracica Thorell Gabon: Ngounié, Waka National Park S 1.132 E 11.150 X MRB180 Evarcha cf. orientalis 1 (Song & Chai) Malaysia: Johor N 1.900 E 104.104 X MRB181 Epeus cf. guanxi Peng & Li Malaysia: Pahang N 4.46 E 101.40 X MRB182 Pancorius sp. 3 Singapore: Bukit Timah Nature Reserve N 1.355 E 103.78 X s238 aemulus (Gertsch) Canada: Ontario (750)AY297255 (393)AY297318 (577)AY296675 MRB054 Harmochirus brachiatus (Thorell) China: Guangxi, Pingxiang City N 22.1217 E 106.7331 X NA (Keyserling) USA, Nevada, EU522685 MRB057 Bianor sp. Malaysia: Selangor N 3.325 E 101.753 X MRB224 plexippine indet. [Sing.] Singapore: Upper Peirce Reservoir N 1.38 E 103.81 X X d077 (L. Koch) : Szombathely X MRB017 Hyllus diardi (Walckenaer) Singapore: Lum Chu Kang Mangroves N 1.44 E 103.70 X MRB075 Evarcha bakorensis Rollard & Wesolowska Ghana: North of Cape Coast, Kakum Forest N 05.349 W 01.38 X Havaika cf. pubens 1 USA, Hawaii: Maui, Haleakala, Waikamoi DQ532068* (continued next page) 66 Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1 Havaika cf. pubens 2 USA, Hawaii: Big Island DQ532076* Havaika sp. 'morphotype D' USA, Hawaii: Maui, Haleakala, Han DQ532071* Havaika cruciata USA, Hawaii: Big Island DQ532072* Havaika cf. verecunda USA, Hawaii: Maui, Haleakala, Auwahi DQ532070* Spartaeoids d123 Thrandina parocula Maddison Ecuador: Morona Santiago S 2.9227 W 78.4079 (773) DQ665779 X (793) DQ665726* (970) DQ665761* d124 Galianora bryicola Maddison Ecuador: Napo S 1.067 W 77.617 (756) DQ665771 X (692) DQ665727* (972) DQ665758* s206 (Thorell) Philippines: Luzon NA (752)AY297232* (387)AY297298* (594)AY296653* (960)AY297361* MRB200 Sonoita cf. lightfooti Peckham & Peckham Ghana: North of Cape Coast, Kakum Forest N 05.349 W 01.383 X X X s185/s186 Spartaeus uplandicus Barrion & Litsinger Philippines: Luzon NA (722)AY297233* (591)AY296655* MRB106 lineata Wanless South Africa: Mpumalanga Province NA X X d116 Galianora sacha Maddison Ecuador: Napo S 1.067 W 77.617 (772) DQ665766 X (975) DQ665754* d131 Portia cf. schultzi Karsch Madagascar: Fianarantsoa: S 22.592 E 45.128 (642) DQ665776 X d036 Holcolaetis sp. (H. zuluensis Lawrence?) South Africa: Kwazulu-Natal S 28.2369 E 32.4100 (659) DQ665770 X (971) DQ665757* Thiratoscirtines MRB210 thiratoscirtine (spot, foliage) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X MRB212 thiratoscirtine (elongate, foliage) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X X MRB225 Tarne dives Simon Gabon: Ngyounié S 1.124 E 11.13 X X X X MRB215 thiratoscirtine (white palps A, litter) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X X MRB236 Malloneta sp. 1 Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X X MRB216 thiratoscirtine (dusted, roadside) Gabon: Estuaire N 0.620 to 0.63 E 10.400 X X X X MRB233 Pochyta sp. 1 (brown) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X X MRB245 Malloneta sp. 2 Gabon: Ngyounié S 1.124 E 11.13 X X X X MRB220 Longarenus sp. 2 Gabon: Ngyounié S 1.124 E 11.13 X X X X MRB221 Pochyta cf. fastibilis Simon Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X X JXZ171 Thiratoscirtoides sp. Gabon: Ngounié, Waka National Park S 1.109 E 11.089 X X X X d195 Bacelarella cf. pavida Szuts & Jocqué Ghana: Central Region N 05.349 W 01.383 (755) EU815511* (899) EU815569* (876) EU815618* MRB074 Malloneta guineensis 2 Simon Ghana: Central Region X X X MRB268 cf. Thiratoscirtus 1 (V small bulb) Gabon: Ngounié, Waka National Park S 1.124 E 11.13 X X X d217 Pochyta cf. pannosa Simon Ghana: Kakum Forest N 05.349 W 01.383 (756) EU815522* (890) EU815577* X d193 indet. d193 [Gha.] Ghana: Kakum Forest N 05.349 W 01.383 (758) EU815509* (722) EU815567* (955) EU815617* MRB251 cf. Thiratoscirtus (V long cymbium) Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X X X MRB259 cf. Thiratoscirtus (band) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X MRB260 thiratoscirtine (small shiny, litter) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X MRB252 cf. Thiratoscirtus 2 (V small bulb) Gabon: Ngounié, Waka National Park S 1.124 E 11.13 X X X MRB219 cf. Thiratoscirtus (V round bulb) Gabon: Ngounié, Waka National Park S 1.124 E 11.13 X X X MRB264 thiratoscirtine (white palps B, litter) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X MRB229 Bacelarella cf. tentativa Szuts & Jocque Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X X MRB234 cf. Alfenus 1 Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X X MRB214 Pochyta pulchra 2 (Thorell) Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X X X MRB242 Pochyta cf. spinosa Simon (red band) Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X X MRB211 thiratoscirtine (small black, litter) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X X MRB208 Pochyta pulchra 3 (Thorell) Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X X X d194 Bacelarella iactans Szuts & Jocqué Ghana: N. of Cape Coast, Kakum Forest N 05.349 W 01.383 (756) EU815510* (906) EU815568* MRB157 indet. MRB157 [Gha.] Ghana: N. of Cape Coast, Kakum Forest N 05.349 W 01.383 X X d218 cf. Nimbarus sp. Ghana: N. of Cape Coast, Kakum Forest N 05.349 W 01.383 (762) EU815523* (844) EU815578* MRB222 cf. Alfenus 2 Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X d196 indet. d196 [Gha.] Ghana: N. of Cape Coast, Kakum Forest N 05.349 W 01.383 (761) EU815512* MRB258 Longarenus brachycephalus Simon Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X X MRB265 Pochyta sp. (orange, black spot) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X MRB209 Pochyta pulchra 1 (Thorell) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X MRB257 Pochyta cf. spinosa Simon (small) Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X (continued next page) 67 Specimen ID Species Locality GPS 28S Actin 5C ND1 16S CO1 MRB246 Saraina rubrofasciata Wanless & Clark Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X MRB267 Thiratoscirtus sp. Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.638 E 10.406 X X MRB223 cf. Thiratoscirtus (brown) Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X X MRB232 thiratoscirtine (small cross, litter) Gabon: Estuaire, Kinguélé N 0.464 E 10.279 X X MRB248 cf. Alfenus 3 Gabon: Ngounié, Waka National Park S 1.204 E 11.107 X X MRB228 Pochyta sp. 2 (brown) Gabon: Estuaire, Mondah Forest N 0.579 E 9.336 X X MRB227 Alfenus chrysophaeus Simon Gabon: Ngounié, Waka National Park N 0.634 E 10.378 X MRB217 Malloneta guineensis 1 Simon Gabon X X Other: d003 Salticus scenicus Clerck Canada: British Columbia, Mission (699) DQ665777* X NA X d222 Cheliceroides sp. [China] China: Guangxi: Tianlin County, Langping Village (638) EU815524* X (782) EU815579* MRB078 cf. Bavia Malaysia: Pahang N 4.46 E 101.40 X d221 Nungia epigynalis Zabka China: Guangxi, Pingxiang City N 22.2986 E 106.6997 X d213 constrictus 1 Simon Malaysia: Selangor N 3.325 E 101.753 X d172LD Agorius constrictus 2 Simon Malaysia: Selangor N 3.325 E 101.753 X d178 cf. Nungia Singapore: Lim Chu Kang Mangroves N 1.44 E 103.70 X d220 Eupoa nezha Maddison & Zhang China: Guangzi X X MRB231 Eburneana sp. Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.621 E 10.407 X Hisponines MRB243 Tomocyrba sp. Gabon: Tchimbélé, Woleu-Ntem, Monts de Cristal N 0.629 E 10.404 X X X X d081 Massagris schisma Maddison & Zhang South Africa: Northern Cape (778) DQ665762* (898) DQ665728* d082 Massagris cf. honesta Wesolowska South Africa: Kwazulu-Natal S 28.1021 E 32.4279 (597) DQ665772* (661) DQ665722* d127 Tomocyrba andasibe Maddison & Zhang Madagascar: Toamasina Province S 18.944 E 48.418 (513) DQ665780* (630) DQ665725* Outgroups s319 Gnaphosidae: Cesonia sp. : Sonora (745)AY297293* X (387)AY297356* (600)AY296711* (1047)AY297420* s316 Thomisidae: Xysticus sp. USA: Colorado (744)AY297296* X (387)AY297359* (582)AY296714* (1047)AY297296* s320 Corinnidae: Castianeira sp. Mexico: Sonora (739)AY297292* (393)AY297355* (596)AY296710* (1047)AY297419* s321 Miturgidae: Cheiracanthium sp. Mexico: Sonora (753)AY297294* (375)AY297357* (611)AY296712* (1047)AY297421* s318 Anyphaenidae: Hibana sp. Mexico: Sonora (743)AY297295* (393)AY297358* (743)AY297295* (1047)AY297422*

68 Age Name Location/Description Literature Mesozoic (Cretaceous) 120-135* Hauterivian amber from western slopes of Mount Lebanon (from Jezzine north to Baqq Alonso et al. 2000;* Poinar & Milki Kafra), Lebanon. One extinct spider genus of Oonopidae in this deposit, but rich in 2001;†* Penney 2006; Penney 2008 insect fauna.† No Salticidae described (Penney 2006; 2008). 112-125 Spain Upper Aptian-middle Albian* amber from the Sierra de Cantabria, Àlava, Spain Alonso et al. 2000*† 2 spiders fossils and no Salticidea identified.† 100-112 France Albian* amber from Archingeay-Les Nouillers, Charente-Maritime, France. Only fossil Perrichot et al. 2007*† rich French Cretaceous deposit. 26 araneae (3 Zodariidae, 23 sp. indeterminate).† No Penney 2006 Salticidae. One spider missidentified as salticid in Néraudeau et al. 2002 (Penney 2006). 90-100 Myanmar Turonian-Cenomania* Amber from Kachin, Myanmar. 128 aranea (11 families)†. Grimaldi et al. 2002*† (Burma) No Salticidae identified. Penney 2006 90-94* New Turonian amber from New Jersey, USA. No Salticidae described from this deposit.† Penney 2002;*† Grimaldi et al. 2002 Jersey 1 Salticidae missidentified in Grimaldi et al. 2002 (Penney 2006).† Penney 2006† 93-100 France Cenomanian* amber from Charente-Maritime and Charente, France. Perrichot et al. 2007*† No Saslticidae in this deposit, but the amber is poor in .† 83-87* Russia Santonian amber from Eastern Taimyr, Siberia.* Zherikhin & Eskvo 1999* as cited in No Salticidae have been described from this deposit.† Penney 2008*† 76.5-79.5 Canada Campanian* amber from Manitoba, Canada. 22 araneida; 18 sp. from unknown families. McAlpine & Martin 1969*† No Salticidae have been described from this deposit.† Penney 2008† Cenozoic (Paleocene, Eocene, Oligocene, Miocene) 53* France Late Eocene Amber from Le Quesnoy, Oise, France. This is the most fossil rich of all Nel et al. 2004* French Amber deposits. >230 spiders and 0 Salticidae.† Penney 2006† 44-49* Russia Middle Eocene amber from Samland, Russia (known as "East Prussia" in the literature). Wunderlich 2004† Baltic Contains basal members of Salticidae, including unknown basal salticids, but no Weitschat & Wichard 2002 cited in Bitterfled Salticoida.† Penney 2008* 22-26* Mexico Early Miocene-Late Oligocene amber from Simojovel, Chiapas. Contains one basal Berggren & van Couvering 1974 * Chiapas salticid from the New World Lyssomaninae† ( the specimen has no synapomorphy to García-Villafuerte & Penney 2003† place it within an extant genus). 16* Dominican Mid Miocene amber from the Dominican Republic and Haiti. 170 species from Iturralde-Vinent 2001;* Penney 2008*† Republic 45 families of spiders examined. 14 species of Salticidae from 9 genera including, but not also see Penney & Pérez-Gelabert 2002 Haiti limited to Lyssomanes, Corythalia & Thiodinda (the latter two are Salticoida genera).† Table 2.2 Age and Description of Amber Deposits. (*) Source of age/era of amber given in the respective paper. (†) Source of spider fossil information. 69 Analysis lower tMRCA Uniform Prior (BEAST)/min_age (r8s) min max upper tMRCA Uniform Prior (BEAST)/Max_age (r8s) 1. All present 0 0.5 Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Calibra- Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) 22 100 Max age of Salticidae (absence from Cretaceous amber deposits) tion Min age of Salticidae (presence in Baltic amber) 44 100 Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Points Min age Salticoida (presence in Dominican amber) 16 49 Max age of Salticoida (absence from Baltic/Le Quesnoy/Cretaceous amber) 2. Max present 0 0.5 Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) 22 100 Max age of Salticidae (absence from Cretaceous amber deposits) Havaika Min age of Salticidae (presence in Baltic amber) 44 100 Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Bound Min age Salticoida (presence in Dominican Amber) 16 100 Max age of Salticoida (absence from Baltic/Le Quesnoy/Cretaceous amber) 3. Max present NA NA Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) 22 100 Max age of Salticidae (absence from Cretaceous amber deposits) Salticoida Min age of Salticidae (presence in Baltic amber) 44 100 Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Bound Min age Salticoida (presence in Dominican amber) 16 49 Max age of Salticoida (absence from Baltic/Le Quesnoy/Cretaceous amber) 4. No present NA NA Max age of Havaika Node 15 (Arnedo & Gillespie 2006) Min age Lyssomaninae/Spartaeinae (Lyssomanes, Chapias amber) 22 100 Max age of Salticidae (absence from Cretaceous amber deposits) Max Min age of Salticidae (presence in Baltic amber) 44 100 Max age of Salticidae (absence from Le Quesnoy, Paris/Cretaceous amber) Bounds Min age Salticoida (presence in Dominican amber) 16 100 Max age of Salticoida (absence from Baltic/Paris/Cretaceous amber deposits)

Table 2.3 Summary of Calibration Points. Calibration points used in dating analyses run in BEAST and r8s.

70 0.998 Gnaphosidae: Cesonia sp. 0.995 Anyphaenidae: Hibana sp. 0.533 Thomisidae: Xysticus sp. Miturgidae: Cheiracanthium sp. 0.756 Onomastus sp. [China] 1.0 Goleba lyra 0.994 Asemonea sp. [S.Afr.] Corinnidae: Castianeira sp. 0.651 0.997 Thrandina parocula 1.0 Galianora sacha 1.0 Galianora bryicola Lyssomanes viridis 0.874 1.0 Cyrba lineata 0.999 Portia labiata 1.0 Portia cf. schultzi 0.817 Spartaeus uplandicus 0.997 Holcolaetis sp. Sonoita cf. lightfooti 0.9995 Tomocyrba andasibe 0.990 Tomocyrba sp. 1.0 Massagris cf. honesta 1.0 Massagris schisma 1.0 thiodinine indet.[Ecu.] 1 1.0 Thiodina sp. 1 Thiodina sp. 2 Amycoida 1.0 1.0 Jollas sp. 0.999 Sitticus palustris Sitticus sp. 0.990 cf. Arachnomura 0.632 Scopocira cf. tenella 0.680 1.0 Sarinda sp. 0.999 Sarinda cutleri 0.995 1.0 cf. Agelista* 1.0 Zuniga cf. laeta Zuniga cf. Magna 1.0 Hurius vulpinus 0.9998 amycoid indet. [Ecu.] 1.0 Encolpius sp. 1.0 1.0 Acragus sp. [Ecu.] 1.0 Noegus cf. rufus 0.999 Noegus transversalis 0.989 Mago steindachneri 1.0 Hypaeus mystacalis 1.0 cf. Acragus 1.0 cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Bavia group 1.0 Bavia cf. aericeps Stagetilus sp. [Phil.] Stagetilus sp. [Mal.] 0.973 1.0 Mantisatta longicauda ballines 0.957 Padilla mitohy 1.0 Afromarengo sp. [Gab.] 1.0 Pachyballus sp. [S.Afr.] 0.835 Peplometus sp. [Gha.] 0.819 Attidops youngi Salticoida 1.0 Peckhamia sp. 1.0 0.997 Psecas cf. viridipurpureus 0.664 Maevia intermedia Marpissoida 0.527 0.8895 0.612 cf. Marpissine indet. 0.908 Itata sp. Phanias sp. 1.0 1.0 0.994 Zygoballus rufipes 1.0 Ghelna canadensis 0.707 Terralonus mylothrus 0.770 Pelegrina chalceola/Pelegrina verecunda 0.9997 Eris militaris Phidippus sp. Neon nelli Mopsus mormon 0.714 Ligonipes sp. [Aus.] 0.9798 1.0 Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis 1.0 0.654 Myrmarachne plataleoides 1.0 Belippo cf. ibadan Astioida 1.0 Myrmarachne assimilis 0.653 Myrmarachne sp. [Sing.] 1.0 Myrmarachne foenisex 0.984 Myrmarachne sp. (tristis group) Myrmarachne evidens 1.0 Arasia mollicoma 0.895 Helpis minitabunda 0.959 Tauala lepidus 1.0 Orthrus bicolor 1.0 1.0 "Breda" jovialis Holoplatys cf. planissima 1.0 Heratemita alboplagiata 0.997 Ligurra latidens 0.569 Simaetha sp. [Aus.] 0.997 Simaetha sp. [Mal.] Ophisthoncus kochi 0.999 1.0 Penionomus sp. [N. Cal.] 0.626 Trite ignipilosa 0.556 cf. Mopsus [N. Cal.] 0.851 Viciria praemandibularis 1.0 Trite pennata Trite planiceps 1.0 Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] 0.948 Leptorchestes berolinensis Leptorchesteae 1.0 Enoplomischus sp. 1.0 Paramarpissa sp. 1.0 Yllenus arenarius 2 0.908 Yllenus arenarius 1 0.686 Hasarieae 1.0 Hasarius adansoni 0.893 Habrocestum cf. albimanum 0.981 Chinattus parvulus Menemerus bivittatus 1.0 0.564 Mexcala elegans Cosmophasis micarioides Heliophaninae 0.547 cf. Phintella* 0.881 Pseudicius reiskindi 0.599 Helvetia cf. zonata 0.634 0.928 Heliophanus cupreus 0.9995 Phintella piatensis Phintella sp. Mexigonus sp. All-Genes Euophryinae 0.957 Zenodorus orbiculatus 0.807 0.787 Corythalia cf. tropica 1.0 cf. Thorelliola 0.946 'Euophrys' parvula Naphrys pulex 1/2 1.0 0.976 Lagnus sp. 0.994 Chalcotropis luceroi 0.690 Lepidemathis haemorroidalis 1.0 Thiania viscaensis Thiania bhamoensis 1.0 Salticus scenicus 0.741 0.993 1.0 Pignus sp. Tusitala hirsuta 1.0 Tusitala lyrata 1.0 Mogrus mathisi 0.932 Philaeus chrysops Philaeus group 0.997 Carrhotus sp. [Mal.] Carrhotus sp. 1.0 Bianor sp. 1.0 0.694 Harmochirus cf. brachiatus 1.0 Bianor maculatus 0.947 Habronattus cf. paratus 0.998 Habronattus mexicanus 1.0 Habronattus decorus 0.794 Pellenes peninsularis 0.927 Havaika sp. Pellenes bulawayoensis Anarrhotus fossulatus 1.0 0.992 1.0 Telamonia masinloc Plexippoida 0.993 Telamonia dimidiata 0.933 Telamonia cf. festiva 1.0 "Viciria" cf. fuscimana 0.999 "Viciria" thoracica 0.628 "Viciria" cf. besanconi "Viciria" longiuscula 1.0 Pancorius sp. 2 0.622 Evarcha proszynskii Pancorius sp. 1 Plexippoides regius Hyllus tuberculatus 0.704 plexippine indet. [Gab.] 2 Hyllus treleaveni 0.520 Burmattus sp. 0.848 Evarcha/Hyllus sp. 0.558 Epeus sp. 1.0 Brancus viciriaeformis Thyene sp. [S. Afr.] 0.666 plexippine indet. [Gab.] 1 0.5598 Hyllus sp. 1.0 Polemus cf. chrysochirus Baryphas ahenus 1.0 Plexippus paykulli 2 0.589 Plexippus paykulli 1 1.0 Hermotimus sp. 1.0 Schenkelia cf. modesta Lessert Schenkelia modesta 1.0 Freya regia freyines 1.0 Freya decorata 0.953 Chira cf. spinipes 1.0 Frigga crocuta 0.678 Nycerella neglecta Pachomius cf. flavescens 0.850 Langona sp. 1.0 aelurillines 1.0 Stenaelurillus sp. [S. Afr.] Aelurilloida Aelurillus cf. ater 1.0 0.893 Phlegra cf. bresnieri 0.817 Phlegra fasciata 0.997 Langelurillus sp. Langelurillus nigritus 0.984 Thiratoscirtoides sp. 0.925 0.883 Tarne dives Saraina rubrofasciata 0.659 Pochyta cf. fastibilis 0.774 thiratoscirtine (elongate, foliage) 1.0 Bacelarella cf. tentativa 0.841 Bacelarella cf. pavida 1.0 1.0 1.0 indet. d193 [Gha.] thiratoscirtines thiratoscirtine (spot, foliage) thiratoscirtine (dusted, roadside) 0.783 1.0 Pochyta pulchra 2 1.0 Pochyta pulchra 1 0.8697 Pochyta cf. pannosa 0.826 Pochyta cf. spinosa (red band) 0.828 Pochyta cf. spinosa 0.877 1.0 Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) 1.0 cf. Alfenus 2 cf. Alfenus 3 1.0 Malloneta sp. 2 1.0 Malloneta guineensis 0.700 Malloneta sp. 1 0.934 0.665 cf. Alfenus 1 1.0 thiratoscirtine (white palps B, litter) 1.0 Pochyta pulchra 3 thiratoscirtine (white palps A, litter) 1.0 cf. Nimbarus sp. 0.774 indet. MRB157 [Gha.] 0.608 indet. d196 [Gha.] 0.998 thiratoscirtine (small black, litter) 0.769 thiratoscirtine (small cross, litter) Bacelarella iactans 0.6097 0.654 Longarenus brachycephalus 1.0 Longarenus sp. 2 0.585 Thiratoscirtus sp. cf. Thiratoscirtus (V round bulb) 0.996 cf. Thiratoscirtus (V long cymbium) 1.0 cf. Thiratoscirtus (brown) 1.0 cf. Thiratoscirtus 2 (V small bulb) 0.812 cf. Thiratoscirtus 1 (V small bulb) 0.999 cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) Figure 2.1 Phylogeny from All-Genes. Majority Rule Consensus tree from 129,133 Bayesian trees sampled from 172,178,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with a posterior probability of < 0.5 are shown as a polytomy. 71 0.868 Gnaphosidae: Cesonia sp. Miturgidae: Cheiracanthium sp. 0.931 Tomocyrba andasibe 0.928 Tomocyrba sp. 1.0 Massagris cf. honesta Massagris schisma Onomastus sp. [China] 0.821 0.999 Goleba lyra 0.915 Asemonea sp. [S.Afr.] 0.741 Thomisidae: Xysticus sp. 0.991 0.935 Corinnidae: Castianeira sp. Anyphaenidae: Hibana sp. Lyssomanes viridis 0.815 Thrandina parocula 0.619 1.0 Galianora sacha Galianora bryicola 0.992 1.0 Cyrba lineata 0.993 Portia labiata 0.998 Portia cf. schultzi 0.749 Spartaeus uplandicus 0.970 Holcolaetis sp. Sonoita cf. lightfooti 0.9997 thiodinine indet.[Ecu.] 1 1.0 Thiodina sp. 1 Thiodina sp. 2 0.762 cf. Arachnomura 1.0 Jollas sp. Amycoida 0.7795 0.9996 Sitticus palustris 0.701 Sitticus sp. 0.837 0.997 cf. Agelista Scopocira cf. tenella Salticoida 0.988 0.986 Sarinda sp. 0.976 0.761 Sarinda cutleri 1.0 Zuniga cf. laeta Zuniga cf. Magna Hurius vulpinus 0.849 Encolpius sp. amycoid indet. [Ecu.] 0.635 1.0 Acragus sp. [Ecu.] 1.0 Noegus cf. rufus 0.999 Noegus transversalis 0.976 Mago steindachneri 0.990 Hypaeus mystacalis 0.863 cf. Acragus 0.731 cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Bavia group 1.0 Stagetilus sp. [Phil.] 0.594 Bavia cf. aericeps Stagetilus sp. [Mal.] 1.0 Padilla mitohy ballines 0.795 Mantisatta longicauda 0.513 0.993 Afromarengo sp. [Gab.] 1.0 Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] 0.939 Attidops youngi 1.0 Peckhamia sp. 1.0 0.949 Psecas cf. viridipurpureus 0.936 Maevia intermedia Marpissoida 0.985 cf. Marpissine indet. 0.703 0.567 Platycryptus undatus Marpissa pikei Itata sp. 0.577 Phanias sp. 0.933 0.998 0.970 Zygoballus rufipes 1.0 Ghelna canadensis Terralonus mylothrus 0.718 Pelegrina chalceola/Pelegrina verecunda 0.974 Eris militaris Phidippus sp. Mopsus mormon Ligonipes sp. [Aus.] 0.970 1.0 Myrmarachne sp. 1 [Mal.] 1.0 Myrmarachne cf. gedongensis Myrmarachne plataleoides 1.0 Myrmarachne foenisex 1.0 Myrmarachne sp. (tristis group) Astioida 0.7595 Myrmarachne assimilis Myrmarachne evidens 1.0 Belippo cf. ibadan Myrmarachne sp. [Sing.] Neon nelli 0.9995 Arasia mollicoma 0.546 0.992 Helpis minitabunda 0.998 Tauala lepidus 1.0 0.9997 Orthrus bicolor 1.0 "Breda" jovialis Holoplatys cf. planissima 1.0 1.0 Heratemita alboplagiata 0.614 Simaetha sp. [Mal.] 0.930 Simaetha sp. [Aus.] 0.999 Ligurra latidens 1.0 Trite pennata 0.999 Trite planiceps cf. Mopsus [N. Cal.] 0.694 Viciria praemandibularis 0.677 Ophisthoncus kochi 1.0 Penionomus sp. [N. Cal.] Trite ignipilosa 1.0 Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] 0.996 Leptorchestes berolinensis Leptorchesteae 1.0 Enoplomischus sp. 0.9997 Paramarpissa sp. 1.0 Yllenus arenarius 2 0.967 0.988 Yllenus arenarius 1 Hasarieae 1.0 Hasarius adansoni 0.816 Habrocestum cf. albimanum 0.839 Chinattus parvulus Menemerus bivittatus 1.0 Cosmophasis micarioides 0.725 0.671 Mexcala elegans Heliophaninae 0.856 Pseudicius reiskindi cf. Phintella* 0.938 Helvetia cf. zonata 0.871 Heliophanus cupreus 0.987 Phintella piatensis Phintella sp. Salticus scenicus 28S Random 0.536 0.897 Philaeus chrysops 0.881 Carrhotus sp. [Mal.] 1.0 Carrhotus sp. 0.971 Mogrus mathisi Philaeus group 0.957 Tusitala hirsuta 0.998 0.849 Pignus sp. Taxa Order Tusitala lyrata Mexigonus sp. Euophryinae 0.989 Zenodorus orbiculatus 0.998 Naphrys pulex 1/2 0.998 'Euophrys' parvula 1.0 0.852 cf. Thorelliola Corythalia cf. tropica 0.841 Lagnus sp. 0.601 Chalcotropis luceroi 0.606 Lepidemathis haemorroidalis 0.998 Thiania viscaensis Thiania bhamoensis 0.982 Bianor sp. 0.956 Harmochirus cf. brachiatus 1.0 Bianor maculatus Havaika sp. 1.0 Pellenes bulawayoensis 1.0 0.994 Pellenes peninsularis 0.9996 Habronattus cf. paratus Plexippoida 1.0 0.707 Habronattus mexicanus Habronattus decorus "Viciria" cf. fuscimana 1.0 "Viciria" cf. besanconi "Viciria" thoracica "Viciria" longiuscula 1.0 0.938 Telamonia masinloc Telamonia cf. festiva Telamonia dimidiata 0.976 Hyllus sp. Pancorius sp. 2 Evarcha proszynskii Plexippoides regius 0.513 plexippine indet. [Gab.] 2 plexippine indet. [Gab.] 1 Hyllus treleaveni Epeus sp. 1.0 Brancus viciriaeformis 0.947 Thyene sp. [S. Afr.] 0.552 Evarcha/Hyllus sp. Anarrhotus fossulatus 0.809 Baryphas ahenus 0.982 0.645 Plexippus paykulli 2 Plexippus paykulli 1 0.915 Hermotimus sp. 0.956 Schenkelia cf. modesta Lessert Schenkelia modesta Pancorius sp. 1 0.723 Burmattus sp. 0.599 Hyllus tuberculatus Polemus cf. chrysochirus 1.0 Freya regia freyines 0.997 Freya decorata 0.913 Chira cf. spinipes 1.0 Frigga crocuta 0.604 Nycerella neglecta Pachomius cf. flavescens 0.937 Langona sp. aelurillines 1.0 Stenaelurillus sp. [S. Afr.] 0.998 Aelurillus cf. ater 0.518 Langelurillus nigritus 0.896 Phlegra cf. bresnieri 0.853 Langelurillus sp. 1.0 Phlegra fasciata Aelurilloida Thiratoscirtoides sp. Bacelarella iactans 0.508 Tarne dives Saraina rubrofasciata 1.0 thiratoscirtine (white palps B, litter) 1.0 Pochyta pulchra 3 thiratoscirtine (white palps A, litter) 1.0 Malloneta sp. 2 0.9995 Malloneta guineensis Malloneta sp. 1 0.998 cf. Alfenus 1 thiratoscirtines 1.0 cf. Alfenus 2 cf. Alfenus 3 1.0 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) 0.9998 cf. Nimbarus sp. 0.910 indet. MRB157 [Gha.] indet. d196 [Gha.] 0.996 cf. Thiratoscirtus (V round bulb) 0.986 Thiratoscirtus sp. 0.576 cf. Thiratoscirtus 2 (V small bulb) 0.975 cf. Thiratoscirtus 1 (V small bulb) 0.9998 Longarenus brachycephalus 0.632 Longarenus sp. 2 0.992 cf. Thiratoscirtus (V long cymbium) 0.914 cf. Thiratoscirtus (brown) 1.0 cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) Pochyta cf. pannosa Pochyta cf. spinosa (red band) 0.968 Pochyta pulchra 2 Pochyta pulchra 1 0.952 1.0 Pochyta cf. spinosa 1.0 Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) thiratoscirtine (dusted, roadside) 0.879 thiratoscirtine (elongate, foliage) 0.863 Pochyta cf. fastibilis 0.998 Bacelarella cf. tentativa 0.997 Bacelarella cf. pavida 0.9998 indet. d193 [Gha.] thiratoscirtine (spot, foliage) Figure 2.2 Phylogeny from 28S Random Order Taxa Alignment. Majority Rule Consensus tree from 90,873 Bayesian trees sampled from 121,164,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 72 Miturgidae: Cheiracanthium sp. Gnaphosidae: Cesonia sp. Anyphaenidae: Hibana sp. Tomocyrba andasibe 0.928 Tomocyrba sp. 0.915 Massagris cf. honesta 0.546 Massagris schisma Onomastus sp. [China] 0.592 1.0 Goleba lyra Asemonea sp. [S.Afr.] 0.684 Thomisidae: Xysticus sp. 0.587 Corinnidae: Castianeira sp. 0.559 Lyssomanes viridis Thrandina parocula 0.9997 1.0 Galianora sacha 0.946 Galianora bryicola 0.9997 Holcolaetis sp. 0.686 Sonoita cf. lightfooti 0.696 Spartaeus uplandicus 1.0 Cyrba lineata 0.998 Portia labiata Portia cf. schultzi 0.9897 thiodinine indet.[Ecu.] 1 1.0 Thiodina sp. 1 Thiodina sp. 2 Amycoida 1.0 1.0 Jollas sp. 0.986 Sitticus palustris Sitticus sp. 0.997 cf. Agelista 0.837 0.973 Scopocira cf. tenella 0.999 Sarinda sp. 0.817 Sarinda cutleri 1.0 Zuniga cf. laeta 0.837 Zuniga cf. Magna 0.575 Encolpius sp. 0.749 Hurius vulpinus 0.653 cf. Arachnomura amycoid indet. [Ecu.] 0.934 1.0 Acragus sp. [Ecu.] 1.0 Noegus cf. rufus 1.0 Noegus transversalis 0.926 Mago steindachneri 0.997 Hypaeus mystacalis 0.963 cf. Acragus 0.817 cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Padilla mitohy ballines 1.0 1.0 Pachyballus sp. [S.Afr.] Salticoida 1.0 0.999 Peplometus sp. [Gha.] 0.956 Mantisatta longicauda 0.869 Afromarengo sp. [Gab.] 0.6299 Attidops youngi Peckhamia sp. 1.0 Itata sp. 0.627 Marpissa pikei 0.9998 cf. Marpissine indet. Marpissoida 0.9898 0.552 Maevia intermedia 0.999 Platycryptus undatus Psecas cf. viridipurpureus Phanias sp. 0.9995 0.857 Zygoballus rufipes 0.812 1.0 Ghelna canadensis Terralonus mylothrus 0.759 Pelegrina chalceola/Pelegrina verecunda 0.976 Eris militaris Phidippus sp. Bavia group 1.0 Stagetilus sp. [Mal.] 0.773 Bavia cf. aericeps Stagetilus sp. [Phil.] Arasia mollicoma Tauala lepidus 0.788 Helpis minitabunda 0.983 Orthrus bicolor Neon nelli 0.871 Ligonipes sp. [Aus.] 0.913 Mopsus mormon 1.0 Myrmarachne sp. 1 [Mal.] 1.0 Myrmarachne cf. gedongensis 0.9998 Myrmarachne plataleoides 1.0 0.843 Myrmarachne assimilis Astioida 0.722 Myrmarachne sp. [Sing.] 0.748 Myrmarachne sp. (tristis group) 0.760 Belippo cf. ibadan 0.992 Myrmarachne foenisex Myrmarachne evidens 1.0 "Breda" jovialis Holoplatys cf. planissima 1.0 Simaetha sp. [Aus.] 0.9096 Ligurra latidens 0.541 Heratemita alboplagiata 0.999 Simaetha sp. [Mal.] 0.999 Trite pennata 0.828 Trite planiceps Ophisthoncus kochi 0.736 1.0 1.0 Penionomus sp. [N. Cal.] 0.669 Trite ignipilosa 0.724 cf. Mopsus [N. Cal.] Viciria praemandibularis 0.998 Idastrandia orientalis Nannenus lyriger 0.715 Cheliceroides sp. [China] Hasarieae 1.0 Chinattus parvulus 0.507 0.966 Habrocestum cf. albimanum Hasarius adansoni 0.992 Leptorchestes berolinensis Leptorchesteae 1.0 Enoplomischus sp. 0.932 1.0 Paramarpissa sp. 1.0 Yllenus arenarius 2 Yllenus arenarius 1 Pseudicius reiskindi 0.995 Mexcala elegans Heliophaninae Cosmophasis micarioides 0.896 Menemerus bivittatus cf. Phintella 0.885 Helvetia cf. zonata 0.887 Heliophanus cupreus 0.995 Phintella piatensis Phintella sp. 28S Original Mexigonus sp. Euophryinae 0.9996 Zenodorus orbiculatus 0.941 Naphrys pulex 1/2 0.675 Lagnus sp. Chalcotropis luceroi 1.0 0.768 'Euophrys' parvula 0.777 cf. Thorelliola Taxa Order Corythalia cf. tropica 0.635 Lepidemathis haemorroidalis 0.998 Thiania viscaensis 0.685 0.579 Thiania bhamoensis Salticus scenicus Philaeus group 1.0 Mogrus mathisi 1.0 0.900 Tusitala hirsuta 0.636 Pignus sp. 0.601 Tusitala lyrata 0.967 Philaeus chrysops 0.767 Carrhotus sp. [Mal.] Carrhotus sp. 0.710 0.991 Bianor sp. 0.997 Harmochirus cf. brachiatus 1.0 Bianor maculatus Havaika sp. 1.0 Pellenes bulawayoensis 0.970 Pellenes peninsularis 0.992 Habronattus cf. paratus 1.0 0.9997 Habronattus mexicanus Plexippoida Habronattus decorus 1.0 "Viciria" cf. fuscimana 0.551 "Viciria" longiuscula 0.687 "Viciria" cf. besanconi 0.999 "Viciria" thoracica 0.941 Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva 0.853 Polemus cf. chrysochirus 0.957 Pancorius sp. 1 0.988 Hyllus tuberculatus 0.959 0.731 Baryphas ahenus 0.989 Plexippus paykulli 2 0.527 0.788 Plexippus paykulli 1 0.8996 Hermotimus sp. 0.997 Schenkelia cf. modesta Lessert Schenkelia modesta 0.821 Hyllus treleaveni Anarrhotus fossulatus 0.594 Evarcha proszynskii 0.967 0.612 Evarcha/Hyllus sp. 0.841 plexippine indet. [Gab.] 2 Burmattus sp. Hyllus sp. Plexippoides regius 0.534 0.815 Pancorius sp. 2 plexippine indet. [Gab.] 1 0.874 Epeus sp. 1.0 Brancus viciriaeformis Thyene sp. [S. Afr.] Chira cf. spinipes freyines 0.908 1.0 Freya regia 0.525 Freya decorata 1.0 Nycerella neglecta 0.514 Pachomius cf. flavescens Frigga crocuta 0.513 Langona sp. 1.0 Stenaelurillus sp. [S. Afr.] aelurillines 0.9997 Phlegra cf. bresnieri 1.0 Phlegra fasciata Aelurilloida 0.990 Aelurillus cf. ater 0.601 Langelurillus sp. Langelurillus nigritus 1.0 Malloneta sp. 2 0.998 Malloneta guineensis Malloneta sp. 1 1.0 thiratoscirtine (white palps B, litter) 1.0 Pochyta pulchra 3 0.999 0.578 thiratoscirtine (white palps A, litter) thiratoscirtines 0.599 Saraina rubrofasciata 0.712 Bacelarella iactans 0.589 Tarne dives Thiratoscirtoides sp. 0.911 1.0 cf. Alfenus 2 cf. Alfenus 3 Pochyta cf. fastibilis 0.787 thiratoscirtine (elongate, foliage) 0.997 thiratoscirtine (small black, litter) 0.883 thiratoscirtine (small cross, litter) 1.0 Bacelarella cf. tentativa 0.9998 Bacelarella cf. pavida 1.0 indet. d193 [Gha.] thiratoscirtine (spot, foliage) 0.589 Pochyta cf. spinosa (red band) 0.826 0.997 Pochyta cf. spinosa 1.0 Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) 0.842 thiratoscirtine (dusted, roadside) 0.543 Pochyta cf. pannosa 0.939 Pochyta pulchra 2 Pochyta pulchra 1 0.902 cf. Alfenus 1 1.0 cf. Nimbarus sp. 0.962 indet. MRB157 [Gha.] indet. d196 [Gha.] 0.972 Longarenus sp. 2 0.952 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. 0.990 cf. Thiratoscirtus 1 (V small bulb) 0.888 cf. Thiratoscirtus 2 (V small bulb) 0.882 Longarenus brachycephalus 0.9595 cf. Thiratoscirtus (V long cymbium) 0.783 cf. Thiratoscirtus (brown) 1.0 cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter)

Figure 2.3 Phylogeny from 28S Original Alignment. Majority Rule Consensus tree from 121,801Bayesian trees sampled from 162,402,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 73 0.897 Thomisidae: Xysticus sp. 1.0 Phintella piatensis Miturgidae: Cheiracanthium sp. 1.0 Thrandina parocula 1.0 Lyssomanes longipes 0.818 Lyssomanes viridis 0.999 Eupoa nezha 0.997 Corinnidae: Castianeira sp. 0.930 Anyphaenidae: Hibana sp. Gnaphosidae: Cesonia sp. 1.0 Diplocanthopoda marina 0.683 Habrocestum cf. albimanum indet. MRB041 [Mal.] some Amycoida 0.984 Thiodina sp. 1 1.0 thiodinine indet. [Ecu.] 1 thiodinine indet.[Ecu.] 2 0.853 0.638 cf. Arachnomura cf. Cyllodania 0.795 Hurius vulpinus 0.7495 amycoid indet. [Ecu.] 0.588 Fluda sp. some Amycoida 0.721 0.846 Synemosyna cf. lucasi Cylistella sp. 0.592 Mago steindachneri 1.0 Encolpius sp. 2 Encolpius sp. 1 1.0 1.0 Noegus transversalis 0.987 1.0 Noegus sp. Salticoida 1.0 Noegus cf. rufus Amycus sp. 0.9997 Hypaeus mystacalis 0.729 cf. Acragus 1.0 cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 0.947 Paramarpissa sp. 1.0 Jollas sp. 0.980 Sitticus palustris some Amycoida 0.915 Sitticus dorsatus Sitticus sp. "Breda" jovialis Ligonipes sp. [Aus.] cf. Lystrocteissa sp. [N. Cal.] Viciria praemandibularis Capidava cf. rufithorax 0.9995 Yllenus arenarius 1 0.537 Leptorchestes berolinensis 0.519 Clynotis severus Cheliceroides sp. [China] 0.507 Simaetha sp. [Aus.] antlike.MRB174 indet. [N.Cal.] 1.0 Idastrandia orientalis nannenine indet. [Sing.] 1.0 Penionomus sp. [N. Cal.] Trite ignipilosa 0.954 Colyttus sp. Chalcotropis luceroi 0.944 Mexigonus sp. Lepidemathis haemorroidalis 0.995 cf. Thorelliola 'Euophrys' parvula 0.863 Lagnus sp. Corythalia cf. tropica 0.804 cf. Mopsus [N. Cal.] 0.906 Trite pennata Trite planiceps 0.731 Neon nelli 0.9995 Ligurra latidens Heratemita alboplagiata 1.0 cf. Bavia 0.699 cf. Nungia Nungia epigynalis 0.521 Zenodorus orbiculatus 0.999 Thiania bhamoensis Thiania viscaensis 0.523 Euophryine indet. [Ecu.] 1.0 Naphrys pulex 1 Naphrys pulex 2 0.697 Pseudicius reiskindi 0.659 cf. Phintella Heliophaninae Menemerus bivittatus Helvetia cf. zonata 1.0 Cosmophasis micarioides Phintella sp. 1.0 Massagris schisma 0.904 Massagris cf. honesta 1.0 Stagetilus sp. 2 [Mal.] 0.746 Stagetilus sp. [Phil.] 1.0 Nannenus lyriger Langerra cf. longicymbium 0.994 0.504 cf. Simaetha [N. Cal.] Scopocira cf. tenella 1.0 Sarinda cutleri Sarinda sp. 0.9895 Orthrus bicolor 0.998 Arasia mollicoma Helpis minitabunda Galianora bryicola 0.545 Tomocyrba andasibe 0.844 0.757 Onomastus sp. [China] 0.938 Sonoita cf. lightfooti 1.0 Spartaeus uplandicus Portia labiata 0.555 Pignus sp. Tusitala hirsuta 0.556 Tusitala lyrata 0.999 Carrhotus sp. Philaeus group 0.518 Philaeus chrysops Carrhotus sp. [Mal.] Mogrus mathisi 1.0 Langona sp. aelurillines 0.773 Aelurillus cf. ater 0.549 Phlegra fasciata 0.999 Asianellus sp. 0.927 Langelurillus nigritus 1.0 cf. Agelista ND116S 1.0 1.0 Zuniga sp. Zuniga cf. laeta 1.0 Zuniga cf. magna 1.0 Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis 0.998 1.0 Myrmarachne cf. mocamboensis 1.0 Myrmarachne cf. malayana 1 0.892 Myrmarachne cf. malayana 2 0.522 Myrmarachne plataleoides 1.0 Myrmarachne assimilis 0.669 Myrmarachne sp. [Sing.] 0.759 Myrmarachne sp. 2 [Mal.] 0.9997 Myrmarachne sp. (tristis group) Myrmarachne foenisex Mantisatta longicauda 1.0 0.999 Padilla mitohy 0.944 Goleta workmani 0.966 Leikung cf. porosa 1.0 Peplometus sp. [Gha.] 0.755 Pachyballus sp. [Zim.] ballines 0.989 cf. Colaxes 1 [Mal.] 0.965 Afromarengo sp. [Gab.] 0.609 Itata sp. Attidops youngi 0.784 Psecas cf. viridipurpureus Marpissoida 0.666 cf. Marpissine indet. 0.9996 0.878 Peckhamia sp. 0.945 Marpissa pikei Maevia intermedia 0.555 Platycryptus undatus 0.9998 Phanias sp. 1.0 Zygoballus rufipes 0.603 Eris militaris 0.889 Dendryphantes sp. 0.689 Terralonus mylothrus 0.997 Phidippus sp. Pelegrina chalceola/Pelegrina verecunda 0.961 Havaika sp. 0.954 Habronattus mexicanus 1.0 Habronattus cf. paratus 1.0 Bianor sp. 1.0 Sibianor aemulus 0.963 Bianor maculatus 1.0 Harmochirus brachiatus Harmochirus cf. brachiatus Plexippoida 0.582 Epeus cf. guanxi 0.571 Pancorius sp. 3 Anarrhotus fossulatus 0.992 1.0 "Viciria" cf. fuscimana 0.9197 1.0 "Viciria" cf. besanconi "Viciria" longiuscula 1.0 Telamonia masinloc 1.0 Telamonia dimidiata 0.717 Telamonia cf. festiva 0.951 Polemus cf. chrysochirus plexippine indet. [Gab.] 1 0.763 Evarcha bakorensis Burmattus sp. 0.637 Hyllus treleaveni Hyllus tuberculatus Plexippoides regius 1.0 Schenkelia modesta 0.564 0.991 Schenkelia cf. modesta 1.0 Plexippus paykulli 1 Plexippus paykulli 2 0.625 Epeus sp. 0.717 Pancorius sp. 1 0.517 Evarcha proszynskii Pancorius sp. 2 plexippine indet. [Sing.] 0.626 0.932 Thyene sp. [S. Afr.] Brancus viciriaeformis 1.0 Evarcha cf. orientalis 1 Evarcha cf. orientalis 2 0.988 Frigga crocuta 0.601 indet. MRB155 [F. Gui.] freyines 0.528 Nycerella neglecta 0.975 Pachomius cf. flavescens 0.822 Chira cf. spinipes 0.634 Rishaschia sp. Eustiromastix cf. major 0.984 1.0 Freya decorata Freya regia 1.0 freyine indet. [Ecu.] Freya cf. prominens 0.664 0.646 Bacelarella iactans 1.0 Longarenus sp. 2 cf. Thiratoscirtus 1 (V small bulb) 1.0 cf. Nimbarus sp. 0.535 indet. MRB157 [Gha.] 0.9998 cf. Alfenus 2 thiratoscirtines Alfenus chrysophaeus Tarne dives 1.0 0.576 Thiratoscirtoides sp. 0.612 1.0 Pochyta pulchra 3 thiratoscirtine (white palps A, litter) 0.989 Malloneta sp. 2 1.0 Malloneta guineensis 2 0.849 Malloneta guineensis 1 Malloneta sp. 1 thiratoscirtine (elongate, foliage) 0.523 1.0 Bacelarella cf. pavida 1.0 indet. d193 [Gha.] 0.927 thiratoscirtine (spot, foliage) 0.570 thiratoscirtine (dusted, roadside) 1.0 Pochyta cf. fastibilis 1.0 Pochyta cf. pannosa 0.692 Pochyta cf. spinosa 1.0 Pochyta sp. 2 (brown) Pochyta sp. 1 (brown) Figure 2.4 Phylogeny from ND116S. Majority Rule Consensus tree from 150,000 Bayesian trees sampled from 200,000,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 74 0.524 Corinnidae: Castianeira sp. 0.859 Miturgidae: Cheiracanthium sp. 0.783 Gnaphosidae: Cesonia sp. 0.688 Thomisidae: Xysticus sp. Anyphaenidae: Hibana sp. 0.992 Onomastus sp. [China] Tomocyrba sp. 0.862 Sonoita cf. lightfooti 0.651 Holcolaetis sp. 0.585 0.573 Lyssomanes viridis 0.999 Portia labiata Cyrba lineata 1.0 Goleba lyra 0.693 Asemonea sp. [S.Afr.] 0.998 Thrandina parocula 0.9998 Galianora sacha Galianora bryicola Naphrys pulex 1/2 Eris militaris cf. Thorelliola Idastrandia orientalis cf. Agelista Mexcala elegans Mexigonus sp. Mopsus mormon Lepidemathis haemorroidalis Pancorius sp. 2 Thiania viscaensis Peckhamia sp. Sarinda cutleri Pancorius sp. 1 Heliophanus cupreus Aelurillus cf. ater Salticus scenicus Tauala lepidus Hermotimus sp. Burmattus sp. Paramarpissa sp. 'Euophrys' parvula cf. Mopsus [N. Cal.] Thyene sp. [S. Afr.] Hyllus treleaveni Anarrhotus fossulatus Epeus sp. Noegus transversalis Chalcotropis luceroi Phintella sp. 0.962 0.717 Leptorchestes berolinensis Plexippoides regius 0.981 Telamonia masinloc Telamonia dimidiata 0.750 Langona sp. Stenaelurillus sp. [S. Afr.] 0.666 Phlegra cf. bresnieri Phlegra fasciata 1.0 Habrocestum cf. albimanum Chinattus parvulus 1.0 Plexippus paykulli 2 Plexippus paykulli 1 0.904 "Breda" jovialis Holoplatys cf. planissima 0.729 Cosmophasis micarioides cf. Phintella 0.992 cf. Arachnomura Jollas sp. 1.0 Schenkelia cf. modesta Lessert Schenkelia modesta 1.0 "Viciria" cf. fuscimana "Viciria" cf. besanconi 1.0 Yllenus arenarius 2 Yllenus arenarius 1 0.567 Hyllus tuberculatus plexippine indet. [Gab.] 1 1.0 Zuniga cf. laeta Zuniga cf. Magna 0.810 Helvetia cf. zonata Pseudicius reiskindi 0.742 Zygoballus rufipes Terralonus mylothrus Phanias sp. 0.738 Hyllus sp. 0.998 Polemus cf. chrysochirus Baryphas ahenus 0.759 Sitticus sp. 1.0 0.640 Langelurillus sp. Salticoida Sitticus palustris 0.929 thiodinine indet.[Ecu.] 1 0.990 Orthrus bicolor Thiodina sp. 2 0.995 Bavia cf. aericeps 0.963 Stagetilus sp. [Phil.] Stagetilus sp. [Mal.] CO1 1.0 cf. Acragus 1.0 cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 0.981 Trite pennata 0.577 Trite planiceps 1.0 Penionomus sp. [N. Cal.] Trite ignipilosa 0.907 Platycryptus undatus 0.8695 Psecas cf. viridipurpureus 0.868 Maevia intermedia cf. Marpissine indet. 0.789 Telamonia cf. festiva 1.0 Havaika sp. 0.595 Habronattus cf. paratus Habronattus mexicanus Scopocira cf. tenella 0.621 Hypaeus mystacalis 0.713 Encolpius sp. 0.991 Hurius vulpinus amycoid indet. [Ecu.] Ophisthoncus kochi 0.613 Simaetha sp. [Aus.] Ligurra latidens 0.694 Mago steindachneri Heratemita alboplagiata Corythalia cf. tropica 0.834 Arasia mollicoma Chira cf. spinipes 1.0 Nycerella neglecta 0.660 Pachomius cf. flavescens Frigga crocuta Philaeus chrysops 0.754 0.831 Lagnus sp. Carrhotus sp. [Mal.] 0.719 Carrhotus sp. 0.890 Pignus sp. Tusitala lyrata Mantisatta longicauda 0.992 Afromarengo sp. [Gab.] 0.799 0.859 Peplometus sp. [Gha.] Padilla mitohy 0.514 Evarcha/Hyllus sp. 1.0 Bianor sp. 0.997 Harmochirus cf. brachiatus Bianor maculatus 0.954 Ligonipes sp. [Aus.] Attidops youngi 0.795 Sarinda sp. 0.702 0.994 Belippo cf. ibadan 1.0 Myrmarachne sp. 1 [Mal.] 0.9995 Myrmarachne cf. gedongensis 0.723 Myrmarachne plataleoides 0.961 Myrmarachne sp. [Sing.] 0.969 Myrmarachne assimilis 1.0 Myrmarachne sp. (tristis group) 0.784 Myrmarachne foenisex Myrmarachne evidens 0.784 Neon nelli Itata sp. Thiratoscirtoides sp. 0.833 thiratoscirtine (white palps A, litter) Longarenus brachycephalus Longarenus sp. 2 0.789 thiratoscirtine (small black, litter) 1.0 Thiratoscirtus sp. thiratoscirtines thiratoscirtine (small cross, litter) 0.970 cf. Thiratoscirtus (band) 1.0 cf. Thiratoscirtus 2 (V small bulb) 0.879 cf. Thiratoscirtus 1 (V small bulb) 0.663 cf. Thiratoscirtus (brown) 0.738 0.869 cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (V round bulb) 1.0 Malloneta sp. 2 1.0 Malloneta guineensis Malloneta sp. 1 Tarne dives 0.6495 Pochyta cf. fastibilis 0.994 thiratoscirtine (dusted, roadside) thiratoscirtine (elongate, foliage) 0.803 1.0 Bacelarella cf. pavida 0.965 Bacelarella cf. tentativa 0.9997 indet. d193 [Gha.] thiratoscirtine (spot, foliage) 1.0 Pochyta cf. spinosa 0.9995 Pochyta cf. pannosa 0.975 Pochyta sp. 1 (brown) 0.7297 Pochyta sp. (orange, black spot) 1.0 Pochyta pulchra 2 Pochyta pulchra 1 Figure 2.5 Phylogeny from CO1. Majority Rule Consensus tree from 97,220 Bayesian trees sampled from 129,627,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 75 0.767 Thomisidae: Xysticus sp. Gnaphosidae: Cesonia sp. 0.9998 Holcolaetis sp. Portia cf. schultzi 0.652 Goleba lyra 0.590 Lyssomanes viridis 0.983 Thrandina parocula 1.0 Galianora sacha 0.832 Galianora bryicola astioida Myrmarachne sp. 1 [Mal.] astioida Tauala lepidus astioida Arasia mollicoma astioida Mopsus mormon 0.550 Nannenus lyriger Idastrandia orientalis aelurilline Aelurillus cf. ater freyine Freya decorata Cheliceroides sp. [Chi.] Salticoida 0.658 Leptorchesteae Yllenus arenarius Marpissoida 1.0 Ghelna canadensis Chinattus parvulus Hasarieae 1.0 0.870 Echeclus sp. 0.688 Diplocanthopoda marina Gedea cf. tibialis "Breda" jovialis 0.541 some Astioida 0.997 0.914 Ophisthoncus kochi 0.820 Simaetha sp. [Aus.] Ligurra latidens Heliophaninae 0.604 Mexcala elegans Heliophanus cupreus 1.0 Agorius constrictus 2 0.848 Agorius constrictus 1 0.966 Acragus sp. [Ecu.] Amycoida 0.986 Hurius cf. vulpinus 1.0 thiodinine 0.537 Cotinusa sp. Leikung cf. porosa ballines 1.0 0.979 Afromarengo sp. [Gab.] 1.0 Pachyballus sp. [S.Afr.] 0.953 Peplometus sp. [Gha.] Thiania bhamoensis euophryines 0.836 Simaetha sp. [Mal.] 0.994 0.526 Tomocyrba sp. Zenodorus orbiculatus 0.729 Naphrys pulex 1 0.808 Neonella Vinnula Salticus scenicus 0.996 Tusitala lyrata Actin 5C 0.812 Philaeus group 1.0 Philaeus chrysops Mogrus mathisi 0.999 Eburneana sp. 1.0 Bianor maculatus 1.0 Bianor sp. 0.995 Pellenes nigrociliatus 0.982 0.972 Pellenes peninsularis 1.0 Habronattus americanus Plexippoida 1.0 Habronattus decorus Plexippus paykulli 1 Hyllus diardi 0.632 Hermotimus sp. 0.743 Evarcha proszynskii Hyllus sp. 0.546 Evarcha sp. 0.573 plexippine 0.997 Hyllus treleaveni plexippine indet. [Gab.] 2 freyine Trydarssus cf. nobilitatus 0.520 cf. Alfenus 1 1.0 thiratoscirtine (white palps B, litter) 0.9899 0.6896 Pochyta pulchra 3 thiratoscirtines thiratoscirtine (white palps A, litter) Malloneta sp. 2 0.594 1.0 1.0 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (elongate, foliage) 0.892 0.863 Thiratoscirtoides sp. Tarne dives cf. Thiratoscirtus (V round bulb) 0.777 Longarenus sp. 2 0.676 cf. Thiratoscirtus (band) 0.854 cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 2 (V small bulb) 0.998 thiratoscirtine (small black, litter) thiratoscirtine (small shiny, litter) 0.645 Pochyta cf. fastibilis 0.6698 thiratoscirtine (spot, foliage) 0.662 Bacelarella cf. tentativa 0.517 Pochyta pulchra 2 0.992 thiratoscirtine (dusted, roadside) 0.776 Pochyta cf. spinosa 1.0 Pochyta sp. 2 (brown) Pochyta sp. 1 (brown)

Figure 2.6 Phylogeny from Actin 5C. Majority Rule Consensus tree from 145,359 Baysian trees sampled from 193,812,000 generations (25% post-analysis burn-in). Bayesian postierior probabilities > 0.5 are given. Clades with probabiltiy < 0.5 are showed as a polytomy. 76 outgroups 0.985 Thomisidae: Xysticus sp. Miturgidae: Cheiracanthium sp. outgroups 0.973 Gnaphosidae: Cesonia sp. 0.999 Corinnidae: Castianeira sp. Anyphaenidae: Hibana sp. Lyssomaninae/Spartaeinae 0.854 0.975 Onomastus sp. [China] 1.0 Goleba lyra 0.970 Asemonea sp. [S.Afr.] 0.988 Lyssomanes viridis Thrandina parocula 0.996 1.0 Galianora sacha Galianora bryicola 1.0 1.0 Cyrba lineata 0.996 Portia labiata 0.999 Portia cf. schultzi 0.955 Spartaeus uplandicus 0.949 Holcolaetis sp. Sonoita cf. lightfooti hisponines 0.999 Tomocyrba andasibe 0.999 Tomocyrba sp. 0.9995 Massagris cf. honesta 0.961 Massagris schisma basal 1.0 thiodinine indet.[Ecu.] 1 1.0 Thiodina sp. 1 Thiodina sp. 2 Amycoida 1.0 1.0 Jollas sp. 0.706 Sitticus palustris Sitticus sp. 0.951 cf. Arachnomura salticids 0.961 Scopocira cf. tenella 0.997 1.0 Sarinda sp. 0.998 Sarinda cutleri 0.999 1.0 cf. Agelista 1.0 Zuniga cf. laeta Zuniga cf. Magna 0.785 Hurius vulpinus 0.9997 amycoid indet. [Ecu.] 1.0 Encolpius sp. 1.0 1.0 Acragus sp. [Ecu.] 1.0 Noegus cf. rufus 0.995 Noegus transversalis 0.9995 Mago steindachneri 1.0 Hypaeus mystacalis 0.977 cf. Acragus 1.0 cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Bavia group 1.0 Stagetilus sp. [Phil.] 0.804 Bavia cf. aericeps Stagetilus sp. [Mal.] 0.974 1.0 Mantisatta longicauda ballines 0.996 Padilla mitohy 1.0 Afromarengo sp. [Gab.] 1.0 Pachyballus sp. [S.Afr.] 0.961 Peplometus sp. [Gha.] 0.951 Attidops youngi Peckhamia sp. 1.0 1.0 0.999 Psecas cf. viridipurpureus Salticoida 0.956 Maevia intermedia 0.994 Platycryptus undatus Marpissoida 0.977 Marpissa pikei cf. Marpissine indet. 0.944 Itata sp. Phanias sp. 0.9998 1.0 0.989 Zygoballus rufipes 1.0 Ghelna canadensis 0.713 Terralonus mylothrus 0.534 Pelegrina chalceola/Pelegrina verecunda 0.9998 Eris militaris Phidippus sp. Mopsus mormon 0.661 Ligonipes sp. [Aus.] 0.691 1.0 Myrmarachne sp. 1 [Mal.] 1.0 Myrmarachne cf. gedongensis 1.0 Myrmarachne plataleoides Myrmarachne assimilis 0.867 0.874 Belippo cf. ibadan Astioida 1.0 0.696 Myrmarachne sp. [Sing.] 1.0 Myrmarachne foenisex 0.994 Myrmarachne sp. (tristis group) Myrmarachne evidens Neon nelli 1.0 Arasia mollicoma 0.613 0.981 Helpis minitabunda 0.998 Tauala lepidus 1.0 Orthrus bicolor 1.0 "Breda" jovialis Holoplatys cf. planissima 1.0 1.0 Heratemita alboplagiata 1.0 Simaetha sp. [Aus.] Simaetha sp. [Mal.] 0.987 Ligurra latidens 1.0 Trite pennata 1.0 Trite planiceps Ophisthoncus kochi 0.583 cf. Mopsus [N. Cal.] 0.602 Viciria praemandibularis 1.0 Penionomus sp. [N. Cal.] Trite ignipilosa 1.0 Idastrandia orientalis 1.0 Nannenus lyriger Mexigonus sp. 0.897 Zenodorus orbiculatus 0.989 Naphrys pulex 1/2 Euophryinae 0.947 Corythalia cf. tropica 1.0 0.9997 cf. Thorelliola 'Euophrys' parvula 1.0 Thiania viscaensis 0.997 Thiania bhamoensis 0.547 Lepidemathis haemorroidalis 0.889 Lagnus sp. Chalcotropis luceroi Cheliceroides sp. [China] 0.5599 0.974 Leptorchestes berolinensis Leptorchesteae1.0 Enoplomischus sp. 1.0 Paramarpissa sp. 1.0 Yllenus arenarius 2 0.772 Yllenus arenarius 1 Hasarieae 1.0 Hasarius adansoni 0.998 Habrocestum cf. albimanum Chinattus parvulus 0.814 Menemerus bivittatus Helvetia cf. zonata 0.927 Heliophanus cupreus 1.0 Pseudicius reiskindi 1.0 Phintella piatensis 28S/16SND1 0.752 Heliophaninae Phintella sp. 0.645 Cosmophasis micarioides 0.613 Mexcala elegans cf. Phintella* Salticus scenicus Philaeus group 0.809 1.0 Tusitala lyrata 0.575 Pignus sp. Starting Tree 1.0 Tusitala hirsuta 0.997 Mogrus mathisi 0.954 Philaeus chrysops 0.936 Carrhotus sp. [Mal.] Carrhotus sp. 1.0 Bianor sp. 0.966 Harmochirus cf. brachiatus 0.992 for r8s 1.0 Bianor maculatus 0.768 0.983 Pellenes peninsularis 0.937 Habronattus cf. paratus 1.0 0.996 Habronattus mexicanus Habronattus decorus 0.611 Pellenes bulawayoensis 0.985 Havaika sp. 0.922 Havaika cf. pubens 2 0.923 Havaika cf. pubens 1 1.0 1.0 Havaika cf. verecunda Plexippoida 0.9998 Havaika sp. 'morphotype D' Havaika cruciata 0.918 Epeus sp 1.0 Brancus viciriaeformis Thyene sp. [S. Afr.] 0.905 Evarcha/Hyllus sp. Anarrhotus fossulatus 1.0 0.893 1.0 Telamonia masinloc 1.0 Telamonia dimidiata 0.986 Telamonia cf. festiva 1.0 "Viciria" cf. fuscimana 0.982 "Viciria" thoracica 0.591 0.658 "Viciria" cf. besanconi "Viciria" longiuscula* 0.909 Pancorius sp. 1 0.979 0.945 Pancorius sp. 2 Evarcha proszynskii 0.780 Baryphas ahenus 0.891 0.999 Plexippus paykulli 2 0.9998 Plexippus paykulli 1 0.948 Hermotimus sp. 0.784 Schenkelia cf. modesta Lessert 0.604 Schenkelia modesta 0.8198 Polemus cf. chrysochirus plexippine indet. [Gab.] 1 0.938 Hyllus tuberculatus 0.756 0.760 Hyllus sp. Plexippoides regius 0.978 plexippine indet. [Gab.] 2 Burmattus sp. Hyllus treleaveni 1.0 Frigga crocuta 0.767 Nycerella neglecta freyines 1.0 Pachomius cf. flavescens 0.582 Chira cf. spinipes 1.0 Freya regia Freya decorata 0.955 Langona sp. aelurillines 1.0 Stenaelurillus sp. [S. Afr.] 0.984 Aelurillus cf. ater 1.0 0.645 Langelurillus nigritus Aelurilloida 0.978 Phlegra cf. bresnieri 0.995 Langelurillus sp. Phlegra fasciata thiratoscirtine (elongate, foliage) 1.0 Bacelarella cf. tentativa 0.975 Bacelarella cf. pavida 0.955 0.995 1.0 indet. d193 [Gha.] thiratoscirtine (spot, foliage) 0.982 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis 1.0 1.0 Pochyta cf. spinosa 1.0 Pochyta sp. 1 (brown) 0.983 Pochyta sp. (orange, black spot) 0.989 Pochyta pulchra 2 0.993 Pochyta pulchra 1 thiratoscirtines 1.0 0.972 Pochyta cf. pannosa Pochyta cf. spinosa (red band) 1.0 Malloneta sp. 2 1.0 Malloneta guineensis 0.884 Malloneta sp. 1 Thiratoscirtoides sp. 0.685 0.613 Tarne dives Saraina rubrofasciata 1.0 thiratoscirtine (white palps B, litter) 0.997 1.0 Pochyta pulchra 3 thiratoscirtine (white palps A, litter) 1.0 cf. Alfenus 2 cf. Alfenus 3 0.968 0.999 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) 1.0 cf. Nimbarus sp. 0.849 0.806 indet. MRB157 [Gha.] indet. d196 [Gha.] Bacelarella iactans 0.7396 cf. Alfenus 1 0.662 0.992 Longarenus brachycephalus 0.996 Longarenus sp. 2 0.974 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. 0.996 cf. Thiratoscirtus 2 (V small bulb) 0.999 cf. Thiratoscirtus 1 (V small bulb) 0.999 cf. Thiratoscirtus (V long cymbium) 0.806 cf. Thiratoscirtus (brown) 1.0 cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter)

Figure 2.7 Starting Tree for R8s Dating Analysis. 28S/16SND1 tree of 2nd highest probability from 68,323 Bayesian trees sampled from 91,098,000 generations (25% post-analysis burn-in). Bayesian posterior probabilities > 0.5 are given. Clades with probability < 0.5 are showed as a polytomy. 77 Lyssomanes viridis Thrandina parocula Spartaeus uplandicus Lyssomaninae/Spartaeinae Holcolaetis sp. Sonoita cf. lightfooti Cyrba lineata Portia labiata Portia cf. schultzi Galianora bryicola Galianora sacha Lyssomaninae Goleba lyra Asemonea sp. [S.Afr.] Onomastus sp. [China] Tomocyrba sp. hisponines Massagris cf. honesta Massagris schisma Tomocyrba andasibe Jollas sp. Sitticus palustris Sitticus sp. Encolpius sp. Acragus sp. [Ecu.] Noegus transversalis basal Noegus cf. rufus Hypaeus mystacalis cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Mago steindachneri Hurius vulpinus salticids amycoid indet. [Ecu.] Amycoida cf. Arachnomura Scopocira cf. tenella cf. Agelista Zuniga cf. laeta Zuniga cf. Magna Sarinda sp. Sarinda cutleri Thiodina sp. 2 Thiodina sp. 1 thiodinine indet.[Ecu.] 1 Bavia group Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda ballines Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Peckhamia sp. Attidops youngi Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Eris militaris Marpissoida Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Phanias sp. Itata sp. Maevia intermedia Marpissa pikei Salticoida Platycryptus undatus cf. Marpissine indet. Psecas cf. viridipurpureus "Breda" jovialis Holoplatys cf. planissima Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa Penionomus sp. [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Neon nelli Myrmarachne cf. gedongensis Astioida Myrmarachne sp. 1 [Mal.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Ligonipes sp. [Aus.] Mopsus mormon Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Thiania bhamoensis Thiania viscaensis Lepidemathis haemorroidalis Euophryinae Lagnus sp. Chalcotropis luceroi Naphrys pulex 1/2 cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Paramarpissa sp. Yllenus arenarius 2 Leptorchesteae Yllenus arenarius 1 Leptorchestes berolinensis Enoplomischus sp. Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarieae Hasarius adansoni Mexcala elegans Phintella piatensis BEAST Phintella sp. cf. Phintella Menemerus bivittatus Cosmophasis micarioides Heliophaninae Heliophanus cupreus Pseudicius reiskindi Helvetia cf. zonata Dating Tree Pignus sp. Tusitala hirsuta Tusitala lyrata Mogrus mathisi Philaeus group Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Salticus scenicus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. pubens 1 Pellenes bulawayoensis Havaika sp. Plexippoida Havaika cf. pubens 2 Habronattus decorus Habronattus mexicanus Pellenes peninsularis Habronattus cf. paratus Bianor maculatus Harmochirus cf. brachiatus Bianor sp. Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Baryphas ahenus Plexippus paykulli 1 Plexippus paykulli 2 Hermotimus sp. Schenkelia modesta Schenkelia cf. modesta Lessert Burmattus sp. Hyllus tuberculatus Hyllus treleaveni Plexippoides regius Hyllus sp. plexippine indet. [Gab.] 1 Polemus cf. chrysochirus plexippine indet. [Gab.] 2 Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia cf. festiva Telamonia dimidiata Telamonia masinloc "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. besanconi Frigga crocuta Pachomius cf. flavescens freyines Nycerella neglecta Freya decorata Freya regia Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] aelurillines Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. Aelurilloida Phlegra fasciata Aelurillus cf. ater Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtines thiratoscirtine (small cross, litter) cf. Alfenus 1 Bacelarella iactans Longarenus sp. 2 Longarenus brachycephalus cf. Thiratoscirtus (V round bulb) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata

Figure 2.8 BEAST Dating Tree Topology (Analysis 1). Maximum Clade Credibility Tree of 120,000,000 trees from 160,000,000 generations (25% post-analysis burn-in). 78 Lyssomaninae/ Lyssomanes viridis Thrandina parocula Spartaeus uplandicus Spartaeinae Holcolaetis sp. 44.05 Sonoita cf. lightfooti Cyrba lineata Portia labiata Portia cf. schultzi Galianora bryicola Galianora sacha Goleba lyra some Lyssomaninae 31.72 Asemonea sp. [S.Afr.] Onomastus sp. [China] Salticidae Tomocyrba sp. 29.53 Massagris cf. honesta hisponines Massagris schisma Tomocyrba andasibe 50.08 Jollas sp. Sitticus palustris Sitticus sp. Encolpius sp. Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus Hypaeus mystacalis cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Mago steindachneri Hurius vulpinus amycoid indet. [Ecu.] Amycoida cf. Arachnomura Scopocira cf. tenella cf. Agelista 33.42 Zuniga cf. laeta Zuniga cf. Magna Sarinda sp. Sarinda cutleri Thiodina sp. 2 Thiodina sp. 1 thiodinine indet.[Ecu.] 1 Bavia group Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Peckhamia sp. Attidops youngi Ghelna canadensis Zygoballus rufipes Marpissoida Terralonus mylothrus 22.49 Eris militaris Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Phanias sp. Itata sp. Maevia intermedia Marpissa pikei Salticoida Platycryptus undatus cf. Marpissine indet. Psecas cf. viridipurpureus 41.19 "Breda" jovialis Holoplatys cf. planissima Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa “core” Astioida 27.28 Penionomus sp. [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Neon nelli Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Ligonipes sp. [Aus.] Mopsus mormon Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus 26.89 Thiania bhamoensis Thiania viscaensis Lepidemathis haemorroidalis Euophryinae Lagnus sp. Chalcotropis luceroi Naphrys pulex 1/2 cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Leptorchestes berolinensis Enoplomischus sp. Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarius adansoni Mexcala elegans Phintella piatensis BEAST Phintella sp. cf. Phintella Menemerus bivittatus Cosmophasis micarioides Heliophaninae 19.45 Heliophanus cupreus Pseudicius reiskindi Helvetia cf. zonata Pignus sp. Tusitala hirsuta Analysis 1 Philaeus group Tusitala lyrata 17.89 Mogrus mathisi Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Salticus scenicus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. pubens 1 APPHHL Pellenes bulawayoensis Havaika sp. 33.77 Havaika cf. pubens 2 Habronattus decorus Habronattus mexicanus clade Pellenes peninsularis Habronattus cf. paratus Bianor maculatus Harmochirus cf. brachiatus Bianor sp. Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp.* Baryphas ahenus Plexippoida Plexippus paykulli 1 Plexippus paykulli 2 Hermotimus sp. Schenkelia modesta 20.23 Schenkelia cf. modesta Lessert Burmattus sp. Hyllus tuberculatus Hyllus treleaveni Plexippoides regius Hyllus sp. plexippine indet. [Gab.] 1 Polemus cf. chrysochirus plexippine indet. [Gab.] 2 Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia cf. festiva Telamonia dimidiata Telamonia masinloc "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. besanconi Frigga crocuta Pachomius cf. flavescens freyines Nycerella neglecta Freya decorata 22.51 Freya regia Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] aelurillines Langelurillus nigritus Phlegra cf. bresnieri Aelurilloida 17.21 Langelurillus sp. Phlegra fasciata Aelurillus cf. ater Pochyta cf. fastibilis 27.07 thiratoscirtine (dusted, roadside) Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtines thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 1 Bacelarella iactans 17.37 Longarenus sp. 2 Longarenus brachycephalus cf. Thiratoscirtus (V round bulb) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata 50 40 30 20 10 0 Figure 2.9 BEAST Analysis 1. Ages are given in millions of years (Ma). Calibration points used: Havaika (0 Ma min, 0.5 Ma max), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 79 Lyssomaninae/ Lyssomanes viridis Thrandina parocula Spartaeus uplandicus Spartaeinae 44.05 Holcolaetis sp. Sonoita cf. lightfooti Cyrba lineata Portia labiata Portia cf. schultzi Galianora bryicola Galianora sacha Goleba lyra some Lyssomaninae 31.72 Asemonea sp. [S.Afr.] Onomastus sp. [China] Salticidae Tomocyrba sp. Massagris cf. honesta hisponines 29.53 Massagris schisma Tomocyrba andasibe Jollas sp. Sitticus palustris 50.08 Sitticus sp. Encolpius sp. Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus Hypaeus mystacalis cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 cf. Acragus Mago steindachneri Hurius vulpinus Amycoida amycoid indet. [Ecu.] cf. Arachnomura Scopocira cf. tenella cf. Agelista Zuniga cf. laeta 33.42 Zuniga cf. Magna Sarinda sp. Sarinda cutleri Thiodina sp. 2 Thiodina sp. 1 thiodinine indet.[Ecu.] 1 Bavia group Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Peckhamia sp. Attidops youngi Ghelna canadensis 22.49 Zygoballus rufipes Marpissoida Terralonus mylothrus Eris militaris Phidippus sp. Pelegrina chalceola/Pelegrina verecunda Phanias sp. Itata sp. Maevia intermedia Salticoida Marpissa pikei Platycryptus undatus cf. Marpissine indet. Psecas cf. viridipurpureus "Breda" jovialis 41.19 Holoplatys cf. planissima Trite planiceps Trite pennata cf. Mopsus [N. Cal.] Ophisthoncus kochi Viciria praemandibularis 27.28 Trite ignipilosa “core” Astioida Penionomus sp. [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Neon nelli Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Ligonipes sp. [Aus.] Mopsus mormon Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Thiania bhamoensis Thiania viscaensis Lepidemathis haemorroidalis Euophryinae Lagnus sp. Chalcotropis luceroi Naphrys pulex 1/2 cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Leptorchestes berolinensis Enoplomischus sp. Cheliceroides sp. [China] Chinattus parvulus Habrocestum cf. albimanum Hasarius adansoni Mexcala elegans Phintella piatensis Phintella sp. cf. Phintella Menemerus bivittatus Cosmophasis micarioides Heliophanus cupreus Heliophaninae19.45 Pseudicius reiskindi Helvetia cf. zonata Pignus sp. Tusitala hirsuta Philaeus group Tusitala lyrata Mogrus mathisi 17.89 Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Salticus scenicus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika cf. pubens 1 Pellenes bulawayoensis Havaika sp. Havaika cf. pubens 2 Habronattus decorus Habronattus mexicanus Pellenes peninsularis Habronattus cf. paratus BEAST Bianor maculatus Harmochirus cf. brachiatus Bianor sp. Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Baryphas ahenus 20.23 Plexippus paykulli 1 Analysis 1 Plexippoida Plexippus paykulli 2 Hermotimus sp. Schenkelia modesta Schenkelia cf. modesta Lessert Burmattus sp. Hyllus tuberculatus Hyllus treleaveni 95% HPD Plexippoides regius Hyllus sp. plexippine indet. [Gab.] 1 Polemus cf. chrysochirus plexippine indet. [Gab.] 2 Pancorius sp. 1 Evarcha proszynskii Pancorius sp. 2 Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia cf. festiva Telamonia dimidiata Telamonia masinloc "Viciria" cf. fuscimana "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. besanconi Frigga crocuta Pachomius cf. flavescens freyines Nycerella neglecta Freya decorata Freya regia 22.51 Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] aelurillines Langelurillus nigritus Phlegra cf. bresnieri Aelurilloida 17.21 Langelurillus sp. Phlegra fasciata Aelurillus cf. ater Pochyta cf. fastibilis 27.07 thiratoscirtine (dusted, roadside) Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtines thiratoscirtine (small cross, litter) cf. Alfenus 1 Bacelarella iactans 17.37 Longarenus sp. 2 Longarenus brachycephalus cf. Thiratoscirtus (V round bulb) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. Malloneta sp. 2 Malloneta guineensis Malloneta sp. 1 thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) Thiratoscirtoides sp. Tarne dives Saraina rubrofasciata

Figure 2.10 95% HPD (Highest Posterior Density) Interval Bars of BEAST Analysis 1. Ages are given in millions of years (Ma). Bars are not displayed for all nodes. 80 Onomastus sp. [China] Asemonea sp. [S.Afr.] Lyssomaninae/ Goleba lyra Lyssomanes viridis Thrandina parocula 49.42 Galianora bryicola Spartaeinae Galianora sacha Cyrba lineata Portia cf. schultzi Portia labiata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Massagris cf. honesta Massagris schisma hisponines Tomocyrba sp. Tomocyrba andasibe Thiodina sp. 1 Thiodina sp. 2 Salticidae thiodinine indet.[Ecu.] 1 Jollas sp. Sitticus sp. Amycoida Sitticus palustris cf. Arachnomura Hurius vulpinus 51.5 amycoid indet. [Ecu.] 32.02 Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Mago steindachneri Hypaeus mystacalis cf. Hypaeus [Ecu.] 2 cf. Hypaeus [Ecu.] 1 cf. Acragus Encolpius sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Sarinda cutleri Sarinda sp. Scopocira cf. tenella Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Myrmarachne sp. [Sing.] Myrmarachne assimilis Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Belippo cf. ibadan Myrmarachne plataleoides Ophisthoncus kochi Viciria praemandibularis Trite ignipilosa Penionomus sp. [N. Cal.] Trite planiceps Salticoida Trite pennata cf. Mopsus [N. Cal.] Simaetha sp. [Mal.] Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata 39.01 “core” Astioida Holoplatys cf. planissima "Breda" jovialis Tauala lepidus 25.15 Orthrus bicolor Helpis minitabunda Arasia mollicoma Neon nelli Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Peckhamia sp. Attidops youngi Marpissoida Psecas cf. viridipurpureus Marpissa pikei 21.26 Platycryptus undatus cf. Marpissine indet. Maevia intermedia Itata sp. Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Mantisatta longicauda Padilla mitohy Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Idastrandia orientalis Nannenus lyriger 'Euophrys' parvula cf. Thorelliola Corythalia cf. tropica Lagnus sp. Chalcotropis luceroi Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Euophryinae 28.25 Naphrys pulex 1/2 Zenodorus orbiculatus Mexigonus sp. Enoplomischus sp. Leptorchestes berolinensis Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Cheliceroides sp. [China] Mexcala elegans Menemerus bivittatus 18.23 cf. Phintella Cosmophasis micarioides Helvetia cf. zonata Heliophaninae Pseudicius reiskindi Heliophanus cupreus Phintella piatensis Phintella sp. Philaeus chrysops Carrhotus sp. Carrhotus sp. [Mal.] Philaeus group Mogrus mathisi Pignus sp. Tusitala lyrata Tusitala hirsuta Salticus scenicus Schenkelia cf. modesta Lessert Schenkelia modesta Hermotimus sp. Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 plexippine indet. [Gab.] 1 Polemus cf. chrysochirus Hyllus tuberculatus Hyllus sp. Plexippoides regius plexippine indet. [Gab.] 2 Hyllus treleaveni Burmattus sp. Pancorius sp. 1 Pancorius sp. 2 Evarcha proszynskii BEAST Brancus viciriaeformis Thyene sp. [S. Afr.] Epeus sp. Evarcha/Hyllus sp. Anarrhotus fossulatus "Viciria" cf. besanconi "Viciria" thoracica "Viciria" longiuscula Analysis 2 "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Plexippoida 24.44 Telamonia masinloc Pellenes bulawayoensis Havaika cf. pubens 1 Havaika sp. Havaika cf. pubens 2 Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Habronattus mexicanus Habronattus decorus Pellenes peninsularis Habronattus cf. paratus Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Freya regia freyines Freya decorata Chira cf. spinipes Frigga crocuta Nycerella neglecta Pachomius cf. flavescens Stenaelurillus sp. [S. Afr.] Langona sp. aelurillines Aelurillus cf. ater 15.44 Langelurillus sp. Phlegra fasciata Phlegra cf. bresnieri Langelurillus nigritus Aelurilloida Malloneta sp. 2 Malloneta sp. 1 Malloneta guineensis Tarne dives Saraina rubrofasciata Thiratoscirtoides sp. thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Alfenus 1 thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb)* cf. Thiratoscirtus 2 (V small bulb) Thiratoscirtus sp. cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus 19.16 Longarenus sp. 2 Bacelarella iactans cf. Alfenus 3 thiratoscirtines cf. Alfenus 2 Pochyta cf. fastibilis thiratoscirtine (dusted, roadside) Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta pulchra 1 Pochyta pulchra 2 Bacelarella cf. tentativa Bacelarella cf. pavida thiratoscirtine (spot, foliage) indet. d193 [Gha.] thiratoscirtine (elongate, foliage)

50 40 30 20 10 0

Figure 2.11 BEAST Analysis 2. Ages given in millions of years (Ma). Calibration Points used: Havaika (0 min, 0.5 max), Lyssomaninae/Spartaeinae (22 min, 100 max), Salticidae (44 min, 100 max) and Salticoida (16 min, 100 max). 81 Onomastus sp. [China] Asemonea sp. [S.Afr.] Lyssomaninae/ Goleba lyra 45.24 Lyssomanes viridis Thrandina parocula Galianora bryicola Spartaeinae Galianora sacha Sonoita cf. lightfooti Holcolaetis sp. Spartaeus uplandicus Portia cf. schultzi Portia labiata Cyrba lineata Massagris cf. honesta hisponines Massagris schisma Tomocyrba sp. Tomocyrba andasibe Thiodina sp. 1 Thiodina sp. 2 Salticidae thiodinine indet.[Ecu.] 1 Scopocira cf. tenella Sarinda cutleri Sarinda sp. Zuniga cf. Magna 50.21 Amycoida Zuniga cf. laeta cf. Agelista* cf. Arachnomura Encolpius sp. 34.61 Hypaeus mystacalis cf. Hypaeus [Ecu.] 2 cf. Hypaeus [Ecu.] 1 cf. Acragus Mago steindachneri Acragus sp. [Ecu.] Noegus transversalis Noegus cf. rufus amycoid indet. [Ecu.] Hurius vulpinus Sitticus palustris Jollas sp. Sitticus sp. Neon nelli Arasia mollicoma Tauala lepidus Orthrus bicolor Helpis minitabunda Ligurra latidens Simaetha sp. [Aus.] “core” Astioida 31.72 Heratemita alboplagiata Simaetha sp. [Mal.] Trite pennata Trite planiceps cf. Mopsus [N. Cal.] Ophisthoncus kochi Trite ignipilosa Penionomus sp. [N. Cal.] Viciria praemandibularis Holoplatys cf. planissima Salticoida "Breda" jovialis Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne plataleoides Myrmarachne sp. [Sing.] Belippo cf. ibadan 44.38 Myrmarachne assimilis Myrmarachne evidens Myrmarachne sp. (tristis group) Myrmarachne foenisex * Myrmarachne cf. gedongensis Myrmarachne sp. 1 [Mal.] Stagetilus sp. [Mal.] Bavia cf. aericeps Stagetilus sp. [Phil.] Itata sp. Phanias sp. Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Maevia intermedia Marpissoida 26.2 Platycryptus undatus Marpissa pikei cf. Marpissine indet. Psecas cf. viridipurpureus Attidops youngi Peckhamia sp. Padilla mitohy Afromarengo sp. [Gab.] Peplometus sp. [Gha.] Pachyballus sp. [S.Afr.] Mantisatta longicauda Idastrandia orientalis Nannenus lyriger Mexigonus sp. Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Euophryinae 35.35 Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 'Euophrys' parvula cf. Thorelliola Corythalia cf. tropica Zenodorus orbiculatus Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 1 Yllenus arenarius 2 Paramarpissa sp. Cheliceroides sp. [China] Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Mexcala elegans cf. Phintella Cosmophasis micarioides BEAST Menemerus bivittatus 27.33 Heliophanus cupreus Heliophaninae Pseudicius reiskindi Helvetia cf. zonata Phintella sp. Phintella piatensis Pignus sp. Analysis 3 Tusitala lyrata Philaeus group Tusitala hirsuta 19.76 Carrhotus sp. Carrhotus sp. [Mal.] Philaeus chrysops Mogrus mathisi Salticus scenicus Anarrhotus fossulatus Evarcha/Hyllus sp. Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc "Viciria" cf. besanconi "Viciria" thoracica "Viciria" longiuscula "Viciria" cf. fuscimana Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Plexippoides regius Hyllus treleaveni plexippine indet. [Gab.] 1 Hyllus sp. plexippine indet. [Gab.] 2 Polemus cf. chrysochirus Hyllus tuberculatus Burmattus sp. Baryphas ahenus Plexippoida 24.9 Plexippus paykulli 2 Plexippus paykulli 1 Schenkelia cf. modesta Lessert Schenkelia modesta Hermotimus sp. Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Havaika cf. verecunda Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus mexicanus Habronattus decorus Pellenes peninsularis Frigga crocuta Nycerella neglecta freyines Pachomius cf. flavescens Freya regia Freya decorata Chira cf. spinipes Langona sp. Stenaelurillus sp. [S. Afr.] aelurillines Aelurillus cf. ater Langelurillus nigritus Langelurillus sp. Phlegra fasciata Aelurilloida Phlegra cf. bresnieri cf. Alfenus 3 cf. Alfenus 2 32.71 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) Longarenus brachycephalus Longarenus sp. 2 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (V long cymbium) cf. Alfenus 1 Bacelarella iactans indet. MRB157 [Gha.] cf. Nimbarus sp. indet. d196 [Gha.] Tarne dives Thiratoscirtoides sp. Saraina rubrofasciata thiratoscirtine (white palps B, litter) thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtines Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 23.8 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. (orange, black spot) Pochyta sp. 1 (brown) Pochyta cf. spinosa Pochyta cf. spinosa (red band) Pochyta cf. pannosa Pochyta pulchra 2 Pochyta pulchra 1 indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)

50 40 30 20 10 0 Figure 2.12 BEAST Analysis 3. Ages are given in millions of years (Ma). Calibration points: Havaika (not used), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 82 Lyssomaninae/ Onomastus sp. [China] Goleba lyra Asemonea sp. [S.Afr.] 57.8 Lyssomanes viridis Spartaeinae Thrandina parocula Galianora sacha Galianora bryicola Cyrba lineata Portia labiata Portia cf. schultzi Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti hisponines Tomocyrba andasibe Tomocyrba sp. Massagris cf. honesta Massagris schisma Salticidae thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Amycoida Jollas sp. Sitticus palustris Sitticus sp. 69.99 44.78 Scopocira cf. tenella Sarinda sp. Sarinda cutleri cf. Agelista Zuniga cf. laeta Zuniga cf. Magna cf. Arachnomura Hurius vulpinus amycoid indet. [Ecu.] Encolpius sp. Acragus sp. [Ecu.] Noegus cf. rufus Noegus transversalis Mago steindachneri Hypaeus mystacalis cf. Acragus cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Mantisatta longicauda Padilla mitohy Afromarengo sp. [Gab.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Attidops youngi Peckhamia sp. Maevia intermedia Marpissoida Psecas cf. viridipurpureus cf. Marpissine indet. 27.43 Platycryptus undatus Marpissa pikei Itata sp. Phanias sp. Pelegrina chalceola/Pelegrina verecunda Salticoida Eris militaris Phidippus sp. Terralonus mylothrus Zygoballus rufipes Ghelna canadensis 61.54 Ligonipes sp. [Aus.] Mopsus mormon Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Myrmarachne plataleoides Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne assimilis Myrmarachne foenisex Myrmarachne sp. (tristis group) Myrmarachne evidens Neon nelli Arasia mollicoma Helpis minitabunda Tauala lepidus Orthrus bicolor 40.94 "Breda" jovialis Holoplatys cf. planissima Simaetha sp. [Mal.] “core” Astioida Heratemita alboplagiata Simaetha sp. [Aus.] Ligurra latidens cf. Mopsus [N. Cal.] Trite pennata Trite planiceps Ophisthoncus kochi Viciria praemandibularis Penionomus sp. [N. Cal.] Trite ignipilosa Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus Corythalia cf. tropica 39.74 cf. Thorelliola Euophryinae 'Euophrys' parvula Naphrys pulex 1/2 Lagnus sp. Chalcotropis luceroi Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Leptorchestes berolinensis Enoplomischus sp. Paramarpissa sp. Yllenus arenarius 2 Yllenus arenarius 1 Cheliceroides sp. [China] Hasarius adansoni Habrocestum cf. albimanum Chinattus parvulus Mexcala elegans cf. Phintella* Cosmophasis micarioides Menemerus bivittatus Heliophaninae 25.86 Phintella piatensis BEAST Phintella sp. Helvetia cf. zonata Heliophanus cupreus Pseudicius reiskindi Salticus scenicus Pignus sp. 37.31 Tusitala hirsuta Analysis 4 Tusitala lyrata 29.51 Mogrus mathisi Philaeus chrysops Carrhotus sp. [Mal.] Philaeus group Carrhotus sp. Bianor sp. Harmochirus cf. brachiatus Bianor maculatus Habronattus cf. paratus Pellenes peninsularis Habronattus mexicanus Habronattus decorus Havaika cf. verecunda Havaika sp. 'morphotype D' Havaika cruciata Havaika sp. Plexippoida 30.87 Havaika cf. pubens 2 Havaika cf. pubens 1 Pellenes bulawayoensis Evarcha/Hyllus sp. Anarrhotus fossulatus Telamonia masinloc Telamonia dimidiata Telamonia cf. festiva "Viciria" cf. fuscimana "Viciria" longiuscula "Viciria" cf. besanconi "Viciria" thoracica Epeus sp. Brancus viciriaeformis Thyene sp. [S. Afr.] Pancorius sp. 1 Pancorius sp. 2 Evarcha proszynskii Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Schenkelia cf. modesta Lessert Hermotimus sp. Schenkelia modesta Hyllus tuberculatus Burmattus sp. Plexippoides regius Hyllus treleaveni Hyllus sp. plexippine indet. [Gab.] 1 plexippine indet. [Gab.] 2 Polemus cf. chrysochirus Frigga crocuta Nycerella neglecta freyines Pachomius cf. flavescens 32.15 Chira cf. spinipes Freya regia Freya decorata Langona sp. Stenaelurillus sp. [S. Afr.] Aelurillus cf. ater Aelurilloida Langelurillus nigritus Phlegra cf. bresnieri Langelurillus sp. 37.78 Phlegra fasciata thiratoscirtine (elongate, foliage) Bacelarella cf. tentativa Bacelarella cf. pavida indet. d193 [Gha.] thiratoscirtine (spot, foliage) thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta cf. spinosa Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta pulchra 2 Pochyta pulchra 1 Pochyta cf. pannosa 28.72 Pochyta cf. spinosa (red band) Malloneta sp. 2 Malloneta guineensis thiratoscirtines Malloneta sp. 1 Tarne dives Thiratoscirtoides sp. Saraina rubrofasciata thiratoscirtine (white palps B, litter) Pochyta pulchra 3 thiratoscirtine (white palps A, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Nimbarus sp. indet. MRB157 [Gha.] indet. d196 [Gha.] Bacelarella iactans cf. Alfenus 1 Longarenus brachycephalus Longarenus sp. 2 cf. Thiratoscirtus (V round bulb) Thiratoscirtus sp. cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) thiratoscirtine (small shiny, litter) 70 60 50 40 30 20 10 0

Figure 2.13 BEAST Analysis 4. Ages given in millions of years (Ma). Calibration points used: Havaika (not used), lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 100 Ma max). 83 Lyssomaninae/ Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Spartaeinae 50.37 Galianora sacha Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. hisponines Massagris cf. honesta Massagris schisma Tomocyrba andasibe Sitticus palustris Jollas sp. Sitticus sp. Salticidae Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella 55.21 cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Amycoida cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis 41.08 Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Marpissoida 35.37 Eris militaris Salticoida Ghelna canadensis Zygoballus rufipes Terralonus mylothrus Itata sp. Peckhamia sp. Attidops youngi Arasia mollicoma Orthrus bicolor 49.0 Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi “core” Astioida Penionomus sp. [N. Cal.] 36.92 Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Idastrandia orientalis Nannenus lyriger Mexigonus sp. Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula 34.98 Corythalia cf. tropica Lepidemathis haemorroidalis Euophryinae Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. r8s Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides Analysis 3 cf. Phintella* Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophaninae Heliophanus cupreus Pseudicius reiskindi 28.07 Menemerus bivittatus Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Carrhotus sp. Mogrus mathisi 28.06 Pignus sp. Tusitala hirsuta Philaeus group Tusitala lyrata APPHHL Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda clade Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. 44.52 Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Pellenes peninsularis Thyene sp. [S. Afr.] 32.0 Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Plexippoida Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata freyines Freya regia 34.56 Chira cf. spinipes Frigga crocuta Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater aelurillines Langelurillus nigritus 26.31 Langona sp. Stenaelurillus sp. [S. Afr.] indet. MRB157 [Gha.] Aelurilloida indet. d196 [Gha.] cf. Nimbarus sp. Bacelarella iactans 38.73 Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 28.9 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) thiratoscirtines Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) 50 40 30 20 10 0

Figure 2.14 R8s Analysis 3. Ages are given in millions of years (Ma). Calibration points used: Havaika (not used), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 84 a. b. ! !

c. d. ! !

e. f.

Figure 2.15 Photos of Thiratoscirtine Genera. Representative species of genera that make up the Thiratoscirtines: a) Bacelarella, b) Saraina, c) Alfenus, d) Malloneta, e) Longarenus and f) Pochyta. A representative of the genus Thiratoscirtus not pictured. Photo copyright by W.P. Maddison.

85 Lyssomaninae/ Spartaeinae 44.05 Salticidae some Lyssomaninae 31.72 50.08 hisponines 29.53

Amycoida Amycoida 33.42

Bavia group

Marpissoida 22.49 Marpissoida Salticoida 41.19 “core” Astioida 27.28 “core” Astioida

26.89 BEAST Euophryinae Analysis1

Heliophaninae 19.45

Philaeus group 17.89

APPHHL 33.77 clade

Plexippoida 20.23 APPHHL

freyines 22.51 clade aelurillines Aelurilloida 17.21 27.07

thiratoscirtines 17.37 Figure 2.16 Map and Phylogeny (BEAST Analysis 1). Salticid groups are geographically restricted or mostly restricted to one of the three regions: the New World (green), Afro-Eurasia (blue) and Australasia (pink). Node values are ages given in millions of years (Ma). 50 40 30 20 10 0 86 2.5 References

Arnedo, M. & Gillespie, R. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószy!ski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41(2), 472-495.

Alonso, J., Arillo, A., Barrón, E., Corral, J.C., Grimalt, J., López, J.F., López, R., Martínez-Delclos, X., Ortuño, V., Peñalver, E. & Trincão, P.R. (2000). A new fossil resin with biological inclusions in Lower Cretaceous deposits from Álava (northern Spain, Basque-Cantabrain Basin). Journal of Paleontological Society, 74(1), 158-178.

Andriamalala, D. (2007). Revision of the genus Padilla Peckham and Peckham, 1894 (Araneae: Salticidae) — Convergent evolution of secondary sexual characters due to sexual selection and rates of molecular evolution of jumping spiders. Proceedings of the California Academy of Sciences, 58(13), 243-330.

Antoine, P.O., Welcomme, J.L., Marivaux, L., Baloch, I., Benammi, M. & Tassy, P. (2003). First record of Paleogene Elephantoidea (Mammalia, Proboscidea) from the Bughti Hills of . Journal of Vertebrate Paleontology, 23, 977–980.

Barker, K.F., Cibois, A., Schikler, P., Feinstein, J. & Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences, 101, 11040-11045.

Bell, J.R., Bohan, D.A., Shaw, E.M. & Wayman, G.S. (2005). Ballooning dispersal using silk, world fauna, phylogenies, genetics and models. Bulletin of Entomology, 95, 69-114.

Berggren, W.A. & van Couvering, J.A. (1974). The late Neogene: biostratigraphy, geochronology and paleoclimatology of the last 15 million years in marine and continental sequences. Palaeogeography, Palaeoclimatology, Palaeoecology, 16, 1–216.

Bininda-Emonds, O.R.P., Cardillo, M., Jones, K.E., Ross, D.E.M., Beck, R.M.D., Grenyer, R., Price, S.A., Vos, R.A., Gittleman, J.L. & Purvis, A. (2007). The delayed rise of present-day mammals. Nature, 446, 507-512.

Briggs, J.C. (2003). The biogeographic and tectonic history of India. Journal of Biogeography, 30, 381-388.

Cutler, B. (1982). Extreme north and southern distribution records for jumping spiders (Araneae, Salticidae) in the Western Hemisphere. Arctic, 35(3), 426-428.

DeConto, R.M. & Pollard, D. (2003). Rapid Cenozoic glaciation of Antarctica induced

by declining atmospheric CO2. Nature, 421, 245-249.

87

Drummond, A.J. & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.

Ericson, Per G.P., Irestedt, M. & Johansson, U.S. (2002). Evolution, biogeography, and patterns of diversification in passerine birds. Jouranal of Avian Biology, 34, 3-15.

Ewing, B. & Green, P. (1998). Basecalling of automated sequencer traces using phred. II. Error probabilities. Genome Research, 8, 186-194.

Ewing, B., Hillier, L., Wendl, M. & Green, P. (1998). Basecalling of automated sequencer traces using phred. I. Accuracy assessment. Genome Research, 8, 175-185.

Farrell, B. D. (1998). “Inordinate fondness” explained: Why are there so many beetles? Science, 281, 555-559.

Garciá-Villafuerte, M.A. & Penney, D. (2003). Lyssomanes (Araneae, Salticidae) in Oligocene-Miocene Chiapas amber. The Journal of Arachnology, 31, 400-404.

Gernhard, T. (2008). New analytic results for speciation times in neutral models. Bulletin of Mathematical Biology, 70, 1082-1097.

Gheerbrant, E. & Rage, J.-C. (2006). Paleobiogeography of Africa: how distinct from Gondwana and Laurasia? Palaeogeography, Palaeoclimatology, Palaeoecology, 241, 224-246.

Gillespie, J.J., Johnston, J.S., Cannone, J.J., Gutell, R.R. (2006). Characteristics of the nuclear (18S, 5.8S, 28S and 5S) and mitochondrial (12S and 16S) rRNA genes of (Insecta: Hymenoptera): structure, organization, and retrotransposable elements. Insect Molecular Biology, 15(5), 657-686.

Green, P. & Ewing, B. (2002). Phred, version 0.020425 c. Distributed by the authors. Available via: http://phrap.org.

Green, P. (1999). Phrap, version 0.990329. Distributed by the author. Available from http://www.phrap.org.

Grimaldi, D.A., Engel, M.S. & Nascimbene, P.C. (2002). Fossiliferous Cretaceous amber from Myanmar (Burma): Its rediscovery, biotic diversity, and paleontological significance. American Museum of Natural History, 3361.

Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353-431.

88 Harzhausera, M., Kroha, A., Mandica, O., Werner, P.E., Göhlicha, U., Reuterb, M. & Berningb, B. (2007). Biogeographic responses to geodynamics: a key study all around the Oligo–Miocene Tethyan Seaway. Zoologischer Anzeiger, 246(4), 241- 256.

Hedin, M.C. (1997). Molecular phylogenetics at the population/species interface in cave spiders of the southern Appalachians (Araneae: Nesticidae: Nesticus). Molecular Biology and Evolution, 14, 309-324.

Hedin, M.C. & Maddison, W.P. (2001). A combined molecular approach to phylogeny of the jumping spider subfamily Dendryphantinae (Araneae: Salticidae). Molecular Phylogenetics and Evolution, 18(3), 386-403.

Higgins, D.G. & Sharp, P.M. (1988). CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene, 73, 237-244.

Huelsenbeck, J.P., Ronquist, F., Nielsen, R. & Bollback, J.P. (2001). Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294, 2310-2314.

Iturralde-Vincent, M.A. & MacPhee, R.D.E. (1999). Paleogeography of the region: implications for the Cenozoic biogeography. Bulletin of the American Museum of Natural History, 238, 1-95.

Iturralde-Vincent, M.A. (2001). Geology of the amber-bearing deposits of the Greater Antilles. Caribbean Journal of Science, 37, 141-167.

Jackson, R.R. & Pollard, S.D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287-308.

Koufos, G.D. & de Bonis, L. (2008). Comparisons and relationships of the African and European Miocene carnivoran assemblages. Systematic palaeontology (vertebrate palaeontology), 7(8), 541-556.

Land, M.F. & Nilsson, D.E. (2002). Eyes. Oxford University Press, Oxford, England.

Langley, C.H. & Fitch, W.M. (1974). An examination of the constancy of the rate of molecular evolution. Journal of Molecular Evolution, 3, 161-177.

Maddison, W.P. & Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529-549.

Maddison, W.P. & Needham, K. (2006). Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa, 1255, 37-55.

Maddison, W.P., Zhang, J.X. & Bodner, M.R. (2007). A basal phylogenetic placement

89 for the salticid spider Eupoa, with descriptions of two new species (Araneae: Salticidae). Zootaxa, 1432, 22-33.

Maddison, W.P., Bodner, M.R. & Needham, K. (2008). Salticid spider phylogeny revisited, with the discovery of a large Australasian clade (Araneae: Salticidae). Zootaxa, 1893, 49–64.

Maddison, W.P. & Maddison, D.R. (2008). Mesquite: a modular system for evolutionary analysis. Version 2.5. Available from http://mesquiteproject.org.

Maddison, W.P. (2009). New cocalodine jumping spiders from Papua New Guinea (Araneae: Salticidae: Cocalodinae). Zootaxa, 2021, 1-22.

McAlpine, J.F. & Martin, J.E.H. (1969). Canadian amber—a paleontological treasure chest. Canadian Entomologist, 101, 819-838.

Metcalfe, I., Smith, J.M.B., Morwood, M. & Davidson, I. (2001). Faunal and floral migration and evolution in SE Asia-Australasia. CRC Press.

Moreau, C.S., Bell, C.D., Vila, R., Archibald, S.B. & Pierce, N.E. (2006). Phylogeny of the ants: diversification in the age of the angiosperms. Science, 312, 101-104.

Morley, R.J. (2000). Origin and evolution of tropical rain forests. John Wiley & Sons Ltd., West Sussex, England.

Morley, R.J. (2003). Interplate dispersal paths for megathermal angiosperms. Perspectives in Plant Ecology, Evolution and Systematics, 6(1,2), 5-20.

Nel, A., de Ploëg, G., Millet, J., Menier, J.J. & Waller, A. (2004). The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris basin. Geologica Acta, 2(1), 3-8.

Nylander, J.A.A. (2004). MrModeltest v2.3. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.

Penney, D. (2002). Spiders in upper Cretaceous amber from New Jersey (Arthropoda: Araneae).

Penney, D. & Pérez-Gelabert, D.E. (2002). Comparison of the recent and Miocene Hispaniolan spider faunas. Révista Iberica de Aracnología, 6, 203-223.

Penney, D. (2006). A new fossil Oonopid spider in lowermost Eocene amber from the Paris Basin, with comments on the fossil spider assemblage. African Invertebrates, 48(1), 71-75.

90 Penney, D. (2008). Dominican Amber Spiders: A comparative palaeontological- neontological approach to identification, faunistics, ecology and biogeography. Siri Scientific Press.

Perrichot, V., Néraudeau, D., Nel, A. & de Ploëg, G. (2007). A reassessment of the Cretaceous amber deposits from France and their palaeontological significance. African Invertebrates, 48(1), 213-227.

Petrunkevitch, A. (1950). Baltic amber spiders in the Museum of Comparative Zoology. Bulletin of the Museum of Comparative Zoology at Harvard College. Cambridge, Massachusetts, USA. 326-263.

Petrunkevitch, A. (1958). Amber spiders in European collections. Transactions of the Connecticut Academy of Arts and Sciences. Yale University Press. New Haven Connecticut, USA, (41), 97-400.

Platnick, N.I. (2009). The World Spider Catalog, Version 8.5. The American Museum of Natural History.

Poinar, G.O. Jr. & Milki, R. (2001). Lebanese amber: the oldest insect ecosystem in fossilized resin. Oregon State University Press.

Prószy!ski, J. (1984a). Remarks on Anarrhotus, Epeus and Plexippoides (Araneae, Salticidae). Annales Zoologici, Warszawa, 37, 399-410.

Prószy!ski, J. (1984b). Remarks on Viciria and Telamonia (Araneae, Salticidae). Annales Zoologici, Warszawa, 37, 417-436.

Prószy!ski, J. (2009). The Salticidae (Araneae) of the World. Prepared with the assistance of the Museum and Institute of Zoology, Polish Academy of Sciences Warsaw, POLAND. Available at http://www.miiz.waw.pl/salticid/main.htm.

Rambaut, A. (2008). Tree Figure Drawing Tool. Version 1.1.1. Institute of Evolutionary Biology, University of Edinburgh. Available at http://tree.bio.ed.ac.uk/.

Reguero, M.A., Marenssi, S.A. & Santillana, S.A. (2002). Antarctica Peninsula and South America (Patagonia) Paleogene terrestrial faunas and environments: biogeographic relationships. Palaeogeography, Palaeoclimatology, Palaeoecology, 179, 189-210.

Richardson, B.J., Zabka, M., Gray, M.R. & Milledge, G. (2006). Distributional patterns of jumping spiders (Araneae: Salticidae) in Australia. Journal of Biogeography, 33, 707-719.

91 Rögl, F. (1999). Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (Short Overview). Geologica Carpathica, 50(4), 339- 349.

Ronquist, F. & Huelsenbeck, J. P. (2003). MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.

Russell-Smith A. (2002). A Comparison of the diversity and composition of ground- active spiders in Mkomazi Game Reserve, Tanzania and Etosha National Park, Namibia. The Journal of Arachnology, 30, 383-388.

Rutschmann, F. (2006). Molecular dating of phylogenetic trees: A brief review of current methods that estimate divergences times. Diversity and Distributions, 12, 35-48.

Sanderson, M.J. (2002). Estimating absolute rates of molecular evolution and divergence times: a penalized likelihood approach. Molecular Biology and Evolution, 19, 101-109.

Sanderson, M.J. (2004). r8s, version 1.70 User’s Manual. Section of Evolution and Ecology, University of California, Davis, USA.

Sanmartín, I. & Ronquist, F. (2004). Southern hemisphere biogeography inferred by event-based models: plant versus animal patterns. Systematic Biology, 53(2), 216-243.

Sibley, C.G. & Monroe, B.L. Jr. (1990). Distribution and of the birds of the world. Yale University Press, New Haven, Conneticut, USA.

Simon, C., Franti, F., Beckenbach, A., Crespi, B., Liu, H. & Flook, P. (1994). Evolution, weighting and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651-701.

Simon, E. (1897-1903). Histoire naturelle des araignées. 2, 1080, Paris.

Su, K.F., Meier, R., Jackson, R.R., Harland, D.P. & Li, D. (2007). Convergent evolution of eye ultrastructure and divergent evolution of vision-mediated predatory behaviour in jumping spiders. European Society for Evolutionary Biology, 20, 1478-1489.

Swofford, D.L. (2002). PAUP.* Phylogenetic Analysis Using Parisomny (*and Other Methods). Version 4.0b10. Sinauer Associates: Sunderland, Massachusetts, USA.

Szüts, T. & Jocqué, R. (2001). New species in the genus Bacelarella (Araneae, Salticidae) from Côte d’Ivoire. Annales du Musee Royal de I'Afrique Centrale (Sciences Zoologiques), 285, 77-92.

92

Szüts, T. & Scharff, N. (2005). Redescriptions of little known jumping spider genera (Araneae: Salticidae) from West Africa. Acta Zoologica Academiae Scientiarum Hungaricae, 51(4), 357-378.

Thompson, J.D., Higgins, D.G. & Gibson, T.J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680. van der Auwera, G., Chapelle, S. & de Wachter, R. (1994). Structure of the large ribosomal subunit RNA of Phytophthora megasperma, and phylogeny of the oomycetes. Federation of European Biochemical Societies Letters, 338, 133– 136.

Vink, C.J., Hedin, M., Bodner, M.R., Maddison, W.P., Hayashi, C.Y. & Garb, J.E. (2008). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution, 48(1), 377-382.

Webb, S.D. (1997). The great American faunal interchange. In: Coates, A.G., Editor, : A natural and cultural history, Yale University Press, pp. 97– 122.

Weitschat, W. & Wichard, W. (2002). Atlas of plants and in Baltic amber. Geological Magazine, 139(5), 597.

Wesolowska, W. & Russell-Smith, A.R. (2000). Jumping spiders from Mkomazi Game Reserve in Tanzania (Araneae Salticidae). Tropical Zoology, 13, 11-127.

Wesolowska, W. & Szeremeta, M. (2001). A revision of the ant-like salticids genera Enoplomischus Giltay, 1931, Kima Peckham and Peckham, 1902 and Leptorchestes Thorell, 1870 (Araneae: Salticidae). Insect Systematic Evolution, 32, 217-240.

Wilson, E.O. & Hölldobler, B. (2005). The rise of the ants: a phylogentic and ecological explanation. Proceedings of the National Academy of Sciences, 102(21), 7411- 7414.

Wunderlich, J. (2004). Fossil spiders in amber and copal. Beiträge zur Araneologie, 3ab, 1-1908.

Zabka, M. (1985). Systematic and zoogeographic study on the family Salticidae (Araneae), Annales Zoologici, Warszawa, 39, 197-485.

93 Zhang, J.X., Woon, J.R.W. & Li, D. (2006). A new genus and species of jumping spiders (Araneae: Salticidae: Spartaeinae) from Malaysia. The Raffles Bulletin of Zoology, 54(2), 241-244.

Zherikhin, V.V. & Eskov, K.Y. (1999). Mesozoic and lower Tertiary resins in former USSR. Estudios del Museo de Ciencias Naturales de Álava, 14(2), 119-131.

94 Chapter 3 Salticidae: A Framework for Evolutionary Studies

3.1 The Salticid Radiation

The discovery of a large, mostly endemic, African radiation of jumping spiders from Gabon fits with patterns seen in other salticids, in which a group is largely restricted to one continental region (Maddison & Hedin 2003). The distribution of the family reflects changing biogeography and chance long range dispersal events throughout the

Cenazoic. Dating the age of the major subfamilies allows us to compare similarly aged radiations and provides a comparative framework for future morphological, ecological and behavioral investigations. The salticid radiation is a continent-scale diversification with geographically and phylogenetically independent radiations. As such, this system may be useful for exploring community convergences in ecology and morphology (see section 3.3).

3.2 Reconstructing and Dating the Salticid Phylogeny

3.2.1 Strengths of the Thesis

Our understanding of the current family tree is a synthesis of a number of studies each with a particular focus (i.e. the fauna of a region, or group). This thesis builds on past phylogenetic work and is in effect the next stepping-stone in understanding the phylogeny of the family. It has the broadest geographic sampling of any salticid phylogeny and has validated many conclusions from past papers, while shedding light on new areas of the tree.

95

3.2.2 Challenges of Reconstructing the Salticid Phylogeny

One of the challenges in reconstructing the salticid family tree is the lack of molecular markers variable at the subfamily level (Vink et al. 2008). In spiders stystematics there is a lack of nuclear genes developed for resolving phylogenies (Vink et al. 2008). Nuclear genes, in general, evolve more slowly and are better at resolving deeper relationships (Vink et al. 2008). In our phylogeny and past studies (Maddison &

Hedin 2003), the mitochondrial markers (16SND1 and COI) are quite variable, while the nuclear 28S gene does a better job resolving the tree except for the among subfamily relationships. In combination, all four genes are able to resolve the salticoid division and sub-genus relationships, but the mid-level, among subfamily relationships are not well resolved and have low Bayesian posterior probabilities. The lack of resolution affected the dating analysis, as the euophryine subfamily was not in the same location in the dating trees as it was in the All-Genes Bayesian tree. Additionally, though Actin 5C was used in the All-genes analysis it is still unclear what resolution the gene contributes to the tree because of the small sample size for this gene.

3.2.3 Dating and Gaps in the Jumping Spider Fossil Record

Our dating analyses are dependent on the fossil record and as a result our choice of calibration points are dependent on how well the fossil record reflects the faunal history of the family. Of particular importance to this study is the use of the 49 Ma maximum for Salticoida. While no salticids have been found in French amber from 53

96 Ma (Nel et al. 2004), there is a gap from 53-76.5 Ma, where the fossil record is sparse.

Further exploration of Eocene deposits from 52 Ma from India (Alimohammadian et al.

2005) and from China from 48-55 Ma (Youchong 1982) may clarify our understanding.

Any new discovery or exploration of fossil inclusions may alter or validate calibration point assumptions.

3.3 Exploring Community Level Convergences Using the Salticids

Salticidae is a remarkably diverse group. A large amount of work still needs to be done to collect, describe, and study species throughout the family. As with other biodiversity surveys, collection especially in tropical forests often reveals a large number of new species. While the total diversity has yet to be explored, the current phylogeny is made up of a geographically broad sampling of the family.

Endemic radiations, like the Amycoida, “core” Astioida, and thiratoscirtines in essence provide large-scale evolutionary replicates in which to test hypotheses regarding the evolution of jumping spider communities. Jumping spiders come in a range of diverse body forms and colorations. Similar body forms can be found in jumping spiders occupying comparable microhabitats on different continents (Maddison W.P., personal communication; personal observation). These body forms may actually represent ecomorphs or species that have distinctive morphology allowing them to utilize a particular microhabitat (Gillespie 2004). Microhabitat preference in jumping spiders has been noted by Cumming & Wesolowska (2004) who found 25 of 40 species were primarily found in one of six microhabitats: tree trunk, tree leaves, shrubs, walls (of

97 buildings and free standing structures), low herbaceous plants/grasses and ground/leaf litter.

If ecomorphology was prevalent in jumping spiders it would be interesting to see if multiple members of independent radiations have converged in ecologically-functional morphology indicating convergence in community structure. Most work that has documented convergence has focused on island radiations of ecomorphs (Gillespie 2004;

Glor et al. 2003; Melville et al. 2006). Examples include the Anolis lizards of the Greater

Antilles Islands (Glor et al. 2003) and Tetragnatha spiders from the Hawaiian archipelago (Gillespie 2004). While finding convergence in radiations that have shared a more recent common history, community convergence at the continental level has not been as readily documented (Melville et al. 2006).

3.4 Working Hypotheses

3.4.1 Number of Dispersals Between Isolated Regions

Broadly speaking groups in the family are entirely or mostly restricted to one continental region. The exception to this pattern are the euophryines, which are found primarily in the tropics of South and Central America, the Caribbean islands, Southeast

Asia and Australasia. Work is being done to understand the phylogeny of the group in order to clarify the number of exchanges between the Old and New World. It may be the case that though Euophryinae is a large and widespread group their global distribution

98 may be explained by a few dispersal events between the hemispheres (Zhang, J.X. personal communications).

3.4.2 Ecomorphology

It seems plausible that distinct evolutionary radiations of jumping spider from different geographic regions would share a number of similar ecomorphs. Mapping the presence of ecomorphs onto local phylogenies from two radiations could allow for examination of convergence in community make-up at the continental scale. Testing whether jumping spider body form is related to habitat could be done using a combination of phylogeny and morphospace analysis. To look for morphologically distinct forms measurements of spider characters could be mapped in morphospace along different axis (Jackson 1996; Harmon et al. 2003). These characters could be used in

PCA analysis to identify isolated clusters in morphospace, indicating the presence of distinct body forms. A correlation between body form and habitat use could be examined and identified ecomorphs mapped onto the phylogenies.

3.5 Continuing to Build the Salticid Tree of Life

Prior to this study there had been little sampling for phylogenetic analysis from the Afrotropical region. By identifying the thiratoscirtine group, future researchers will be able to work towards an understanding of the diversity found in this region. The dating analysis in this thesis, upon publication, will be the most complete dating analysis of Salticidae and uses multiple dating methods on the most up-to-date phylogenetic tree.

99 It is part of a larger trend in arachnology aimed at dating the ages of spider lineages

(Arnedo & Gillespie 2006; Hendrixson & Bond 2007; Binford et al. 2008; Dimitrov et al.

2008).

3.6 The Potential Use of Actin 5C

More sequences of the Actin 5C gene will be needed from a wider range of species from across the family before the utility of this gene in resolving the salticid phylogeny can be determined. The new forward primer proposed in this thesis may help with amplification of salticid genes. Because there is a lack of useful nuclear protein- coding genes in spiders, this primer may help to advance spider phylogenetics by providing resolution at the subfamily level, which is not possible using the nuclear marker 28S (Vink et al. 2008).

3.7 Future Research

3.7.1 The Thiratoscirtine Phylogeny

Work is needed to describe the species and genera of the thiratoscirtine radiation.

As noted, this group appears to have remarkably diverse genitalia as compared to other groups, such as the Euophryinae. Also, a molecular phylogenetic study is needed to determine the internal relationships of the thiratoscirtines.

100 3.7.2 The Age of Basal Salticids

Work is in progress to better understand the relationships among basal salticids.

Understanding these relationships will clarify the monophyly of the New and Old World

Lyssomaninae (Maddison & Needham 2006) and determine if the hisponines are sister to the Salticoida. Greater sampling of basal saticids and their inclusion in dating analyses may help to better date the origins of the family.

101 3.8 References

Alimohammadian, H., Sahni, A., Patnaik, R., Rana, R.S. & Singh, H. (2005). First record of an exceptionally diverse and well preserved amber-embedded biota from Lower Eocene (~52 Ma) lignites, Vastan, Gujarat, Current Science, 89, 1328-1330.

Arnedo, M. & Gillespie, R. (2006). Species diversification patterns in the Polynesian jumping spider genus Havaika Prószy!ski, 2001 (Araneae, Salticidae). Molecular Phylogenetics and Evolution, 41(2), 472-495.

Binford, G.J., Callahan, M.S., Bodner, M.R., Rynerson, M.R., Nuñez, P.B., Ellison, C.E., & Duncan, R.P. (2008). Phylogenetic relationships of Loxosceles and Sicarius spiders are consistent with Western Gondwanan vicariance. Molecular Phylogenetics & Evolution, 49(2), 538-53.

Cumming, M.S. & Wesolowska W. (2004). Habitat separation in a species-rich assemblage of jumping spiders (Araneae: Salticidae) in a suburban study site in Zimbabwe. Journal of Zoology, 262(1), 1-10.

Dimitrov, D., Arnedoa, M.A. & Ribera, C. (2008). Colonization and diversification of the spider genus Pholcus Walckenaer, 1805 (Araneae, Pholcidae) in the Macaronesian archipelagos: Evidence for long-term occupancy yet rapid recent speciation. Molecular Phylogenetics and Evolution, 48(2), 596-614.

Gillespie, R. (2004). Community Assembly Through Adaptive Radiation in Hawaiian Spiders. Science, 303, 356-359.

Glor, R.E., Kolbe, J.J., Powell, R., Larson, A. & Losos, J. (2003). Phylogenetic analysis of ecomlogical and morphological diversification in Hispaniolan trunk-ground Anoles (Anolis Cybotes group). Evolution, 57(10), 2383-2397.

Harmon, L.J., Schlte II, J.A., Larson, A. & Losos, J.B. (2003). Tempo and mode of Evolutionary Radiation in Iguanian Lizards. Science, 301(5635), 961-964.

Hendrixson, B.E. & Bond, E.J. (2007). Molecular phylogeny and biogeography of an ancient Holarctic lineage of mygalomorph spiders (Araneae: Antrodiaetidae: Antrodiaetus). Molecular Phylogenetics and Evolution, 42(3), 738-755.

Jackson, R.R. & Pollard, S.D. (1996). Predatory behavior of jumping spiders. Annual Review of Entomology, 41, 287-308.

Maddison W.P. & Hedin, M.C. (2003). Jumping spider phylogeny (Araneae: Salticidae). Invertebrate Systematics, 17, 529-549.

102 Maddison, W.P. & Needham, K. (2006). Lapsiines and hisponines as phylogenetically basal salticid spiders (Araneae: Salticidae). Zootaxa, 1255, 37-55.

Melville, J., Harmon, L.J. & Losos, J.B. (2006). Intercontinental community convergence of ecology and morphology in desert lizards. Proceedings of The Royal Society B, 273(1586), 557–563.

Nel, A., de Ploëg, G., Millet, J., Menier, J. J. & Waller, A. (2004). The French ambers: a general conspectus and the Lowermost Eocene amber deposit of Le Quesnoy in the Paris basin. Geologica Acta, 2(1), 3-8.

Vink, C.J., Hedin M., Bodner, M.R., Maddison, W.P., Hayashi, C.Y. & Garb, J.E. (2008). Actin 5C, a promising nuclear gene for spider phylogenetics. Molecular Phylogenetics and Evolution, 48(1), 377-382.

Youchong, H. (1982). Discovery of new fossil spiders in amber of Fushun Coalfield. Scientia Sinica (English Edition), 25(4).

103 Appendix A

R8s Analyses Results

In r8s Analysis 3, in which the Salticoida maximum calibration point was used, the age of Salticidae was 55.2 Ma (Figure 2.14). The age of Salticidae increased greatly to 100 Ma for r8s, in Analysis 2, when the maximum Salticoida age bound of 49 Ma was eliminated (Appendix A Figure 1). In r8s Analysis 1 (Figure 2), in which all fossil calibration points were used, the age of Salticidae was the nearly the same as in Analysis

3. Finally, when both the Havaika and Salticoida maximum bounds where eliminated in

Analysis 4 the age of the Salticidae greatly increased to 100 Ma r8s (Figure 3).

R8s Analysis Discussion

The Havaika maximum calibration point was unable to be used to estimate the ages of major salticid groups using the program r8s. When the Salticoida maximum bound was removed in r8s Analysis 2 (and the Havaika and Salticidae maximum bounds were left in place) the age of the family went to 100 Ma (the maximum bound set for

Salticidae). This indicated the Havaika calibration point of 0.5 Ma did not constrain the age of Salticidae and could not provide a cap on the root date of the family when alone in the analysis (the Salticoida maximum bound could). When the analysis was rerun with just the minimums and the Havaika calibration point as the only maximum, the Salticidae node was pushed back >450 Ma (a very unlikely result given the fossil record) (analysis not shown). Furthermore, there was only a small difference in ages when the Havaika

104 calibration point was added to the analysis with the Salticoida maximum calibration point. When the Salticoida maximum was used in the r8s analysis, the age of Salticoida was pushed all the way to the maximum of 49 Ma. Therefore the r8s analysis is dependent only on the Salticoida maximum fossil calibration point, as the Havaika point had little to no effect on the tree.

105 Lyssomaninae/ Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Spartaeinae Galianora sacha 91.22 Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. hisponines Massagris cf. honesta Massagris schisma Tomocyrba andasibe 89.92 Sitticus palustris Jollas sp. Sitticus sp. Salticidae Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella 100.0 cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Amycoida cf. Acragus Hypaeus mystacalis Mago steindachneri 83.38 Noegus transversalis Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Marpissoida Eris militaris Ghelna canadensis Salticoida Zygoballus rufipes Terralonus mylothrus 73.48 Itata sp. Peckhamia sp. Attidops youngi 97.86 Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi Penionomus sp. [N. Cal.] “core” Astioida Trite ignipilosa Viciria praemandibularis 74.14 Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Idastrandia orientalis Nannenus lyriger Mexigonus sp. 78.37 Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Euophryinae Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophaninae Heliophanus cupreus Pseudicius reiskindi 58.37 Menemerus bivittatus Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Philaeus group Carrhotus sp. Mogrus mathisi 58.21 Pignus sp. Tusitala hirsuta Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Plexippoida 67.71 Pellenes peninsularis Thyene sp. [S. Afr.] Brancus viciriaeformis r8s Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Analysis 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula* "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata freyines Freya regia Chira cf. spinipes Frigga crocuta 71.57 Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater aelurillines Langelurillus nigritus Langona sp. 55.8 Stenaelurillus sp. [S. Afr.] Aelurilloida indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. 79.62 Bacelarella iactans Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus thiratoscirtines 77.66 Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)

100 90 80 70 60 50 40 30 20 10 0

Appendix A Figure 1. R8s Analysis 2. Ages are given in millions of years (Ma). Calibration points used: Havaika (0 Ma max, 0.5 Ma min), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 100 Ma max). 106 Lyssomaninae/ Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola 50.37 Galianora sacha Spartaeinae Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. hisponines Massagris cf. honesta Massagris schisma Tomocyrba andasibe Sitticus palustris Jollas sp. Sitticus sp. Salticidae Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista 55.21 Scopocira cf. tenella cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Amycoida cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis 41.08 Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris Marpissoida Ghelna canadensis Salticoida Zygoballus rufipes Terralonus mylothrus 35.37 Itata sp. Peckhamia sp. Attidops youngi 49.0 Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi 36.92 Penionomus sp. [N. Cal.] “core” Astioida Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Mexigonus sp. Euophryinae Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula 39.19 Corythalia cf. tropica Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Idastrandia orientalis Nannenus lyriger Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella* Mexcala elegans Phintella sp. r8s Phintella piatensis Helvetia cf. zonata Heliophaninae 28.07 Heliophanus cupreus Pseudicius reiskindi Menemerus bivittatus Salticus scenicus Philaeus chrysops Analysis 1 Carrhotus sp. [Mal.] Carrhotus sp. 28.06 Mogrus mathisi Pignus sp. Tusitala hirsuta Philaeus group Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus Plexippoida 32.0 Pellenes peninsularis Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata freyines Freya regia Chira cf. spinipes Frigga crocuta 34.56 Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater aelurillines Langelurillus nigritus Langona sp. 26.31 Stenaelurillus sp. [S. Afr.] Aelurilloida indet. MRB157 [Gha.] indet. d196 [Gha.] 38.73 cf. Nimbarus sp. Bacelarella iactans Thiratoscirtus sp. cf. Thiratoscirtus (brown) thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) cf. Thiratoscirtus (V round bulb) Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 thiratoscirtines 28.9 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage) 50 40 30 20 10 0

Appendix A Figure 2. R8s Analysis 1. Ages are given in millions of years (Ma). Calibration points used: Havaika (0, Ma min, 0.5 Ma max), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 49 Ma max). 107 Lyssomaninae/ Asemonea sp. [S.Afr.] Goleba lyra Onomastus sp. [China] Galianora bryicola Spartaeinae 91.22 Galianora sacha Portia labiata Portia cf. schultzi Cyrba lineata Spartaeus uplandicus Holcolaetis sp. Sonoita cf. lightfooti Thrandina parocula Lyssomanes viridis Tomocyrba sp. hisponines Massagris cf. honesta Massagris schisma Tomocyrba andasibe 89.93 Sitticus palustris Jollas sp. Sitticus sp. Salticidae Sarinda cutleri Sarinda sp. Zuniga cf. Magna Zuniga cf. laeta cf. Agelista Scopocira cf. tenella 100.0 cf. Arachnomura Encolpius sp. cf. Hypaeus [Ecu.] 1 cf. Hypaeus [Ecu.] 2 Amycoida cf. Acragus Hypaeus mystacalis Mago steindachneri Noegus transversalis 83.4 Noegus cf. rufus Acragus sp. [Ecu.] Hurius vulpinus amycoid indet. [Ecu.] thiodinine indet.[Ecu.] 1 Thiodina sp. 1 Thiodina sp. 2 Stagetilus sp. [Phil.] Bavia cf. aericeps Stagetilus sp. [Mal.] Pachyballus sp. [S.Afr.] Peplometus sp. [Gha.] Afromarengo sp. [Gab.] Padilla mitohy Mantisatta longicauda Psecas cf. viridipurpureus Platycryptus undatus cf. Marpissine indet. Marpissa pikei Maevia intermedia Phanias sp. Pelegrina chalceola/Pelegrina verecunda Phidippus sp. Eris militaris 73.53 Ghelna canadensis Salticoida Zygoballus rufipes Terralonus mylothrus Itata sp. Marpissoida Peckhamia sp. Attidops youngi 97.88 Arasia mollicoma Orthrus bicolor Tauala lepidus Helpis minitabunda cf. Mopsus [N. Cal.] Ophisthoncus kochi 74.18 Penionomus sp. [N. Cal.] “core” Astioida Trite ignipilosa Viciria praemandibularis Trite planiceps Trite pennata Simaetha sp. [Aus.] Ligurra latidens Heratemita alboplagiata Simaetha sp. [Mal.] Holoplatys cf. planissima "Breda" jovialis Neon nelli Mopsus mormon Ligonipes sp. [Aus.] Myrmarachne sp. (tristis group) Myrmarachne evidens Myrmarachne foenisex Myrmarachne assimilis Belippo cf. ibadan Myrmarachne sp. [Sing.] Myrmarachne plataleoides Myrmarachne sp. 1 [Mal.] Myrmarachne cf. gedongensis Idastrandia orientalis Nannenus lyriger Mexigonus sp. 78.45 Zenodorus orbiculatus cf. Thorelliola 'Euophrys' parvula Corythalia cf. tropica Euophryinae Lepidemathis haemorroidalis Thiania viscaensis Thiania bhamoensis Chalcotropis luceroi Lagnus sp. Naphrys pulex 1/2 Cheliceroides sp. [China] Leptorchestes berolinensis Enoplomischus sp. Yllenus arenarius 2 Yllenus arenarius 1 Paramarpissa sp. Hasarius adansoni Chinattus parvulus Habrocestum cf. albimanum Cosmophasis micarioides cf. Phintella r8s Mexcala elegans Phintella sp. Phintella piatensis Helvetia cf. zonata Heliophaninae Heliophanus cupreus Pseudicius reiskindi 58.46 Menemerus bivittatus Analysis 4 Salticus scenicus Philaeus chrysops Carrhotus sp. [Mal.] Philaeus group Carrhotus sp. Mogrus mathisi Pignus sp. Tusitala hirsuta 58.38 Tusitala lyrata Harmochirus cf. brachiatus Bianor maculatus Bianor sp. Havaika cruciata Havaika sp. 'morphotype D' Havaika cf. verecunda Havaika cf. pubens 1 Havaika cf. pubens 2 Havaika sp. Pellenes bulawayoensis Habronattus cf. paratus Habronattus decorus Habronattus mexicanus 68.49 Pellenes peninsularis Plexippoida Thyene sp. [S. Afr.] Brancus viciriaeformis Epeus sp. Polemus cf. chrysochirus plexippine indet. [Gab.] 1 Hyllus tuberculatus Burmattus sp. Hyllus treleaveni plexippine indet. [Gab.] 2 Hyllus sp. Plexippoides regius Baryphas ahenus Plexippus paykulli 2 Plexippus paykulli 1 Hermotimus sp. Schenkelia cf. modesta Lessert Schenkelia modesta Evarcha proszynskii Pancorius sp. 2 Pancorius sp. 1 Anarrhotus fossulatus Evarcha/Hyllus sp. "Viciria" cf. besanconi "Viciria" longiuscula "Viciria" thoracica "Viciria" cf. fuscimana Telamonia dimidiata Telamonia cf. festiva Telamonia masinloc Freya decorata freyines Freya regia Chira cf. spinipes Frigga crocuta 71.71 Pachomius cf. flavescens Nycerella neglecta Phlegra cf. bresnieri Phlegra fasciata Langelurillus sp. Aelurillus cf. ater aelurillines Langelurillus nigritus Langona sp. 55.91 Stenaelurillus sp. [S. Afr.] Aelurilloida indet. MRB157 [Gha.] indet. d196 [Gha.] cf. Nimbarus sp. 79.78 Bacelarella iactans Thiratoscirtus sp. thiratoscirtine (small shiny, litter) cf. Thiratoscirtus (brown) cf. Thiratoscirtus (band) cf. Thiratoscirtus (V long cymbium) cf. Thiratoscirtus 1 (V small bulb) cf. Thiratoscirtus 2 (V small bulb) 77.81 cf. Thiratoscirtus (V round bulb) thiratoscirtines Longarenus brachycephalus Longarenus sp. 2 cf. Alfenus 1 thiratoscirtine (small black, litter) thiratoscirtine (small cross, litter) cf. Alfenus 2 cf. Alfenus 3 thiratoscirtine (white palps A, litter) Pochyta pulchra 3 thiratoscirtine (white palps B, litter) Thiratoscirtoides sp. Saraina rubrofasciata Tarne dives Malloneta guineensis Malloneta sp. 1 Malloneta sp. 2 thiratoscirtine (dusted, roadside) Pochyta cf. fastibilis Pochyta sp. 1 (brown) Pochyta sp. (orange, black spot) Pochyta cf. spinosa Pochyta pulchra 1 Pochyta pulchra 2 Pochyta cf. pannosa Pochyta cf. spinosa (red band) indet. d193 [Gha.] thiratoscirtine (spot, foliage) Bacelarella cf. pavida Bacelarella cf. tentativa thiratoscirtine (elongate, foliage)

100 90 80 70 60 50 40 30 20 10 0

Appendix A Figure 3. R8s Analysis 4. Ages are given in millions of years (Ma). Calibration points used: Haviaka (0 Ma max, 0.5 Ma min), Lyssomaninae/Spartaeinae (22 Ma min, 100 Ma max), Salticidae (44 Ma min, 100 Ma max) and Salticoida (16 Ma min, 100 Ma max). 108