bioRxiv preprint doi: https://doi.org/10.1101/2021.06.28.450199; this version posted June 28, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. 31,600-year-old human virus genomes support a Pleistocene origin for common childhood infections Sofie Holtsmark Nielsen1*, Lucy van Dorp2, Charlotte J. Houldcroft3, Anders G. Pedersen4, Morten E. Allentoft1,5, Lasse Vinner1, Ashot Margaryan1,6, Elena Pavlova7,8, Vyacheslav Chasnyk9, Pavel Nikolskiy8,10, Vladimir Pitulko8, Ville N. Pimenoff 11, François Balloux2, Martin Sikora1* 1Globe Institute, University of Copenhagen; Copenhagen, Denmark. 2UCL Genetics Institute, Department of Genetics, Evolution & Environment, University College London; London, WC1E 6BT, United Kingdom. 3Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom. 4DTU Health Tech, Bioinformatics, Technical University of Denmark; Kgs. Lyngby, Denmark. 5Trace and Environmental DNA (TrEnD) Laboratory, School of Molecular and Life Sciences, Curtin University; Perth, Australia. 6Center for Evolutionary Hologenomics, University of Copenhagen, Copenhagen, Denmark. 7Polar Geography Department, Arctic & Antarctic Research Institute; St Petersburg, Russia. 8Palaeolithic Department, Institute for the History of Material Culture RAS; St Petersburg, Russia. 9St Petersburg Pediatric Medical University, St Petersburg. 10Geological Institute, Russian Academy of Sciences, Moscow, Russian Federation. 11Department of Laboratory of Medicine, Karolinska Institutet, Stockholm, Sweden. * Corresponding authors:
[email protected],
[email protected] Abstract The origins of viral pathogens and the age of their association with humans remains largely elusive.