Impact of Infrared, Microwave, and Radio Occultation Satellite Observations on Operational Numerical Weather Prediction

Total Page:16

File Type:pdf, Size:1020Kb

Impact of Infrared, Microwave, and Radio Occultation Satellite Observations on Operational Numerical Weather Prediction 4164 MONTHLY WEATHER REVIEW VOLUME 142 Impact of Infrared, Microwave, and Radio Occultation Satellite Observations on Operational Numerical Weather Prediction L. CUCURULL Global Systems Division, NOAA/OAR/Earth System Research Laboratory, and Cooperative Institute for Research in Environmental Sciences, Boulder, Colorado R. A. ANTHES University Corporation for Atmospheric Research, Boulder, Colorado (Manuscript received 1 April 2014, in final form 4 August 2014) ABSTRACT A comparison of the impact of infrared (IR), microwave (MW), and radio occultation (RO) observations on NCEP’s operational global forecast model over the month of March 2013 is presented. Analyses and forecasts with only IR, MW, and RO observations are compared with analyses and forecasts with no satellite data and with each other. Overall, the patterns of the impact of the different satellite systems are similar, with the MW observations producing the largest impact on the analyses and RO producing the smallest. Without RO observations, satellite radiances are over– or under–bias corrected and RO acts as an anchor observation, reducing the forecast biases globally. Positive correlation coefficients of temperature impacts are generally found between the different satellite observation analyses, indicating that the three satellite systems are affecting the global temperatures in a similar way. However, the correlation in the lower troposphere among all three systems is surprisingly small. Correlations for the moisture field tend to be small in the lower tro- posphere between the different satellite analyses. The impact of the satellite observations on the 500-hPa geopotential height forecasts is much different in the Northern and Southern Hemispheres. In the Northern Hemisphere, all the satellite observations together make a small positive impact compared to the base (no satellite) forecasts. The IR and MW, but not the RO, make a small positive impact when assimilated alone. The situation is considerably different in the Southern Hemisphere, where all the satellite observations to- gether make a much larger positive impact, and all three observation types (IR, MW, and RO) make similar and significant impacts. 1. Introduction to rise or set relative to Earth. The arrival time of the received radio signal is retarded because of the refractive Radio occultation (RO) observations have recently bending and slowing of the signal as it traverses the at- (since late 2006) been shown to have a positive impact mosphere. By measuring the change in phase measure- on global numerical weather prediction, complementing ments during the occultation event, profiles of bending infrared (IR) and microwave (MW) observations from angle, atmospheric refractivity, pressure, temperature, satellites (Cardinali 2009; Anthes 2011; Bonavita 2014; and water vapor can be retrieved as a function of altitude Healy 2008, 2013; Poli et al. 2009; Cucurull 2010; Radnóti (Hajj et al. 1994, 2002; Rocken et al. 1997; Kursinski et al. et al. 2010; Rennie 2010; Aparicio and Deblonde 2008; 2000; Kuo et al. 2004). GPS operates at very long wave- Bauer et al. 2014). A radio occultation occurs when a lengths compared to other remote sensing instruments, receiver on a low-Earth-orbiting (LEO) satellite tracks and its frequencies are below any absorption lines. In a global positioning system (GPS) satellite that is observed addition, particle scattering is negligible. Thus, the RO technology does not suffer from scattering and absorp- tion effects as other instruments operating at shorter Corresponding author address: Lidia Cucurull, Global Systems Division, Office of the Director, NOAA/Earth System Research wavelengths do (Melbourne et al. 1994). Laboratory (ESRL), 325 Broadway, R/GSD, Boulder, CO 80305. Observations made by radiometry of absorption and E-mail: [email protected] emission spectra from natural sources usually are DOI: 10.1175/MWR-D-14-00101.1 Ó 2014 American Meteorological Society Unauthenticated | Downloaded 09/23/21 07:17 PM UTC NOVEMBER 2014 C U C U R U L L A N D A N T H E S 4165 obtained from amplitude measurements that are more frequently run at the operational numerical weather vulnerable to long-term stability errors in their calibra- prediction centers (e.g., Radnóti et al. 2010; McNally tion systems. As a result, most atmospheric remote et al. 2014). Comparison between OSEs and FSO results sensing instruments require calibration on orbit. In has been investigated by Gelaro and Zhu (2009). Todling contrast, the RO technology uses very precise phase (2013) suggests a new approach to evaluate the impact of measurements of artificial signals. Because the RO current observations in weather forecasting based on the technique is free of instrumental biases, it can serve as ‘‘observation space’’ approach rather than the ‘‘state a calibration system for other instruments. For example, space’’ approach used in the tangent linear methods. Zou et al. (2014) used precise and accurate RO obser- However, detailed studies of the differences in how the vations to calibrate upper temperature channels from three satellite systems (MW, IR, and RO) affect the the Advanced Technology Microwave Sounder analyses and subsequent forecasts have not been done. (ATMS) on board the Suomi National Polar-Orbiting The goal of this paper is to investigate the differences Partnership (Suomi-NPP) satellite. and similarities between the impacts on global temper- Nadir-viewing instruments provide information asso- ature and moisture analyses and forecasts associated ciated with a weighted average over atmospheric layers with the separate assimilation of RO, MW, and IR ob- of different thicknesses, which limits the vertical reso- servations in the National Centers for Environmental lution of these observations. Increasing the number of Prediction (NCEP) operational global data assimilation channels improves the vertical resolution, but radiance system. Where these analyses and forecasts differ sig- emitted over a scale height ultimately limits the resolu- nificantly from each other or from the model analysis tion that can be achieved. In contrast, RO provides high- without the satellite observations can indicate possible vertical-resolution profiles. However, the horizontal issues with the satellite systems and/or the model. footprint associated with the nadir geometry is smaller A description of the different experiments is pre- than the one associated with a limb-viewing technology sented in section 2. The methodology used to evaluate (Kursinski et al. 1997), which enables the nadir-viewing the results is presented in section 3. Section 4 analyzes radiance sounders to have higher horizontal resolution the results of the experiments, and the main conclusions than RO. Thus, the two systems are highly comple- are summarized in section 5. mentary [e.g., Collard and Healy (2003) and as sum- marized by WMO (2012)]. 2. Experiments The assimilation of satellite radiances in operational weather forecasting benefits from the assimilation of We conducted six experimental sets of 39 forecasts unbiased observations that reduce the drift of a weather over the period 21 February–31 March 2013. The control model toward its own climatology (Derber and Wu experiment CTL assimilated all the observations used in 1998; Dee 2004, 2005; Dee and Uppala 2008). The role of the operational suite of the NCEP’s global data assimi- RO observations as ‘‘anchor observations’’ in NWP lation system, including RO and satellite radiance ob- models and the resulting improvements in the bias cor- servations. A second experiment, BASE, removed all rection of the satellite radiances has been shown in satellite sounding systems (IR, MW, and RO) while a number of studies (Healy et al. 2005; Healy and Thépaut retaining all other observations. Experiments 3–5 (des- 2006; Healy 2008; Poli et al. 2010; Bauer et al. 2014; ignated IR, MW, and RO) selectively added back to the Cucurull at al. 2014; Bonavita 2014). BASE the IR, MW, and RO observations. A summary Active RO limb soundings and passive MW and IR of the five experiments is provided in Table 1. All the nadir-viewing instrument systems on satellites produce experimental forecasts begin at 0000 UTC and run for information on the three-dimensional temperature and 8 days (192 h) from 21 February to 31 March 2013. The water vapor structure in the atmosphere and are to- first 7 days are used for model spinup, and the compar- gether the most effective space-based observational sys- isons cover the period 28 February–31 March 2013. The tems in reducing forecast errors (Anthes 2011; Cardinali horizontal resolution of the operational NCEP’s global and Prates 2011; Cardinali and Healy 2014). Several data assimilation at the time of this study is T574 studies have shown the contribution of the different (;27 km) with 64 levels in the vertical. The model top is systems to short-range (24 h) forecast accuracy using the located at 0.266 hPa (;60 km). Satellite radiances are Forecast Sensitivity to Observations (FSO) method thinned to 145 km and bias corrected at NCEP using (Baker and Daley 2000; Langland and Baker 2004; Errico a variational bias correction approach in its hybrid three- 2007; Gelaro et al. 2007; WMO 2012). The FSO tech- dimensional variational data assimilation (3DVAR) sys- nique uses the adjoint of a data assimilation system. In tem (Derber and Wu 1998; Dee 2004; Dee and Uppala addition, observing system experiments (OSEs) are 2008). The variational bias correction is active in all the Unauthenticated
Recommended publications
  • Radiant Heating with Infrared
    W A T L O W RADIANT HEATING WITH INFRARED A TECHNICAL GUIDE TO UNDERSTANDING AND APPLYING INFRARED HEATERS Bleed Contents Topic Page The Advantages of Radiant Heat . 1 The Theory of Radiant Heat Transfer . 2 Problem Solving . 14 Controlling Radiant Heaters . 25 Tips On Oven Design . 29 Watlow RAYMAX® Heater Specifications . 34 The purpose of this technical guide is to assist customers in their oven design process, not to put Watlow in the position of designing (and guaranteeing) radiant ovens. The final responsibility for an oven design must remain with the equipment builder. This technical guide will provide you with an understanding of infrared radiant heating theory and application principles. It also contains examples and formulas used in determining specifications for a radiant heating application. To further understand electric heating principles, thermal system dynamics, infrared temperature sensing, temperature control and power control, the following information is also available from Watlow: • Watlow Product Catalog • Watlow Application Guide • Watlow Infrared Technical Guide to Understanding and Applying Infrared Temperature Sensors • Infrared Technical Letter #5-Emissivity Table • Radiant Technical Letter #11-Energy Uniformity of a Radiant Panel © Watlow Electric Manufacturing Company, 1997 The Advantages of Radiant Heat Electric radiant heat has many benefits over the alternative heating methods of conduction and convection: • Non-Contact Heating Radiant heaters have the ability to heat a product without physically contacting it. This can be advantageous when the product must be heated while in motion or when physical contact would contaminate or mar the product’s surface finish. • Fast Response Low thermal inertia of an infrared radiation heating system eliminates the need for long pre-heat cycles.
    [Show full text]
  • Understanding Infrared Light
    TEACHER/PARENT ACTIVITY MANUAL Joint Polar Satellite System Understanding Infrared Light This activity educates students about the electromagnetic spectrum, or different forms of light detected by Earth observing satellites. The Joint Polar Satellite System (JPSS), a collaborative effort between NOAA and NASA, detects various wavelengths of the electromagnetic spectrum including infrared light to measure the temperature of Earth’s surface, oceans, and atmosphere. The data from these measurements provide the nation with accurate weather forecasts, hurricane warnings, wildfire locations, and much more! Provided is a list of materials that can be purchased to complete several learning activities, including simulating infrared light by constructing homemade infrared goggles. Learning Objectives Next Generation Science Standards (Grades 5–8) Performance Disciplinary Description Expectation Core Ideas 4-PS4-1 PS4.A: • Waves, which are regular patterns of motion, can be made in water Waves and Their Wave Properties by disturbing the surface. When waves move across the surface of Applications in deep water, the water goes up and down in place; there is no net Technologies for motion in the direction of the wave except when the water meets a Information Transfer beach. (Note: This grade band endpoint was moved from K–2.) • Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). 4-PS4-2 PS4.B: An object can be seen when light reflected from its surface enters the Waves and Their Electromagnetic eyes. Applications in Radiation Technologies for Information Transfer 4-PS3-2 PS3.B: Light also transfers energy from place to place.
    [Show full text]
  • Comparison Between GPS Radio Occultation and Radiosonde Sounding Data
    Comparison Between GPS Radio Occultation and Radiosonde Sounding Data Dione Rossiter Academic Affiliation, Fall 2003: Senior University of California, Berkeley SOARS® Summer 2003 Science Research Mentors: Christian Rocken, Bill Kuo, and Bill Schreiner Writing and Communications Mentor: David Gochis Community Mentor: Annette Lampert Peer Mentor: Pauline Datulayta ABSTRACT Global Positioning System (GPS) Radio Occultation (RO) is a new technique for obtaining profiles of atmospheric properties, specifically: refractivity, temperature, pressure, water vapor pressure in the neutral atmosphere, and electron density in the ionosphere. The data received from GPS RO contribute significant amounts of information to a range of fields including meteorology, climate, ionospheric research, geodesy, and gravity. Low-Earth orbiting satellites, equipped with a GPS receiver, track GPS radio signals as they set or rise behind the Earth. Since GPS signals are refracted (delayed and bent) by the Earth's atmosphere, these data are used to infer information about atmospheric refractivity. Before the GPS RO data are used for research and operations, it is essential to assess their accuracy. Therefore, this research provided quantitative estimates of the accuracy of GPS RO when compared with measurements of known accuracy. Profile statistics (mean, standard deviation, standard error) were computed as a function of altitude to quantify the errors. Comparing RO data with nearby (300km; 2hr) radiosonde data yielded small mean error for all of the statistical plots generated, affirming that the RO technique is accurate for measuring atmospheric properties. Comparison of RO data with sounding data from different radiosonde systems showed that the RO technique was of high enough accuracy to differentiate differences in performance of various types of radiosonde systems.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Spire's Cubesat Constellation of GNSS, AIS, and ADS-B Sensors
    Seizing Opportunity: Spire’s CubeSat Constellation of GNSS, AIS, and ADS-B Sensors Dallas Masters, Director of GNSS, Spire Global, Inc. Stanford PNT Symposium, 2018-11-08 WHO & WHAT IS SPIRE? We’re a new, innovative satellite & data services company that you might not have heard of… We’re what you get when you mix agile development with nanosatellites... We’re the transformation of a single , crowd-sourced nanosatellite into one of the largest constellations of satellites in the world... Stanford PNT Symposium, 2018-11-08 OUTLINE 1. Overview of Spire 2. Spire satellites and PNT payloads & products a. AIS ship tracking b. GNSS-based remote sensing measurements: radio occultation (RO), ionosphere electron density, bistatic radar (reflections) c. ADS-B aircraft tracking (early results) 3. Spire’s lofty long-term goals Stanford PNT Symposium, 2018-11-08 AN OVERVIEW OF SPIRE Stanford PNT Symposium, 2018-11-08 SPIRE TODAY • 150 people across five offices (a distributed start-up) - San Francisco, Boulder, Glasgow, Luxembourg, and Singapore • 60+ LEO 3U CubeSats (10x10x30 cm) in orbit with passive sensing payloads, 30+ global ground stations - 16 launch campaigns completed with seven different launch providers - Ground station network owned and operated in-house for highest level of security and resilience • Observing each point on Earth 100 times per day, everyday - Complete global coverage, including the polar regions • Deploying new applications within 6-12 month timeframes • World’s largest ship tracking constellation • World’s largest weather
    [Show full text]
  • An Observing System Simulation Experiment with a Constellation of Radio Occultation Satellites
    DECEMBER 2018 C U C U R U L L E T A L . 4247 An Observing System Simulation Experiment with a Constellation of Radio Occultation Satellites L. CUCURULL AND R. ATLAS NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida R. LI AND M. J. MUELLER Cooperative Institute for Research in the Environmental Sciences, University of Colorado Boulder, and NOAA/OAR/ESRL/Global Systems Division, Boulder, Colorado R. N. HOFFMAN Cooperative Institute for Marine and Atmospheric Studies, University of Miami, and NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida (Manuscript received 9 March 2018, in final form 17 August 2018) ABSTRACT Experiments with a global observing system simulation experiment (OSSE) system based on the recent 7-km-resolution NASA nature run (G5NR) were conducted to determine the potential value of proposed Global Navigation Satellite System (GNSS) radio occultation (RO) constellations in current operational numerical weather prediction systems. The RO observations were simulated with the geographic sampling expected from the original planned Constellation Observing System for Meteorology, Ionosphere, and Climate-2 (COSMIC-2) system, with six equatorial (total of ;6000 soundings per day) and six polar (total of ;6000 soundings per day) receiver satellites. The experiments also accounted for the expected improved vertical coverage provided by the Jet Propulsion Laboratory RO receivers on board COSMIC-2. Except that RO observations were simulated and assimilated as refractivities, the 2015 version of the NCEP’s operational data assimilation system was used to run the OSSEs. The OSSEs quantified the impact of RO observations on global weather analyses and forecasts and the impact of adding explicit errors to the simulation of perfect RO profiles.
    [Show full text]
  • Undersea Warfare
    THE EMERGING ERA IN UNDERSEA WARFARE BRYAN CLARK www.csbaonline.org 1 The Emerging Era in Undersea Warfare Introduction U.S. defense strategy depends in large part on America’s advantage in undersea warfare. Quiet submarines are one of the U.S. military’s most viable means of gathering intelligence and pro- jecting power in the face of mounting anti-access/area-denial (A2/AD) threats being fielded by a growing number of countries. As a result, undersea warfare is an important, if not essential, element of current and future U.S. operational plans. America’s rivals worry in particular about the access submarines provide for U.S. power-projection operations, which can help offset an enemy’s numerical or geographic advantages.1 Broadly speaking, undersea warfare is the employment of submarines and other undersea sys- tems in military operations within and from the underwater domain. These missions may be both offensive and defensive and include surveillance, insertion of Special Forces, and destroy- ing or neutralizing enemy military forces and undersea infrastructure. America’s superiority in undersea warfare is the product of decades of research and develop- ment (R&D), a sophisticated defense industrial base, operational experience, and high-fidelity training. This superiority, however, is far from assured. U.S. submarines are the world’s qui- etest, but new detection techniques are emerging that do not rely on the noise a submarine makes, and that may render traditional manned submarine operations far riskier in the future. America’s competitors are likely pursuing these technologies while also expanding their own undersea forces.
    [Show full text]
  • Radio Occultations Using Earth Satellites: a Wave Theory Treatment DEEP SPACE COMMUNICATIONS and NAVIGATION SERIES
    Radio Occultations Using Earth Satellites: A Wave Theory Treatment DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Previously Published Monographs in this Series 1. Radiometric Tracking Techniques for Deep-Space Navigation C. L. Thornton and J. S. Border 2. Formulation for Observed and Computed Values of Deep Space Network Data Types for Navigation Theodore D. Moyer 3. Bandwidth-Efficient Digital Modulation with Application to Deep-Space Communications Marvin K. Simon 4. Large Antennas of the Deep Space Network William A. Imbriale 5. Antenna Arraying techniques in the Deep Space Network David H. Rogstad, Alexander Mileant, and Timothy T. Pham Radio Occultations Using Earth Satellites: A Wave Theory Treatment William G. Melbourne Jet Propulsion Laboratory California Institute of Technology MONOGRAPH 6 DEEP SPACE COMMUNICATIONS AND NAVIGATION SERIES Radio Occultations Using Earth Satellites: A Wave Theory Treatment April 2004 The research described in this publication was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the United States Government or the Jet Propulsion Laboratory, California
    [Show full text]
  • An Introduction to GPS Radio Occultation and Its Use in NWP
    An introduction to GPS radio occultation and its use in NWP John Eyre Met Office, UK GRAS SAF Workshop on “Applications of GPS radio occultation measurements“; © Crown copyright 2007 ECMWF; 16-18 June 2008 An introduction to GPS radio occultation and its use in NWP • Radio occultation (RO) – introduction • Variational data assimilation – introduction • Assimilation options for RO data • Some issues for this Workshop © Crown copyright 2007 GPS – the source data The Global Positioning System (GPS) • multi-purpose - applications in positioning, navigation, surveying, … • nominal GPS network = 24 satellites • near polar orbit - height ~20000 km • allows high-accuracy positioning of low Earth orbiters (LEOs) • source of refracted radio signals for radio occultation © Crown copyright 2007 Geometry of a radio occultation measurement Tangent point Bending angle α LEO a GPS Impact parameter © Crown copyright 2007 An occultation sounded region receiver transmitter Earth atmosphere A sounding from 60 km to the surface takes ~60s © Crown copyright 2007 Atmospheric refraction: the physics Refractivity gradients caused by gradients in: • density (pressure and temperature) • water vapour • electron density • (liquid water) 2 2 N = κ1 p / T + κ2 e / T + κ3 ne / f + κ4 W “dry” “moist” ionosphere “scattering” N = refractivity = (n -1) x 106 n = refractive index p = pressure T = temperature e = water vapour pressure ne = electron density f = frequency W = liquid water density © Crown copyright 2007 From bending angle to density Impact parameter Bending angle LEO GPS L1: 1.575 GHz / 19.0 cm L2: 1.227 GHz / 24.4 cm 1(')∞ α a pe ln(na ( ))= da ' 6 ∫a 22 Nn=−×(1)10 =κκ12 + π aa' − T T 2 Refractive index Refractivity © Crown copyright 2007 Features of RO measurements • globally distributed • temperature in stratosphere and upper troposphere, and ..
    [Show full text]
  • Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven
    MODELING INFRARED AND COMBINATION INFRARED-MICROWAVE HEATING OF FOODS IN AN OVEN A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Marialuci Frangipani Almeida January 2005 °c Marialuci Frangipani Almeida 2005 ALL RIGHTS RESERVED MODELING INFRARED AND COMBINATION INFRARED-MICROWAVE HEATING OF FOODS IN AN OVEN Marialuci Frangipani Almeida, Ph.D. Cornell University 2005 A quantitative, model-based understanding of heat exchange in infrared and com- bined infrared-microwave heating of food inside an oven is developed. The research is divided into three parts: measurement of optical properties, radiative heat transfer analysis and combined microwave-radiative heat transfer analysis. Optical proper- ties of reflectance, absorptance and transmittance in a potato tissue are measured as a function of wavelength, using a spectroradiometer. Penetration of energy is higher for halogen lamps that emit in the near- and mid-infrared range, compared to ceramic rods that emit mostly in the far infrared range. Reflectance in the near infrared range increases with moisture content of the food, thus decreasing the en- ergy coupled. Surface structure has signi¯cant influence on the optical properties. A 3-D radiative heat exchange model of an oven-food system is developed using a commercial ¯nite-element package. The air in the oven is assumed transparent to the radiation. Heat conduction is assumed in the entire oven (food and air) for the short duration. The wavelength dependence of emissivity (non-gray surface) is found to signi¯cantly a®ect the surface radiative flux and the use of a non-gray model is recommended for such materials, although simpli¯cation of the emissiv- ity variation is required to keep the computation time reasonable.
    [Show full text]
  • An Investigation of GNSS Radio Occultation Atmospheric Sounding
    An Investigation of GNSS Radio Occultation Atmospheric Sounding Technique for Australian Meteorology A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Erjiang Fu B.S. School of Mathematical and Geospatial Sciences College of Science, Engineering and Health RMIT University August 2011 I (This page intentionally left blank) II Declaration I certify that except where due acknowledgement has been made, the work is that of the author alone; the work has not been submitted previously, in whole or in part, to qualify for any other academic award; the content of the thesis is the result of work which has been carried out since the official commencement date of the approved research program; any editorial work, paid or unpaid, carried out by a third party is acknowledged; and, ethics procedures and guidelines have been followed. Erjiang Fu I (This page intentionally left blank) II Acknowledgements First of all, I would like to thank my supervisors: Professor Kefei Zhang, Dr David Silcock and Dr Yuriy Kuleshov. This thesis would not have been possible without their inspiration, guidance, support and encouragement in the past four years. Especially, my main supervisor Professor Zhang, also one of my close friends, who opened the door of a scientific career for me. During the research journey, it was my greatest honour to work with many respectable scientists and researchers. Sincere thanks go to Professor Yuei-An Liou, Professor Alexander Pavelyev, Dr Xiaolan Wang, Dr Kaye Marion, Dr Suqin Wu, Dr Chuan-Sheng Wang, Dr Robert Norman, Dr Gang-Jun Liu, Dr Falin Wu, Dr Xiaohua Xu, Dr Sue Choy, Dr Xinjia Zhou, Dr Yan Wang, Dr Dongju Peng, Dr Ming Zhu, Mr Bobby Wong, Mr Toby Manning, Miss Ying Li, Ms Jing Peng, Mr Stuart Whitman, Mr Alex Chen, Miss Gap Vimvipa, and others.
    [Show full text]
  • Infrared Photography
    - 1 -De Broux et al Scott T. De Broux Katherine Kay McCaul Sheri Shimamoto January 29, 2007 Infrared Photography Physical evidence documentation through forensic photography remains one the most important aspects of crime scene investigation. Subsequent analysis of photographs will often yield clues investigators can use to reconstruct the events of an incident, or may provide the proof necessary to gain a conviction at trial. Traditional photography records images in the visible light spectrum, and typically will record on film or in a digital file that which the human eye can see. Forensic photographers are often challenged with evidence where traditional photographic techniques are unsuccessful at documenting the evidence necessary to reconcile the facts of a particular case. For years forensic photographers have had a variety of specialized techniques available for documenting evidence under challenging situations. Infrared photography can be used in a variety of these situations to gain result that could not be obtained by photographing in the visible light spectrum. Infrared techniques can be applied in the field or in a laboratory environment. In some instances the only opportunity to document the evidence is in the field at the crime scene. Until recently the only available option to the forensic photographer involved infrared techniques that used conventional film sensitive to wave lengths of light in the infrared range of the electromagnetic spectrum. Complicated workflow often made this technique difficult and expensive to utilize, and lead to underutilization of the technique. Advances in technology have now made digital imaging options available to the forensic photographer for performing infrared photography in both a field or laboratory environment.
    [Show full text]