Understanding Color-Infrared Photographs

Total Page:16

File Type:pdf, Size:1020Kb

Understanding Color-Infrared Photographs Understanding Color-Infrared Photographs Images obtained by satellites and high- apart and are analogous to light wave- altitude aircraft give engineers and scien- lenths and how closely they are spaced. tists a tool to study landforms, vegetation health patterns, environmental pollution, Other parts of the spectrumCsuch as the and other effects of human activities on invisible near-infrared wavelengthsCcan the planet’s surface. be recorded by either electronic sensors or special photographic films sensitive to Satellites and high-altitude aircraft these wavelengths. These sensors and equipped to record scenes of the Earth use films record the energy reflected by the both visible and invisible parts of the ground and the Sun’s spectral energy. The electromagnetic spectrum. Near-infrared color-infrared film images referred to in light is invisible to the human eye, but this fact sheet should not be confused adding it to these images allows scientists with electronic thermography (thermal to “see” the surface of the Earth in other recordings), a process in which long-wave than natural colors. The result is “color- or “far-infrared” radiation is electronically infrared” photography. detected and subsequently displayed at visible wavelengths. Near-infrared and The electromagnetic spectrum is the sci- visible wavelengths that are simultaneous- entific term for the collective types of ly recorded combine to provide a unique light and energy emitted from the Sun. view of the Earth’s vegetation and other NASA color-infrared photograph--New Orleans, La The part of the spectrum visible to the features of the planet’s surface. human eye is the normal rainbow of col- infrared film. Unhealthy or dormant vege- ors we see every day. Passing sunlight This unique aerial view, created by a tation may appear light red or a light shining through a prism separates white combination of wavelengths, gives scien- shade of blue-green (cyan), depending on light into individual colors, just as sun- tists a means to better understand what is the plant’s degree of good health. These light through raindrops creates a rainbow. happening on the Earth’s surface. For color distinctions make color-infrared More technically, a prism divides light example, leaves of healthy, growing vege- photographs useful in assessing the health into its component wavelengths. Ripples tation reflect a high level of near-infrared of plants. Water, on the other hand, on a lake can be close together or far wavelengths and appear red on color- absorbs near-infrared wavelengths and appears black in the image. Water with varying amounts of suspended particles appears as shades of blue. Also, near- infrared wavelengths penetrate atmos- pheric haze and result in clear, crisp images. This is an important consideration when collecting satellite images and high- altitude aerial photographs. Satellite electronic sensors and aerial color-infrared films both record visible and near-infrared wavelengths, but each of these systems requires different labora- tory processes. Here is how they work. Color-Infrared Photographs Both standard-color and color-infrared films are manufactured to have three dis- tinct layers, or emulsions. Each layer is Color photograph--near Burlington, Vt Color-infrared photograph--same area US Department of the Interior USGS Fact Sheet 129-01 US Geological Survey December 2001 sensitive to different wavelengths or ener- How to Find More Information gy. Standard-color film emulsions normal- ly record the visible wavelengths as red, For information about ordering color- green, and blue. After the picture has been infrared composites or color-infrared aeri- taken, chemical processing of the film al photographs, please contact any Earth generates cyan, magenta, and yellow dyes Science Informatioon Center, or call proportional to the amount of exposure 1-888-ASK-USGS. given each layer. Color pictures result when the human eye views the varying More information on color-infrared tech- combinations of the three dye layers. nology is available from many libraries. Color-infrared film has a yellow filter over the three emulsion layers to block Among the many books exploring this untraviolet (UV) and blue wavelengths. subject are the following: Processing color-infrared film after expo- M.M. Thompson’s Maps for America, sure produces yellow, magenta, and cyan U.S. Geological Survey (Government dyes. The near-infrared wavelengths and Printing Office, Washington, D.C., 1987), the lack of UV and blue wavelengths and Robert K. Holtz’s The Surveillant Landsat color-infrared composite--San Franscisco, Calif result in a clear, crisp color-infrared Science: Remote Sensing of the image. Green, healthy vegetation has a Environment (John Wiley and Sons, high reflection level of near-infrared 1985). For more technical information, wavelengths and appears red on the you could consult the Manual of Remote processed film; red objects with very low Sensing, published by the American near-infrared reflection appear green; Society of Photogrammetry and Remote green objects with very low near-infrared Sensing, 5410 Grosvenor Lane, Bethesda, reflection appear blue; and blue objects MD 20814-2160. with very low near-infrared reflection appear black. For information on other USGS products and services, call 1-888-ASK-USGS, use The Federal Government has color- the Ask.USGS fax service, which is avail- infrared photographic coverage of the able 24 hours a day at 703-648-4888, or entire United States from a high altitude visit the general interest publications Web (40,000 feet) and is obtaining similar cov- site on mapping, geography, and related erage at a lower altitude (20,000 feet) for topics at mac.usgs.gov/mac/isb/pubs/ many States. pubslists/. Color-Infrared Composite Images For additional information, visit the ask.usgs.gov Web site or the USGS home Another type of color-infrared image is page at www.usgs.gov. NASA color-infrared photograph--San Diego, Calif the color-infrared composite of multispec- tral data collected by electronic sensors on satellites such as Landsat. These sen- sors record the light levels of Earth's reflected energy (from blue/green wave- lengths through infrared wavelengths) and transmit these data in digital format to the ground in sets of four or seven wave- length-dependent bands for each typical Landsat scene. On the ground, the digital image data may be converted to hardcopy images similar in appearance to conven- tional color-infrared photographs. Computerized image-recording devices process the bands of green, red, and near- infrared digital data, exposing conven- tional color film or paper with blue, green, and red light, respectively. In the resulting image, growing healthy vegeta- tion appears red, clear water appears black, sediment-laden water appears light Landsat color-infrared composite--Williams, Calif, blue, and urban areas appear blue-gray. quadrangle.
Recommended publications
  • Quack Summer 2016
    Summer 2016 - Vol. 15, Issue 3 All contents © 2016 E.J. Peiker Welcome to the quarterly newsletter from E.J. Peiker, Nature Photographer and www.EJPhoto.com . In this quarterly publication, I share with fellow photographers my photographic experiences, photo equipment reviews, photo and processing tips, and industry news. I also inform subscribers about upcoming workshops and products that I offer. Please feel free to forward this to other photographers and interested parties but please do so only by forwarding this newsletter in its entirety. All content is copyrighted by E.J. Peiker and may not be reproduced. If you would like to be added to the mailing list, unsubscribe, or access back issues, please visit: www.ejphoto.com/newsletter.htm Playa de Gueirua - Asturias, Spain (Sony a7R II, 35mm) Three Kits for Three Types of Photography One of the most common questions that people ask me is what gear I shoot with or for recommendations on what gear to take on different photographic expeditions. While the answer to this is very individual and the right set—up varies from person to person, I can tell you what I have chosen for the time being. Wildlife and Birds: I continue to use the Nikon crop sensor DX bodies for this type of photography coupled with either the Sigma 150-600mm Sport lens, the Nikon 500mm f/4VR lens or the Nikon 80-400 lens. The 500mm lens is often coupled with the latest Nikon 1.4x teleconverter to achieve a focal length of 700mm. When combining this with the 1.5x crop of the D7200 or the new D500 camera, the effective reach is sufficient for almost any subject.
    [Show full text]
  • Radiant Heating with Infrared
    W A T L O W RADIANT HEATING WITH INFRARED A TECHNICAL GUIDE TO UNDERSTANDING AND APPLYING INFRARED HEATERS Bleed Contents Topic Page The Advantages of Radiant Heat . 1 The Theory of Radiant Heat Transfer . 2 Problem Solving . 14 Controlling Radiant Heaters . 25 Tips On Oven Design . 29 Watlow RAYMAX® Heater Specifications . 34 The purpose of this technical guide is to assist customers in their oven design process, not to put Watlow in the position of designing (and guaranteeing) radiant ovens. The final responsibility for an oven design must remain with the equipment builder. This technical guide will provide you with an understanding of infrared radiant heating theory and application principles. It also contains examples and formulas used in determining specifications for a radiant heating application. To further understand electric heating principles, thermal system dynamics, infrared temperature sensing, temperature control and power control, the following information is also available from Watlow: • Watlow Product Catalog • Watlow Application Guide • Watlow Infrared Technical Guide to Understanding and Applying Infrared Temperature Sensors • Infrared Technical Letter #5-Emissivity Table • Radiant Technical Letter #11-Energy Uniformity of a Radiant Panel © Watlow Electric Manufacturing Company, 1997 The Advantages of Radiant Heat Electric radiant heat has many benefits over the alternative heating methods of conduction and convection: • Non-Contact Heating Radiant heaters have the ability to heat a product without physically contacting it. This can be advantageous when the product must be heated while in motion or when physical contact would contaminate or mar the product’s surface finish. • Fast Response Low thermal inertia of an infrared radiation heating system eliminates the need for long pre-heat cycles.
    [Show full text]
  • Understanding Infrared Light
    TEACHER/PARENT ACTIVITY MANUAL Joint Polar Satellite System Understanding Infrared Light This activity educates students about the electromagnetic spectrum, or different forms of light detected by Earth observing satellites. The Joint Polar Satellite System (JPSS), a collaborative effort between NOAA and NASA, detects various wavelengths of the electromagnetic spectrum including infrared light to measure the temperature of Earth’s surface, oceans, and atmosphere. The data from these measurements provide the nation with accurate weather forecasts, hurricane warnings, wildfire locations, and much more! Provided is a list of materials that can be purchased to complete several learning activities, including simulating infrared light by constructing homemade infrared goggles. Learning Objectives Next Generation Science Standards (Grades 5–8) Performance Disciplinary Description Expectation Core Ideas 4-PS4-1 PS4.A: • Waves, which are regular patterns of motion, can be made in water Waves and Their Wave Properties by disturbing the surface. When waves move across the surface of Applications in deep water, the water goes up and down in place; there is no net Technologies for motion in the direction of the wave except when the water meets a Information Transfer beach. (Note: This grade band endpoint was moved from K–2.) • Waves of the same type can differ in amplitude (height of the wave) and wavelength (spacing between wave peaks). 4-PS4-2 PS4.B: An object can be seen when light reflected from its surface enters the Waves and Their Electromagnetic eyes. Applications in Radiation Technologies for Information Transfer 4-PS3-2 PS3.B: Light also transfers energy from place to place.
    [Show full text]
  • Infrared-Photography-Part-1-SM.Pdf
    Infrared Photography John Caplis & Joyce Harman Harmany in Nature www.harmanyinnature.com www.savingdarkskies.com Why do infrared photography? Infrared photography offers many unique creative choices you can explore in image making • Excellent monochrome images • Sunlit foliage turns white • Blue skies appear very dark • False color can be applied for dream like scenes • Skin tones are ghostly white • Can be shot in the harsh light in the middle of the day A human eye can see light from 400nm to 700nm on the electromagnetic spectrum. This range is called ‘visible light’. IR photography uses “near infrared light” which is in the range of 700nm-1400nm. These wavelengths are longer than visible light and can’t be seen by humans. How IR filters work There are two types of infrared filters, ones that block IR light while passing visible light and ones that block visible light while passing infrared light. The IR blocking filters are used in stock digital cameras to prevent unwanted IR light from reaching the sensor, which is sensitive to near infrared. In infrared photography we want the opposite, to block most or all visible light and only pass infrared light. Two ways to do IR photography – Stock vs IR-Converted Cameras Stock Camera with Converted Camera with Screw-on external IR filter Internal IR filter • Dim or no preview image • No screw on filter required • No autofocus • Normally bright preview image • Exposure metering can be difficult • Autofocus using live view • High ISOs & long exposures • Exposure metering can be difficult • Requires tripod • Low ISOs • Tripod not always required Camera conversions • Life Pixel https://www.lifepixel.com • Kolari Vision https://kolarivision.com Using Stock Cameras for IR Photography Stock digital cameras have a limited range of sensitivity to infrared light.
    [Show full text]
  • Digital Infrared Photography by Vega Buchbinder
    Digital Infrared Photography By Vega Buchbinder The advent of digital cameras has made infrared photography relatively easily accessible. No longer does one need to handle and process infrared film in the dark under stringent conditions. In the days of film photography Kodak’s film HIE High Speed Infrared Film was the première infrared film, noted for its extensive range. Kodak has stopped making this film in 2007. Today, with a digital camera, an infrared filter, and a tripod, anyone can explore the near infrared spectrum photographically with ease and repeatable results. Using digital infrared (IR) photography one can produce fascinating images that can look surreal, or of an alternate reality. In addition one can use many variations in image rendering, ranging from black and white, to false colors, in order to create artistic images. What is infrared photography? What makes digital infrared photography possible is that the silicon sensors used in digital cameras can “see” into the infrared range of the electromagnetic spectrum. From short wavelengths to longer wavelengths, the electromagnetic spectrum is made of gamma rays, X- rays, ultraviolet rays, visible light, infrared rays, radar, FM radio, TV, and AM radio. The human eye is sensitive to wavelengths from approximately 400 to 700 nanometers (nm), which is the wavelength range for visible light. The CCD and CMOS sensors in digital cameras can easily “see” further into the infrared region to about 1050 nm, which makes IR photography with a digital camera possible today. Note that this part of the IR range is called the near infrared. Thermal infrared rays are much longer, and are not detectible by the CCD or CMOS sensors in our digital cameras.
    [Show full text]
  • Multidisciplinary Design Project Engineering Dictionary Version 0.0.2
    Multidisciplinary Design Project Engineering Dictionary Version 0.0.2 February 15, 2006 . DRAFT Cambridge-MIT Institute Multidisciplinary Design Project This Dictionary/Glossary of Engineering terms has been compiled to compliment the work developed as part of the Multi-disciplinary Design Project (MDP), which is a programme to develop teaching material and kits to aid the running of mechtronics projects in Universities and Schools. The project is being carried out with support from the Cambridge-MIT Institute undergraduate teaching programe. For more information about the project please visit the MDP website at http://www-mdp.eng.cam.ac.uk or contact Dr. Peter Long Prof. Alex Slocum Cambridge University Engineering Department Massachusetts Institute of Technology Trumpington Street, 77 Massachusetts Ave. Cambridge. Cambridge MA 02139-4307 CB2 1PZ. USA e-mail: [email protected] e-mail: [email protected] tel: +44 (0) 1223 332779 tel: +1 617 253 0012 For information about the CMI initiative please see Cambridge-MIT Institute website :- http://www.cambridge-mit.org CMI CMI, University of Cambridge Massachusetts Institute of Technology 10 Miller’s Yard, 77 Massachusetts Ave. Mill Lane, Cambridge MA 02139-4307 Cambridge. CB2 1RQ. USA tel: +44 (0) 1223 327207 tel. +1 617 253 7732 fax: +44 (0) 1223 765891 fax. +1 617 258 8539 . DRAFT 2 CMI-MDP Programme 1 Introduction This dictionary/glossary has not been developed as a definative work but as a useful reference book for engi- neering students to search when looking for the meaning of a word/phrase. It has been compiled from a number of existing glossaries together with a number of local additions.
    [Show full text]
  • Undersea Warfare
    THE EMERGING ERA IN UNDERSEA WARFARE BRYAN CLARK www.csbaonline.org 1 The Emerging Era in Undersea Warfare Introduction U.S. defense strategy depends in large part on America’s advantage in undersea warfare. Quiet submarines are one of the U.S. military’s most viable means of gathering intelligence and pro- jecting power in the face of mounting anti-access/area-denial (A2/AD) threats being fielded by a growing number of countries. As a result, undersea warfare is an important, if not essential, element of current and future U.S. operational plans. America’s rivals worry in particular about the access submarines provide for U.S. power-projection operations, which can help offset an enemy’s numerical or geographic advantages.1 Broadly speaking, undersea warfare is the employment of submarines and other undersea sys- tems in military operations within and from the underwater domain. These missions may be both offensive and defensive and include surveillance, insertion of Special Forces, and destroy- ing or neutralizing enemy military forces and undersea infrastructure. America’s superiority in undersea warfare is the product of decades of research and develop- ment (R&D), a sophisticated defense industrial base, operational experience, and high-fidelity training. This superiority, however, is far from assured. U.S. submarines are the world’s qui- etest, but new detection techniques are emerging that do not rely on the noise a submarine makes, and that may render traditional manned submarine operations far riskier in the future. America’s competitors are likely pursuing these technologies while also expanding their own undersea forces.
    [Show full text]
  • Infrared Photography My Journey Beyond Visible Light by Kathleen Reed Here’S What We’Ll Cover Tonight
    Infrared Photography My Journey Beyond Visible Light by Kathleen Reed Here’s What We’ll Cover Tonight: What is Infrared Photography How Does IR Work? IR Filters Converting Digital Cameras How to Shoot IR What to Shoot in IR Processing IR Images Inspiring IR Photographers My Best IR Shots What is Infrared Photography? Explore a New World of Possibilities Our eyes cannot see IR light Process is created by using an infrared-passing filter which only lets IR light pass through the camera and blocks all or most of the visible light spectrum Allows us to see a world that can often look very different from that we are accustomed to seeing Reflected IR light produces a fascinating array of surreal effects Infrared photos are breath-taking and artistic Have a mystical feel to them Stunning “snow” or “wood” effect Amazing “false colors” Dream-like feel to them How Does IR Work? Electro-Magnetic Spectrum Invisible Light vs. Infrared Light Infrared photography cerates unique images capable of portraying things not normally visible to the human eye. IR Photography Options 1. Use a film camera and an infrared film stock such as Kodak HIE. 2. Use a circular IR Filter to block visible light from hitting your DSLR's sensor only allowing a small amount of infrared rays through. 3. Use a dedicated infrared camera. IR Filters Blocks Visible Light Filter Options • Screw onto lens • Hoya or Cokin • $100 • R72 is most common • Square filters can risk light leaks • Avoid expense and purchase stepping ring Black and White Photo with Visible Light
    [Show full text]
  • TIPS for SPRING MACRO PHOTOGRAPHY Tamron Pros Talk About Their Adventures in Capturing the Amazing World of 1:1 Macro Photography
    Spring 2018 · MAGAZINE Issue 2 TIPS FOR SPRING MACRO PHOTOGRAPHY Tamron Pros talk about their adventures in capturing the amazing world of 1:1 macro photography. Cover image by Monica Royal with the Tamron SP 90mm F/2.8 Di VC USD Macro 1:1 NEW ULTRA-TELE 100-400mm A WINDOW TO ANOTHER WORLD Heavyweight performance in a lightweight Meet TJ Drysdale and fall in love with his Ultra-Tele Zoom otherworldly landscapes ©Kristofer Rowe Focal Length: 340mm Exposure: F/6.3 1/2000sec ISO: 800 WELCOME © KIM YOUNG © KIM CONTENTS 6 NEWS 70-210mm F/4, 28-75mm F/2.8 full frame E-Mount 8 TAMRON TOURS PRESENTS Get the scoop on our new workshop series for 2018 10 PRACTICE SPECIAL: MACRO PHOTOGRAPHY Pros share their tips for creating beautiful close-up images 16 TOP FEATURES Get to know the new 100-400mm VC 18 EXCURSION RC Concepcion takes us on a tour of Dubai’s iconic cityscape 22 IN ACTION Cecil Holmes photographs horses and more in the Grand Tetons 28 HOW TO: KIDS’ PHOTOS Marcie Reif discusses her top tips for capturing traditional and candid portraits 30 INTERVIEW Meet TJ Drysdale and fall in love with his otherworldly landscapes 34 PRACTICE: INFRARED Tips for capturing IR images in the digital age with Russell Hart Dear Readers, 36 PRACTICE: POSING & LIGHTING We want to thank everyone who read through our first issue last Image Master Erik Valind shares how he creates impactful environmental November and gave us your valuable feedback. Please continue to portraits let us know how we are doing by posting on Instagram or Twitter 40 MY PROJECT You’re never too far from a great close-up.
    [Show full text]
  • Modeling Infrared and Combination Infrared-Microwave Heating of Foods in an Oven
    MODELING INFRARED AND COMBINATION INFRARED-MICROWAVE HEATING OF FOODS IN AN OVEN A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Ful¯llment of the Requirements for the Degree of Doctor of Philosophy by Marialuci Frangipani Almeida January 2005 °c Marialuci Frangipani Almeida 2005 ALL RIGHTS RESERVED MODELING INFRARED AND COMBINATION INFRARED-MICROWAVE HEATING OF FOODS IN AN OVEN Marialuci Frangipani Almeida, Ph.D. Cornell University 2005 A quantitative, model-based understanding of heat exchange in infrared and com- bined infrared-microwave heating of food inside an oven is developed. The research is divided into three parts: measurement of optical properties, radiative heat transfer analysis and combined microwave-radiative heat transfer analysis. Optical proper- ties of reflectance, absorptance and transmittance in a potato tissue are measured as a function of wavelength, using a spectroradiometer. Penetration of energy is higher for halogen lamps that emit in the near- and mid-infrared range, compared to ceramic rods that emit mostly in the far infrared range. Reflectance in the near infrared range increases with moisture content of the food, thus decreasing the en- ergy coupled. Surface structure has signi¯cant influence on the optical properties. A 3-D radiative heat exchange model of an oven-food system is developed using a commercial ¯nite-element package. The air in the oven is assumed transparent to the radiation. Heat conduction is assumed in the entire oven (food and air) for the short duration. The wavelength dependence of emissivity (non-gray surface) is found to signi¯cantly a®ect the surface radiative flux and the use of a non-gray model is recommended for such materials, although simpli¯cation of the emissiv- ity variation is required to keep the computation time reasonable.
    [Show full text]
  • KODAK High Speed Infrared Film
    TECHNICAL DATA / BLACK-AND-WHITE FILM June 2000 • F-13 KODAK High Speed Infrared Film —NOTICE— SIZES AVAILABLE Discontinuance of Sheet Format Rolls KODAK Speed Infrared Film / HSI / 4143 Due to declining usage and demand, sheet sizes of KODAK Roll Base Letter Code CAT No. High Speed Infrared Film / HSI will be discontinued when 4-mil 135-36 HIE 169 2086 current supplies run out. We anticipate this will occur near ESTAR the end of 2000. Items to be discontinued are: Size Spec Letter Base CAT No. CAT No. Film Code Size (inches) mm x ft Code Code 171 3015 4143 25 sheet 4 x 5 4-mil 35 x 150 417 HIE 160 4149 171 3056 4143 25 sheet 8 x 10 ESTAR Note: KODAK High Speed Infrared Film will continue Sheets to be available in 35 mm format. Sheets KODAK High Speed Infrared Film is a high-speed film with Size Letter per Film Code Base CAT No. (inches) Code moderately high contrast, sensitive to light and radiant Package energy to 900 nanometres (nm) in wavelength. It is useful for haze penetration and for special effects in commercial, 7-mil architectural, fine art, and landscape photography. With 25 4 x 5 ESTAR HSI 171 3015 Thick development variations, you can use this film for scientific, medical, aerial photography, and document copying. You can also use it for photomicrography, photomechanical, and STORAGE AND HANDLING remote-sensing applications. Infrared films are sensitive to infrared radiation, some Handle this film only in total darkness. Test your camera, ultraviolet radiation, and to all wavelengths of visible film holders, processing equipment, and darkroom to ensure radiation (light).
    [Show full text]
  • Infrared with Mirrorless Cameras
    Digital Infrared Photography And Mirrorless Cameras by Steve Zimic A Primer on Infrared Light Much of photography these days is about making images that portray subjects differently than the way we see them with our eyes. A heavily processed High Dynamic Range image is a prime example. Another is astrophotography, which allows us to see images of distant galaxies in glorious colors that the human eye could never see. Forensic photographers photograph crime scenes and artwork using infrared and ultraviolet light to reveal hidden details. All of this gives new meaning to the expression "seeing things in a different light". Infrared photography is perhaps the easiest and most dramatic of those mentioned above. The two images below show how a normal scene is transformed into something quite unique when photographed primarily with Infrared (IR) light. Foliage becomes much brighter while the water, sky and structure become considerably darker. So exactly what's going on that creates this unusual effect? Let's start off with the prefix 'infra' which means 'below'. The color red is at the very bottom edge of the visible spectrum of light, therefore infrared light is below or not visible, to us humans at least. Looking at the chart below, you can see that the infrared range of light is huge compared to the visible spectrum, but ordinary digital cameras can only see a small portion of that range, appropriately named 'near infrared' implying it's near the visible red light. The goal of infrared photography is to capture an image that's comprised primarily of that near infrared light.
    [Show full text]