THE ROLE of BOVINE ADENOVIRUS-3 PROTEIN V (Pv) in VIRUS REPLICATION
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Gutless Adenovirus: Last-Generation Adenovirus for Gene Therapy
Gene Therapy (2005) 12, S18–S27 & 2005 Nature Publishing Group All rights reserved 0969-7128/05 $30.00 www.nature.com/gt CONFERENCE PAPER Gutless adenovirus: last-generation adenovirus for gene therapy R Alba1, A Bosch1 and M Chillon1,2 1Gene Therapy Laboratory, Department of Biochemistry and Molecular Biology, Center of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Auto`noma de Barcelona, Bellaterra, Spain; and 2Institut Catala` de Recerca i Estudis Avanc¸ats (ICREA), Barcelona, Spain Last-generation adenovirus vectors, also called helper-depen- viral coding regions, gutless vectors require viral proteins dent or gutless adenovirus, are very attractive for gene therapy supplied in trans by a helper virus. To remove contamination because the associated in vivo immune response is highly by a helper virus from the final preparation, different systems reduced compared to first- and second-generation adenovirus based on the excision of the helper-packaging signal have vectors, while maintaining high transduction efficiency and been generated. Among them, Cre-loxP system is mostly tropism. Nowadays, gutless adenovirus is administered in used, although contamination levels still are 0.1–1% too high different organs, such as the liver, muscle or the central to be used in clinical trials. Recently developed strategies to nervous system achieving high-level and long-term transgene avoid/reduce helper contamination were reviewed. expression in rodents and primates. However, as devoid of all Gene Therapy (2005) 12, S18–S27. doi:10.1038/sj.gt.3302612 Keywords: adenovirus; gutless; helper-dependent vectors; in vivo gene therapy Introduction clinical for more information). Nowadays, adenovirus vectors are applied to treat cancer, monogenic disorders, Gene therapy for most genetic diseases requires expres- vascular diseases and others complications. -
Genetic Content and Evolution of Adenoviruses Andrew J
Journal of General Virology (2003), 84, 2895–2908 DOI 10.1099/vir.0.19497-0 Review Genetic content and evolution of adenoviruses Andrew J. Davison,1 Ma´ria Benko´´ 2 and Bala´zs Harrach2 Correspondence 1MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR, UK Andrew Davison 2Veterinary Medical Research Institute, Hungarian Academy of Sciences, H-1581 Budapest, [email protected] Hungary This review provides an update of the genetic content, phylogeny and evolution of the family Adenoviridae. An appraisal of the condition of adenovirus genomics highlights the need to ensure that public sequence information is interpreted accurately. To this end, all complete genome sequences available have been reannotated. Adenoviruses fall into four recognized genera, plus possibly a fifth, which have apparently evolved with their vertebrate hosts, but have also engaged in a number of interspecies transmission events. Genes inherited by all modern adenoviruses from their common ancestor are located centrally in the genome and are involved in replication and packaging of viral DNA and formation and structure of the virion. Additional niche-specific genes have accumulated in each lineage, mostly near the genome termini. Capture and duplication of genes in the setting of a ‘leader–exon structure’, which results from widespread use of splicing, appear to have been central to adenovirus evolution. The antiquity of the pre-vertebrate lineages that ultimately gave rise to the Adenoviridae is illustrated by morphological similarities between adenoviruses and bacteriophages, and by use of a protein-primed DNA replication strategy by adenoviruses, certain bacteria and bacteriophages, and linear plasmids of fungi and plants. -
Human Adenovirus Encodes Two Proteins Which Have Opposite Effects on Accumulation of Alternatively Spliced Mrnas
MOLECULAR AND CELLULAR BIOLOGY, Jan. 1994, p. 437-445 Vol. 14, No. 1 0270-7306/94/$04.00+0 Copyright X 1994, American Society for Microbiology Human Adenovirus Encodes Two Proteins Which Have Opposite Effects on Accumulation of Alternatively Spliced mRNAs KATARINA NORDQVIST,t KARIN OHMAN, AND GORAN AKUSJARVI* Department of Cell and Molecular Biology, The Medical Nobel Institute, Karolinska Institutet, S-171 77 Stockholm, Sweden Received 23 June 1993/Returned for modification 17 August 1993/Accepted 30 September 1993 All mRNAs expressed from the adenovirus major late transcription unit have a common, 201-nucleotide-long 5' leader sequence, which consists of three short exons (the tripartite leader). This leader has two variants, either with or without the i-leader exon, which, when present, is spliced between the second and the third exons of the tripartite leader. Previous studies have shown that adenovirus early region 4 (E4) encodes two proteins, E4 open reading frame 3 (E4-ORF3) and E4-ORF6, which are required for efficient expression of mRNAs from the major late transcription unit. These two E4 proteins appear to have redundant activities, and expression of one has been shown to be sufficient for efficient maijor late mRNA accumulation during a lytic virus infection. In this report, we provide evidence that E4-ORF3 and E4-ORF6 both regulate major late mRNA accumulation by stimulating constitutive splicing. Moreover, we show that the two proteins have different effects on accumulation ofalternatively spliced tripartite leader exons. In a DNA transfection assay, E4-ORF3 was shown to facilitate i-leader exon inclusion, while E4-ORF6 preferentially favored i-leader exon skipping. -
Avian Influenza Adenovirus-Vectored in Ovo Vaccination: Combination with Marek’S Disease Vaccine
Avian Influenza Adenovirus-Vectored in Ovo Vaccination: Combination with Marek’s Disease Vaccine by Cassandra Jean Breedlove A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements for the Degree of Master of Science Auburn, Alabama August 6, 2011 Keywords: Avian Influenza virus, recombinant vaccine, adenovirus, chickens Approved by Haroldo Toro, Chair, Professor of Pathobiology Stuart Price, Associate Professor of Pathobiology Vicky van Santen, Professor of Pathobiology Abstract Protective immunity against avian influenza (AI) can be elicited in chickens in a single-dose regimen by in ovo vaccination with a replication competent adenovirus (RCA)-free human adenovirus serotype 5 (Ad)-vector encoding either the AI virus H5 (AdH5) or H7 hemagglutinins (HA). In ovo vaccination is likely one of the most efficient mass vaccination delivery routes in commercial chickens. From an applied perspective, it is relevant to clarify whether other vaccines routinely delivered by the same route would interfere with Ad-vector vaccination when applied simultaneously. Marek’s disease virus (MDV) vaccination is routinely performed in ovo in the U.S. poultry industry. The overall aim of this study was to evaluate the effects of combined in ovo vaccination with the experimental AdH5 recombinant vaccine and commercially available MDV vaccines. When the AdH5 vaccine was used in combination with MDV vaccines, chickens responding to the AdH5 vaccine had similar AI antibody levels compared to AdH5-only vaccinated birds. However, combined vaccinated groups showed reduced vaccine coverage to AI which suggests some level of interference. The combination of AdH5 with MDV Rispens/HVT affected the vaccine coverage to AI more severely. -
Adenovirus Gene Expression - a Model for Mammalian Cells
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 74, number 2 FEBS LETTERS March 1977 ADENOVIRUS GENE EXPRESSION - A MODEL FOR MAMMALIAN CELLS Lennart PHILIPSON Department of Microbiology, Biomedical Center, Uppsala University S-751 23, Uppsala, Sweden Received 5 January 1977 Animal DNA viruses provide a powerful system for The synthesis of host cell RNA is unaffected at early analysis of transcription and translation in mammalian times but is suppressed late in productive infection. cells. During productive infection, the adenovirus DNA Only 1 O-20% of the normal amount of ribosomal enters the nucleus rapidly [ 1 ] and is transcribed into RNA is transported to the cytoplasm [9,16] late, large RNA molecules [2-41. Both early and late in although significant amounts of 45 S ribosomal productive infection nuclear RNA becomes polyadeny- precursor RNA appear to be synthesized [ 161. Late lated [5] and RNA molecules which are destined to after infection the synthesis of host-cell heterogeneous become messenger RNA (mRNA) are presumably nuclear RNA (HnRNA) is suppressed [17]. Nearly all cleaved before entering the cytoplasm [3, 6-91. A mRNA transported to the cytoplasm late after infection switch from early to late gene expression occurs at the is of viral origin. onset of viral DNA repliation and leads to quantitative The sequences of mRNA which are synthesized as well as qualitative changes in the synthesis of viral early after infection persist in the cytoplasm late after mRNA. Late after infection the cytoplasm contains infection although all early mRNA sequences are not about lo-times more viral RNA than at early times synthesized late after infection [2, 18-221. -
Adenovirus-Host Interactions: Implications for Tropism and Therapy
Adenovirus-host interactions: implications for tropism and therapy Annasara Lenman Department of Clinical Microbiology Umeå 2016 Responsible publisher under Swedish law: the Dean of the Medical Faculty This work is protected by the Swedish Copyright Legislation (Act 1960:729) ISBN: 978-91-7601-453-0 ISSN: 0346-6612-1798 Omslag gjort m.h.a. familj & vänner. Grafisk design av Lina Cabal ([email protected]). Elektronisk version tillgänglig på http://umu.diva-portal.org/ Tryck/Printed by: Print & Media Umeå, Sverige 2016 Till min älskade familj och mina underbara vänner Table of Contents TABLE OF CONTENTS .................................................................................. I ABSTRACT ................................................................................................... III SUMMARY IN SWEDISH-POPULÄRVETENSKAPLIG SAMMANFATTNING PÅ SVENSKA ............................................................ VI ABBREVIATIONS ....................................................................................... VIII LIST OF PAPERS .......................................................................................... X INTRODUCTION ............................................................................................ 1 HISTORY ....................................................................................................... 1 TAXONOMY ................................................................................................... 2 CLINICAL AND PATHOLOGICAL ASPECTS ......................................................... -
Poult Enteritis and Mortality Syndrome in Turkey Poults: Causes, Diagnosis and Preventive Measures
animals Review Poult Enteritis and Mortality Syndrome in Turkey Poults: Causes, Diagnosis and Preventive Measures Awad A. Shehata 1,2,*, Shereen Basiouni 3, Reinhard Sting 4 , Valerij Akimkin 4, Marc Hoferer 5 and Hafez M. Hafez 6,* 1 Birds and Rabbit Medicine Department, Faculty of Veterinary Medicine, University of Sadat City, Sadat City 32897, Egypt 2 Research and Development Section, PerNaturam GmbH, 56290 Gödenroth, Germany 3 Clinical Pathology Department, Faculty of Veterinary Medicine, Benha University, Benha 13518, Egypt; [email protected] 4 Chemisches und Veterinäruntersuchungsamt Stuttgart, 70736 Fellbach, Germany; [email protected] (R.S.); [email protected] (V.A.) 5 Chemisches und Veterinäruntersuchungsamt Freiburg, 79108 Freiburg, Germany; [email protected] 6 Institute of Poultry Diseases, Faculty of Veterinary Medicine, Free University of Berlin, 14163 Berlin, Germany * Correspondence: [email protected] (A.A.S.); [email protected] (H.M.H.) Simple Summary: The poult enteritis and mortality syndrome (PEMS) causes severe economic losses in turkeys. Several agents were described to be associated with the PEMS; however, a specific etiological agent(s) has not been identified. The diagnosis of PEMS is still a huge challenge for several reasons: (1) no specific clinical signs or pathognomonic lesions, (2) isolation of some enteric viruses still difficult, (3) the pathogenicity of several enteric viruses in turkeys is not fully understood, Citation: Shehata, A.A.; Basiouni, S.; (4) PEMS is an interaction between several known and might be unknown agents and (5) opportunistic Sting, R.; Akimkin, V.; Hoferer, M.; microorganisms also have a role in the pathogenesis of PEMS. -
1 Chapter I Overall Issues of Virus and Host Evolution
CHAPTER I OVERALL ISSUES OF VIRUS AND HOST EVOLUTION tree of life. Yet viruses do have the This book seeks to present the evolution of characteristics of life, can be killed, can become viruses from the perspective of the evolution extinct and adhere to the rules of evolutionary of their host. Since viruses essentially infect biology and Darwinian selection. In addition, all life forms, the book will broadly cover all viruses have enormous impact on the evolution life. Such an organization of the virus of their host. Viruses are ancient life forms, their literature will thus differ considerably from numbers are vast and their role in the fabric of the usual pattern of presenting viruses life is fundamental and unending. They according to either the virus type or the type represent the leading edge of evolution of all of host disease they are associated with. In living entities and they must no longer be left out so doing, it presents the broad patterns of the of the tree of life. evolution of life and evaluates the role of viruses in host evolution as well as the role Definitions. The concept of a virus has old of host in virus evolution. This book also origins, yet our modern understanding or seeks to broadly consider and present the definition of a virus is relatively recent and role of persistent viruses in evolution. directly associated with our unraveling the nature Although we have come to realize that viral of genes and nucleic acids in biological systems. persistence is indeed a common relationship As it will be important to avoid the perpetuation between virus and host, it is usually of some of the vague and sometimes inaccurate considered as a variation of a host infection views of viruses, below we present some pattern and not the basis from which to definitions that apply to modern virology. -
Molecular Mechanisms and Epigenetic Regulation of Adenovirus Genome Structure in Persistent Infection
MSc MOL BIOTECH 12 003 Molecular mechanisms and epigenetic regulation of adenovirus genome structure in persistent infection Sibel Ciftci Degree project in molecular biotechnology, 2012 Examensarbete i molekylär bioteknik 30 hp till masterexamen, 2012 Biology Education Centre and Medical Biochemistry and microbiology , Uppsala University Supervisors: Tanel Punga and Göran Akusjärvi ABSTRACT Adenovirus, in particular serotype C, is maintained in lymphocytes of the tonsils and adenoids for long time periods. That is contradictory to its commonly known lytic life cycle. To shed light on the mystery behind the molecular mechanisms of those lytic viruses that establish latent infection, BJAB cells were examined during a 21 days infection time-course. In this thesis, I aim to establish a model system for persistent and/or latent adenovirus infection in BJAB cells and design an experimental set up to study molecular and epigenetic regulation during long-term infection period. BJAB cells infected with mutant (dl309) and wild type adenoviruses were analyzed for potential protein regulation and/or modifications that play significant roles in pathways especially involved in cell cycle progression, such as pRb and p53 pathway proteins. My thesis study also dissects RNAi- microRNA pathway regulation in long-term adenovirus infection and observations indicated distinct regulation than shown in previous studies of lytic adenovirus infection. The early and late viral gene expression in Ad5 (wt) and Ad5 (dl309) infected cells showed unusual expression patterns during infection course and showed inconsistency with viral genome copy numbers. Therefore, the other major part of my project dissected the potential epigenetic regulation mechanisms in Ad5 (dl309) infected BJAB cells particularly at day 10 dpi and 21 dpi. -
(12) United States Patent (10) Patent No.: US 7,279,318 B1 Seymour Et Al
USOO7279318B1 (12) United States Patent (10) Patent No.: US 7,279,318 B1 Seymour et al. (45) Date of Patent: Oct. 9, 2007 (54) MODIFICATION OF BIOLOGICAL FOREIGN PATENT DOCUMENTS ELEMENTS WO WO96/21470 6, 1996 (75) Inventors: Leonard C. W. Seymour, Birmingham WO WO98,441.143 A1 * 10, 1998 (GB); Kerry David Fisher, Birmingham (GB) OTHER PUBLICATIONS Verma et al., Nature, vol. 389, 1997, pp. 239-242.* (73) Assignee: Hybrid Systems Limited, Birmingham Anderson, Nature, vol. 392-supplement, 1998, pp. 25-30.* Juengst, BMJ, vol. 326, 2003, pp. 1410–1411.* (GB) Robinson et al., “Effect of Polyethylene Glycol Conjugated to DNA-Transfecting Complexes Targeted at the Transferrin Receptor (*) Notice: Subject to any disclaimer, the term of this of HeLa Cells' Drug Delivery 4: 115-119 (1997). patent is extended or adjusted under 35 Wolfert et al., “Characterization of Vectors for Gene Therapy U.S.C. 154(b) by 604 days. Formed by Self-Assembly of DNA with Synthetic Block Co Polymers’ Human Gene Therapy 7:2123-2133 (Nov. 10, 1996). (21) Appl. No.: 10/009,347 Katayose et al., “Water-Soluble Polyion Complex Associates of DNA and Poly(ethyleneglycol)-Poly(L-lysine) Block Copolymer” (22) PCT Filed: Jun. 9, 1999 Bioconjugate Chem. 8:702-707 (1997). (86). PCT No.: PCT/GBOO/O2239 * cited by examiner Primary Examiner James Ketter S 371 (c)(1), (74) Attorney, Agent, or Firm—Pillsbury Winthrop Shaw (2), (4) Date: Jun. 26, 2002 Pittman, LLP (87) PCT Pub. No.: WO00/74722 (57) ABSTRACT PCT Pub. Date: Dec. 14, 2000 A method of modifying the biological and/or physicochemi (30) Foreign Application Priority Data cal properties of biological elements such as viruses and other micro-organisms is disclosed in which the biological Jun. -
Diseases That Might Not Be Seen in Australia: a Cautionary Tale
DISEASES THAT MIGHT NOT BE SEEN IN AUSTRALIA: A CAUTIONARY TALE Drury Reavill Zoo/Exotic Pathology Service 2825 KOVR Drive West Sacramento, CA 95605 INTRODUCTION Despite our jet‐setting life‐styles and transport of pets and pathogens from continent to continent, some diseases have yet to establish themselves in all locations. This review is meant to highlight some uncommon to unknown avian diseases in Australian birds. It is just a matter of time and having the appropriate hosts and vectors before these migrate from the Americas. ADENOVIRUS Members of the family Adenoviridae are non‐enveloped double‐stranded DNA viruses with a medium‐sized genome of 26 to 45 kbp. Adenoviruses are classified into four genera: Mastadenovirus, Aviadenovirus (previously classified as group I avian adenovirus), and the two recently accepted genera Atadenovirus and Siadenovirus (Benko et al., 2005). A fifth genus is proposed for fish adenoviruses (Benko et al., 2005). Group II turkey adenovirus type 3, also named turkey hemorrhagic enteritis virus, is related to members of Siadenovirus with frog adenovirus. In addition, group III egg drop syndrome virus (EDSV) has been moved to the new genera Atadenovirus. Historically, adenovirus infections in psittacine birds have been identified based on microscopic studies. Infections with adenovirus or adenovirus‐like particles have been described in a variety of psittacine birds including budgerigars (Melopsittacus undulatus), macaws (Ara spp.), Amazon parrots (Amazona spp.), cockatoos (Cacatua spp.), cockatiels (Nymphicus hollandicus) lovebirds (Agapornis spp.), parakeets (Psittacula krameri), eclectus parrots (Eclectus roratus), African grey parrots (Psittacus erithacus), Poicephalus spp, and lorikeets (Trichoglossus spp.) Schmidt et al., 2003; Katoh et al., 2009; Wellehan et al., 2009). -
Structure, Function and Dynamics in Adenovirus Maturation
BNL-107242-2014-JA Review Structure, Function and Dynamics in Adenovirus Maturation Walter F. Mangel 1 and Carmen San Martín 2,* 1 Biological, Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973, USA; E-Mail: [email protected] 2 Department of Macromolecular Structure and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB-CSIC), Darwin 3, Madrid 28049, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-91-585-4450; Fax: +34-91-585-4506. Abstract: Here we review the current knowledge on maturation of adenovirus, a non-enveloped icosahedral eukaryotic virus. The adenovirus dsDNA genome fills the capsid in complex with a large amount of histone-like viral proteins, forming the core. Maturation involves proteolytic cleavage of several capsid and core precursor proteins by the viral protease (AVP). AVP uses a peptide cleaved from one of its targets as a “molecular sled” to slide on the viral genome and reach its substrates, in a remarkable example of one-dimensional chemistry. Immature adenovirus containing the precursor proteins lacks infectivity because of its inability to uncoat. The immature core is more compact and stable than the mature one, due to the condensing action of unprocessed core polypeptides; shell precursors underpin the vertex region and the connections between capsid and core. Maturation makes the virion metastable, priming it for stepwise uncoating by facilitating vertex release and loosening the condensed genome and its attachment to the icosahedral shell. The packaging scaffold protein L1 52/55k is also a substrate for AVP. Proteolytic processing of L1 52/55k disrupts its interactions with other virion components, providing a mechanism for its removal during maturation.