Real Time PCR-Based Infectivity Assay and Characterization of Cell Surface Receptors for Turkey Hemorrhagic Enteritis Virus

Total Page:16

File Type:pdf, Size:1020Kb

Real Time PCR-Based Infectivity Assay and Characterization of Cell Surface Receptors for Turkey Hemorrhagic Enteritis Virus Real Time PCR-Based Infectivity Assay and Characterization of Cell Surface Receptors for Turkey Hemorrhagic Enteritis Virus Hassan M. Mahsoub Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Biomedical and Veterinary Sciences F. William Pierson, Chair Roger J. Avery Kurt L. Zimmerman Lijuan Yuan Dec 9, 2015 Blacksburg, Virginia Keywords: Hemorrhagic Enteritis, THEV, Siadenovirus, titration, receptor Copyright 2015, Hassan M. Mahsoub Real Time PCR-Based Infectivity Assay and Characterization of Cell Surface Receptors for Turkey Hemorrhagic Enteritis Virus Hassan M. Mahsoub ABSTRACT Turkey hemorrhagic enteritis virus (THEV) is responsible for the hemorrhagic enteritis (HE) disease in commercial turkeys through infections by its virulent strains. HE is an acute condition characterized by depression, immunosuppression, bloody droppings, intestinal hemorrhage, and death. THEV (also known as turkey adenovirus 3) is an official member of the family Adenoviridae, genus Siadenovirus, species Turkey siadenovirus A. Two main types of live vaccines are currently used for the protection of turkeys against HE; a crude splenic vaccine propagated in live turkeys, and a cell culture-based vaccine generated in RP19 cells. The only laboratory-adapted tests for assessing the titers of these vaccines are agar gel immunodiffusion test and cell culture endpoint dilution, respectively. The assays suffer from low sensitivity, inaccuracy, and time consumption. A SYBR Green-based real time PCR assay for determining the genomic titer of THEV through the quantification of its hexon gene was developed. The assay was applied as a quality control for the titration of splenic vaccines and was found useful in distinguishing the differences in virus titer among many vaccine batches. Additionally, using the qPCR assay along with a cell culture system, a novel infectivity assay was developed for the titration of THEV, as an alternative for the endpoint dilution assay. Applying the assay on nine batches of commercial HE cell culture vaccines, high variations in infectious virus titers were detected. The new method is rapid, sensitive, and very accurate. A strong correlation was found between the genomic titer and qPCR infectious titer in HE cell culture vaccines. Moreover, the qPCR infectivity assay proved as an instrumental research tool. It was used to measure the effect of several treatments of RP19 cells on virus infection. The main target cell type for THEV infection and replication is B-lymphocytes, which are represented in vitro by the B lymphoblastoid, RP19 cells. The cellular surface components used by the virus to gain entry into cells are unknown. As an adenovirus, we hypothesized that THEV uses two different molecules on RP19 cells for the attachment and internalization. A recent study has shown that the synthesized THEV fiber knob domain binds to sialyllactose, based on a glycan array analysis. In our studies, the treatment of RP19 cells with neuraminidases and lectins resulted in high reduction of virus entry, which provide a strong evidence of the utilization of cell surface sialic acids as attachment receptor for THEV. Destruction of surface carbohydrates and proteins on RP19 cells also reduced virus entry, indicating that these components are part of the THEV receptor. Using virus overlay protein blot assay, THEV was found to specifically bind to two RP19 surface membrane proteins, most likely, representing primary and secondary receptors for virus entry. Further studies are required to identify these proteins and verify their role in THEV endocytosis in host cells. Dedication This dissertation is dedicated to My wife Marwa Elsenderissy My sons Mohamed and Hamza My daughter Khadija My beloved uncle Hassan Mahsoub & My grandfather Mohamed E. Shoaib iii Acknowledgements First and foremost, I praise ALLAH (God) for guiding me throughout my work on this dissertation until I achieved it and for blessing me with the many people who helped me and encouraged me to accomplish this work in the best form it could be. I would like to thank my supervisor, Dr. Pierson. He provided me with exceptional guidance throughout my dissertation work. Dr. Pierson has always been very supportive of me individually or when I have gone before my PhD advising committee. He knows very well how to make his students self-confident, self-sufficient, and creative researchers. He appreciates my strengths and works with me to improve my weaknesses. Dr. Pierson has never put unnecessary pressure on my shoulders and always shows appreciation for my work. He understands that trial and error is an important part of professional development. When I reached the end of my knowledge and experience, he has always put me back on the right path. As an emeritus professor here at VA Tech once said to me “if your advisor does not consider you as his son, you will find it hard to succeed”. This statement is positively applied to Dr. Pierson. A lot of thanks go to my committee members, Dr. Avery, Dr. Zimmerman, and Dr. Yuan. I could have never imagined having an advisory committee better than this. Every time I went to a committee meeting, I had concerns about the quality and quantity of the lab work I did. However, they always surprised me with their appreciation of what I have accomplished. From my first committee meeting till the day of my dissertation defense, their criticism has been always constructive and friendly, and their words have been always encouraging. I do appreciate all kind of support and advising they have provided me throughout my PhD studies and dissertation writing. I feel obliged to thank Becky Jones, our BMVS program coordinator, for her extraordinary effort and advices which kept my visa paperwork in a good shape, although not part of her responsibilities. Thanks again for keeping me safe and keeping my assistantship uninterrupted during the last three years. I am also thankful to Cyndi Booth for her administrative roles. Special thanks are to Dr. Nathan Beach, a previous member in our lab, for his great help during my first year in the lab and afterwards. I thank him also for teaching me lab techniques and troubleshooting, and for continuous encouragement. I would like also to thank Dr. Sriranganathan for his friendly scientific and non- scientific discussions, and Nancy Tenpenny and Paige Smith for their efforts to make my stay at CMMID as comfortable as possible. I would like to express my appreciation to all the friendly and lovely faces I have met in CMMID and the College of Veterinary Medicine (faculty, staff, and students). You have truly made my life very pleasant and I really enjoyed the good times we spent together. I would like also to say thank you to Dr. Nicholas Evans for keeping our research uninterrupted during the last few years through his efficient management of our laboratory financial and organizational matters. Also, he has never hesitated to give help in explaining things that I did not understand and reviewing my abstracts, presentations, and other stuff, when asked to do so. iv I am so grateful to Kay Carlson, a previous lab manager at CMMID, for her tremendous effort in reviewing and proofreading the majority of my dissertation. I am thankful to many friends in and out of Blacksburg: Dr. Mohamed Seleem, Mostafa Ali, Abdullah Awaysheh, Tariq Abuhamdia, Michael Tomaszewicz, and many others. You have been great friends. I would like also to thank my best friends in Egypt: Mahmoud Hafez, Hassan Eltaweell, and Fahmy Abdelaziz. My first four years in the graduate school at Virginia Tech was supported by a scholarship from the Egyptian Ministry of Higher Education and Scientific Research. I gratefully acknowledge this support. Thanks also to the staff of the Egyptian Cultural and Educational Bureau in Washington, DC, for facilitating my paperwork until I finished my degree. I am exceptionally thankful to my father Mostafa Mahsoub, my mother Kawthar Shoaib, my brother Mohamed, my sisters Wesam and Reham and their husbands Mohamed Elian and Mohamed Motawea, my parents-in-law Taiseer Eltahawy and Salaheldin Elsenderissy, and my sisters-in-law Maiada, Mai, Mona, and Mariam. Thanks to those family members and all friends in Egypt who remembered me in their prayers all the time and wished me success in my PhD and future profession. Finally, I will never be able to find the suitable words to express how grateful I am to my wife Marwa, who kept my life in the past seven years the easiest one possible. She has exerted a tremendous effort in taking care of me and our three. God bless you my wife and reward you for all what you have done and are still doing for us. I love you. My gorgeous kids (Mohamed, Hamza, and Khadija), your smiles were a major reason that I have survived my long-term stress until finished my PhD work. May Allah bless you all! v Table of Contents Abstract ii Acknowledgments iv Table of Contents vi List of Figures viii List of Tables xi List of Abbreviations xii Chapter 1: Introduction 1 1.1. Background 1 1.2. Previous status of THEV research 1 1.3. Scope of the problem 3 1.4. Overall research approach 3 1.5. Hypotheses 5 1.6. References 6 Chapter 2: Review of Literature 2.1. Current taxonomy and nomenclature of adenoviruses 10 2.2. Section I: Turkey hemorrhagic enteritis virus and other siadenoviral 11 infections 2.3. Section II: Virus titration methods and infectivity assays 39 2.4. Section III: Adenovirus cellular receptors 59 2.5. References 70 Chapter 3: Development and Applications of Real-Time PCR for Quantification of Turkey Hemorrhagic Enteritis Virus Genomes (THEV): Genomic Titration of HE Live Vaccines and Assessment of Virus Replication in Cell Culture Systems 85 3.1.
Recommended publications
  • The Munich Outbreak of Cutaneous Cowpox Infection: Transmission by Infected Pet Rats
    Acta Derm Venereol 2012; 92: 126–131 INVESTIGATIVE REPORT The Munich Outbreak of Cutaneous Cowpox Infection: Transmission by Infected Pet Rats Sandra VOGEL1, Miklós SÁRDY1, Katharina GLOS2, Hans Christian KOrting1, Thomas RUZICKA1 and Andreas WOLLENBERG1 1Department of Dermatology and Allergology, Ludwig Maximilian University, Munich, and 2Department of Dermatology, Haas and Link Animal Clinic, Germering, Germany Cowpox virus infection of humans is an uncommon, another type of orthopoxvirus, from infected pet prairie potentially fatal, skin disease. It is largely confined to dogs have recently been described in the USA, making Europe, but is not found in Eire, or in the USA, Austral­ the medical community aware of the risk of transmission asia, or the Middle or Far East. Patients having contact of pox viruses from pets (3). with infected cows, cats, or small rodents sporadically Seven of 8 exposed patients living in the Munich contract the disease from these animals. We report here area contracted cowpox virus infection from an unusual clinical aspects of 8 patients from the Munich area who source: rats infected with cowpox virus bought from had purchased infected pet rats from a local supplier. Pet local pet shops and reputedly from the same supplier rats are a novel potential source of local outbreaks. The caused a clinically distinctive pattern of infection, which morphologically distinctive skin lesions are mostly res­ was mostly restricted to the patients’ neck and trunk. tricted to the patients’ necks, reflecting the infected ani­ We report here dermatologically relevant aspects of mals’ contact pattern. Individual lesions vaguely resem­ our patients in order to alert the medical community to ble orf or Milker’s nodule, but show marked surrounding the possible risk of a zoonotic orthopoxvirus outbreak erythema, firm induration and local adenopathy.
    [Show full text]
  • Guide for Common Viral Diseases of Animals in Louisiana
    Sampling and Testing Guide for Common Viral Diseases of Animals in Louisiana Please click on the species of interest: Cattle Deer and Small Ruminants The Louisiana Animal Swine Disease Diagnostic Horses Laboratory Dogs A service unit of the LSU School of Veterinary Medicine Adapted from Murphy, F.A., et al, Veterinary Virology, 3rd ed. Cats Academic Press, 1999. Compiled by Rob Poston Multi-species: Rabiesvirus DCN LADDL Guide for Common Viral Diseases v. B2 1 Cattle Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 2 Deer and Small Ruminants Please click on the principle system involvement Generalized viral disease Respiratory viral disease Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 3 Swine Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 4 Horses Please click on the principle system involvement Generalized viral diseases Neurological viral diseases Respiratory viral diseases Enteric viral diseases Abortifacient/neonatal viral diseases Viral infections affecting the skin Back to the Beginning DCN LADDL Guide for Common Viral Diseases v. B2 5 Dogs Please click on the principle system involvement Generalized viral diseases Respiratory viral diseases Enteric viral diseases Reproductive/neonatal viral diseases Back to the Beginning DCN LADDL Guide for Common Viral Diseases v.
    [Show full text]
  • Comparative Analysis, Distribution, and Characterization of Microsatellites in Orf Virus Genome
    www.nature.com/scientificreports OPEN Comparative analysis, distribution, and characterization of microsatellites in Orf virus genome Basanta Pravas Sahu1, Prativa Majee 1, Ravi Raj Singh1, Anjan Sahoo2 & Debasis Nayak 1* Genome-wide in-silico identifcation of microsatellites or simple sequence repeats (SSRs) in the Orf virus (ORFV), the causative agent of contagious ecthyma has been carried out to investigate the type, distribution and its potential role in the genome evolution. We have investigated eleven ORFV strains, which resulted in the presence of 1,036–1,181 microsatellites per strain. The further screening revealed the presence of 83–107 compound SSRs (cSSRs) per genome. Our analysis indicates the dinucleotide (76.9%) repeats to be the most abundant, followed by trinucleotide (17.7%), mononucleotide (4.9%), tetranucleotide (0.4%) and hexanucleotide (0.2%) repeats. The Relative Abundance (RA) and Relative Density (RD) of these SSRs varied between 7.6–8.4 and 53.0–59.5 bp/ kb, respectively. While in the case of cSSRs, the RA and RD ranged from 0.6–0.8 and 12.1–17.0 bp/kb, respectively. Regression analysis of all parameters like the incident of SSRs, RA, and RD signifcantly correlated with the GC content. But in a case of genome size, except incident SSRs, all other parameters were non-signifcantly correlated. Nearly all cSSRs were composed of two microsatellites, which showed no biasedness to a particular motif. Motif duplication pattern, such as, (C)-x-(C), (TG)- x-(TG), (AT)-x-(AT), (TC)- x-(TC) and self-complementary motifs, such as (GC)-x-(CG), (TC)-x-(AG), (GT)-x-(CA) and (TC)-x-(AG) were observed in the cSSRs.
    [Show full text]
  • Genetic Content and Evolution of Adenoviruses Andrew J
    Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants.
    [Show full text]
  • Where Do We Stand After Decades of Studying Human Cytomegalovirus?
    microorganisms Review Where do we Stand after Decades of Studying Human Cytomegalovirus? 1, 2, 1 1 Francesca Gugliesi y, Alessandra Coscia y, Gloria Griffante , Ganna Galitska , Selina Pasquero 1, Camilla Albano 1 and Matteo Biolatti 1,* 1 Laboratory of Pathogenesis of Viral Infections, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] (F.G.); gloria.griff[email protected] (G.G.); [email protected] (G.G.); [email protected] (S.P.); [email protected] (C.A.) 2 Complex Structure Neonatology Unit, Department of Public Health and Pediatric Sciences, University of Turin, 10126 Turin, Italy; [email protected] * Correspondence: [email protected] These authors contributed equally to this work. y Received: 19 March 2020; Accepted: 5 May 2020; Published: 8 May 2020 Abstract: Human cytomegalovirus (HCMV), a linear double-stranded DNA betaherpesvirus belonging to the family of Herpesviridae, is characterized by widespread seroprevalence, ranging between 56% and 94%, strictly dependent on the socioeconomic background of the country being considered. Typically, HCMV causes asymptomatic infection in the immunocompetent population, while in immunocompromised individuals or when transmitted vertically from the mother to the fetus it leads to systemic disease with severe complications and high mortality rate. Following primary infection, HCMV establishes a state of latency primarily in myeloid cells, from which it can be reactivated by various inflammatory stimuli. Several studies have shown that HCMV, despite being a DNA virus, is highly prone to genetic variability that strongly influences its replication and dissemination rates as well as cellular tropism. In this scenario, the few currently available drugs for the treatment of HCMV infections are characterized by high toxicity, poor oral bioavailability, and emerging resistance.
    [Show full text]
  • The Viruses of Wild Pigeon Droppings
    The Viruses of Wild Pigeon Droppings Tung Gia Phan1,2, Nguyen Phung Vo1,3,A´ kos Boros4,Pe´ter Pankovics4,Ga´bor Reuter4, Olive T. W. Li6, Chunling Wang5, Xutao Deng1, Leo L. M. Poon6, Eric Delwart1,2* 1 Blood Systems Research Institute, San Francisco, California, United States of America, 2 Department of Laboratory Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Pharmacology Department, School of Pharmacy, Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh, Vietnam, 4 Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, A´ NTSZ Regional Institute of State Public Health Service, Pe´cs, Hungary, 5 Stanford Genome Technology Center, Stanford, California, United States of America, 6 Centre of Influenza Research and School of Public Health, University of Hong Kong, Hong Kong SAR Abstract Birds are frequent sources of emerging human infectious diseases. Viral particles were enriched from the feces of 51 wild urban pigeons (Columba livia) from Hong Kong and Hungary, their nucleic acids randomly amplified and then sequenced. We identified sequences from known and novel species from the viral families Circoviridae, Parvoviridae, Picornaviridae, Reoviridae, Adenovirus, Astroviridae, and Caliciviridae (listed in decreasing number of reads), as well as plant and insect viruses likely originating from consumed food. The near full genome of a new species of a proposed parvovirus genus provisionally called Aviparvovirus contained an unusually long middle ORF showing weak similarity to an ORF of unknown function from a fowl adenovirus. Picornaviruses found in both Asia and Europe that are distantly related to the turkey megrivirus and contained a highly divergent 2A1 region were named mesiviruses.
    [Show full text]
  • Modulation of NF-Κb Signalling by Microbial Pathogens
    REVIEWS Modulation of NF‑κB signalling by microbial pathogens Masmudur M. Rahman and Grant McFadden Abstract | The nuclear factor-κB (NF‑κB) family of transcription factors plays a central part in the host response to infection by microbial pathogens, by orchestrating the innate and acquired host immune responses. The NF‑κB proteins are activated by diverse signalling pathways that originate from many different cellular receptors and sensors. Many successful pathogens have acquired sophisticated mechanisms to regulate the NF‑κB signalling pathways by deploying subversive proteins or hijacking the host signalling molecules. Here, we describe the mechanisms by which viruses and bacteria micromanage the host NF‑κB signalling circuitry to favour the continued survival of the pathogen. The nuclear factor-κB (NF-κB) family of transcription Signalling targets upstream of NF‑κB factors regulates the expression of hundreds of genes that NF-κB proteins are tightly regulated in both the cyto- are associated with diverse cellular processes, such as pro- plasm and the nucleus6. Under normal physiological liferation, differentiation and death, as well as innate and conditions, NF‑κB complexes remain inactive in the adaptive immune responses. The mammalian NF‑κB cytoplasm through a direct interaction with proteins proteins are members of the Rel domain-containing pro- of the inhibitor of NF-κB (IκB) family, including IκBα, tein family: RELA (also known as p65), RELB, c‑REL, IκBβ and IκBε (also known as NF-κBIα, NF-κBIβ and the NF-κB p105 subunit (also known as NF‑κB1; which NF-κBIε, respectively); IκB proteins mask the nuclear is cleaved into the p50 subunit) and the NF-κB p100 localization domains in the NF‑κB complex, thus subunit (also known as NF‑κB2; which is cleaved into retaining the transcription complex in the cytoplasm.
    [Show full text]
  • Molecular Characterization of 52K Protein of Bovine Adenovirus Type 3
    MOLECULAR CHARACTERIZATION OF 52K PROTEIN OF BOVINE ADENOVIRUS TYPE 3 A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By Carolyn Patricia Paterson © Copyright Carolyn P. Paterson, August 2010. All rights reserved. PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or in their absence, the Head of the Department or the Dean of the college in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts therof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan Saskatoon, Saskatchewan, S7N 5B4 i ABSTRACT Bovine adenovirus (BAdV)-3 is a non-enveloped, icosahedral virus with a double-stranded DNA genome, and is being developed as a vector for vaccination of animals and humans (Rasmussen et al., 1999; Zakhartchouk et al., 1999).
    [Show full text]
  • Characterization of Host Micrornas That Respond to DNA Virus Infection in a Crustacean Tianzhi Huang, Dandan Xu and Xiaobo Zhang*
    Huang et al. BMC Genomics 2012, 13:159 http://www.biomedcentral.com/1471-2164/13/159 RESEARCH ARTICLE Open Access Characterization of host microRNAs that respond to DNA virus infection in a crustacean Tianzhi Huang, Dandan Xu and Xiaobo Zhang* Abstract Background: MicroRNAs (miRNAs) are key posttranscriptional regulators of gene expression that are implicated in many processes of eukaryotic cells. It is known that the expression profiles of host miRNAs can be reshaped by viruses. However, a systematic investigation of marine invertebrate miRNAs that respond to virus infection has not yet been performed. Results: In this study, the shrimp Marsupenaeus japonicus was challenged by white spot syndrome virus (WSSV). Small RNA sequencing of WSSV-infected shrimp at different time post-infection (0, 6, 24 and 48 h) identified 63 host miRNAs, 48 of which were conserved in other animals, representing 43 distinct families. Of the identified host miRNAs, 31 were differentially expressed in response to virus infection, of which 25 were up-regulated and six down-regulated. The results were confirmed by northern blots. The TargetScan and miRanda algorithms showed that most target genes of the differentially expressed miRNAs were related to immune responses. Gene ontology analysis revealed that immune signaling pathways were mediated by these miRNAs. Evolutionary analysis showed that three of them, miR-1, miR-7 and miR-34, are highly conserved in shrimp, fruit fly and humans and function in the similar pathways. Conclusions: Our study provides the first large-scale characterization of marine invertebrate miRNAs that respond to virus infection. This will help to reveal the molecular events involved in virus-host interactions mediated by miRNAs and their evolution in animals.
    [Show full text]
  • ICTV Virus Taxonomy Profile: Parvoviridae
    ICTV VIRUS TAXONOMY PROFILES Cotmore et al., Journal of General Virology 2019;100:367–368 DOI 10.1099/jgv.0.001212 ICTV ICTV Virus Taxonomy Profile: Parvoviridae Susan F. Cotmore,1,* Mavis Agbandje-McKenna,2 Marta Canuti,3 John A. Chiorini,4 Anna-Maria Eis-Hubinger,5 Joseph Hughes,6 Mario Mietzsch,2 Sejal Modha,6 Mylene Ogliastro,7 Judit J. Penzes, 2 David J. Pintel,8 Jianming Qiu,9 Maria Soderlund-Venermo,10 Peter Tattersall,1,11 Peter Tijssen12 and ICTV Report Consortium Abstract Members of the family Parvoviridae are small, resilient, non-enveloped viruses with linear, single-stranded DNA genomes of 4–6 kb. Viruses in two subfamilies, the Parvovirinae and Densovirinae, are distinguished primarily by their respective ability to infect vertebrates (including humans) versus invertebrates. Being genetically limited, most parvoviruses require actively dividing host cells and are host and/or tissue specific. Some cause diseases, which range from subclinical to lethal. A few require co-infection with helper viruses from other families. This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the Parvoviridae, which is available at www.ictv.global/report/parvoviridae. Table 1. Characteristics of the family Parvoviridae Typical member: human parvovirus B19-J35 G1 (AY386330), species Primate erythroparvovirus 1, genus Erythroparvovirus, subfamily Parvovirinae Virion Small, non-enveloped, T=1 icosahedra, 23–28 nm in diameter Genome Linear, single-stranded DNA of 4–6 kb with short terminal hairpins Replication Rolling hairpin replication, a linear adaptation of rolling circle replication. Dynamic hairpin telomeres prime complementary strand and duplex strand-displacement synthesis; high mutation and recombination rates Translation Capped mRNAs; co-linear ORFs accessed by alternative splicing, non-consensus initiation or leaky scanning Host range Parvovirinae: mammals, birds, reptiles.
    [Show full text]
  • Protoparvovirus Knocking at the Nuclear Door
    viruses Review Protoparvovirus Knocking at the Nuclear Door Elina Mäntylä 1 ID , Michael Kann 2,3,4 and Maija Vihinen-Ranta 1,* 1 Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, FI-40500 Jyvaskyla, Finland; elina.h.mantyla@jyu.fi 2 Laboratoire de Microbiologie Fondamentale et Pathogénicité, University of Bordeaux, UMR 5234, F-33076 Bordeaux, France; [email protected] 3 Centre national de la recherche scientifique (CNRS), Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33076 Bordeaux, France 4 Centre Hospitalier Universitaire de Bordeaux, Service de Virologie, F-33076 Bordeaux, France * Correspondence: maija.vihinen-ranta@jyu.fi; Tel.: +358-400-248-118 Received: 5 September 2017; Accepted: 29 September 2017; Published: 2 October 2017 Abstract: Protoparvoviruses target the nucleus due to their dependence on the cellular reproduction machinery during the replication and expression of their single-stranded DNA genome. In recent years, our understanding of the multistep process of the capsid nuclear import has improved, and led to the discovery of unique viral nuclear entry strategies. Preceded by endosomal transport, endosomal escape and microtubule-mediated movement to the vicinity of the nuclear envelope, the protoparvoviruses interact with the nuclear pore complexes. The capsids are transported actively across the nuclear pore complexes using nuclear import receptors. The nuclear import is sometimes accompanied by structural changes in the nuclear envelope, and is completed by intranuclear disassembly of capsids and chromatinization of the viral genome. This review discusses the nuclear import strategies of protoparvoviruses and describes its dynamics comprising active and passive movement, and directed and diffusive motion of capsids in the molecularly crowded environment of the cell.
    [Show full text]
  • THE ROLE of BOVINE ADENOVIRUS-3 PROTEIN V (Pv) in VIRUS REPLICATION
    THE ROLE OF BOVINE ADENOVIRUS-3 PROTEIN V (pV) IN VIRUS REPLICATION A Thesis Submitted to the Faculty of Graduate Studies and Research in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the Department of Veterinary Microbiology University of Saskatchewan Saskatoon By Xin Zhao © Copyright Xin Zhao, June 2016. All rights reserved PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a postgraduate degree from the University of Saskatchewan, I agree that the libraries of this university may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, whole or in part, for scholarly purposes may be granted by the professors who supervised my thesis work or in their absence, the Head of the Department or the Dean of the college in which my thesis work was done. It is understood that any copying or publication or use of this thesis or parts thereof for financial gain shall not be allowed without any written permission. It is also understood that due recognition shall be given to me and to the University of Saskatchewan in any scholarly use which may be made of any material in my thesis. Request for permission to copy or to make other use of material in this thesis in whole or part should be addressed to: Head of the Department of Veterinary Microbiology University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5B4 i ABSTRACT Bovine adenovirus type 3 (BAdV-3), which is a non-enveloped icosahedral particle with a double-stranded DNA genome of 34,446 base pair, has been developed as a vaccine vector.
    [Show full text]