Reproductive Implications of Parasitic Infections and Immune Challenges in Garter Snakes

Total Page:16

File Type:pdf, Size:1020Kb

Reproductive Implications of Parasitic Infections and Immune Challenges in Garter Snakes AN ABSTRACT OF THE DISSERTATION OF Emily J. Uhrig for the degree of Doctor of Philosophy in Zoology presented on April 21, 2015. Title: Reproductive Implications of Parasitic Infections and Immune Challenges in Garter Snakes Abstract approved: ______________________________________________________ Robert T. Mason Parasitic infections and immune challenges can affect host reproductive fitness and, ultimately, the evolution of host populations in a myriad of ways. The fitness implications of parasitic infections range from increased host mortality to subtle changes in reproductive investment. From alterations of behaviors, sexual signaling, and competitive ability to changes in gamete production and fertilization success, it is clear that parasites are capable of mediating sexual selection and influencing host reproductive fitness even without altering mortality. The mechanisms underlying fitness effects highlight the complexity of the host-parasite relationship which involves immune responses as well as a range of other, often interactive, physiological processes within the host. In some instances, it is not the direct effect of parasites per se, but rather the hosts’ responses to infection that mediate fitness consequences. This dissertation presents studies designed to elucidate the implications of parasitism and immune responses for the reproductive fitness of garter snakes (genus Thamnophis). In chapter 2, “Alaria mesocercariae in the tails of red-sided garter snakes: evidence for parasite-mediated caudectomy”, I focus on the histopathological changes associated with a trematode (Alaria sp.) infecting the tails of red-sided garter snakes (T. sirtalis parietalis). My results demonstrate that Alaria mesocercariae occur in high density within the tail tissue of both male and female snakes with as many as 2,000 mesocercariae in a single tail; infection prevalence was 100% in the snakes I examined. I found no evidence of intersexual variation in pathological changes or infection densities. For both sexes, external pathological manifestations include swelling of the tail while, internally, the aggregation of mesocercariae leads to the formation of mucus-filled pseudocysts and damage of muscle tissue. In severe cases, the extent of tissue destruction appeared to weaken the connection of the tail to the rest of the body, a condition that would facilitate tail breakage, which in turn negatively affects the snake’s fitness by impairing mating success. From the parasite’s perspective, tail breakage is likely beneficial by facilitating its transmission to subsequent hosts in its life cycle. Alaria sp. are not the only parasites commonly infecting garter snakes and in chapter 3, “Patterns in parasitism: interspecific and interpopulational variation in helminth assemblages and their reproductive fitness correlates in garter snakes”, I broaden our investigation to include a suite of helminth parasites common in the garter snakes of Manitoba, Canada. My results demonstrate that helminth assemblages of two garter snake species (red-sided garter snakes, T. sirtalis parietalis, and plains garter snakes, T. radix) include Lechriorchis trematodes and Rhabdias nematodes in the lung, Alaria mesocercariae in the tail, and diplostomid trematode metacercariae in the visceral fat; red-sided garter snakes also had gastrointestinal cestodes. Helminth assemblages varied, mainly in terms of parasite density, among populations of red-sided garter snakes and between red-sided and plains garter snakes, but it is unclear whether this variation is due simply to diet-based differences in parasite exposure or whether variation in parasite resistance may have a role. Notably, for plains garter snakes and one red-sided garter snake population I found helminth densities to be predictive of male fitness correlates, namely body condition, testes mass, and sperm counts. Thus, parasitism in garter snakes clearly has important implications for reproductive fitness beyond just influencing tail loss. These results highlight the importance of considering more than a single parasite or single fitness correlate when exploring host-parasite relationships. The consequences of parasitic infections may arise simply through the activation of the host’s immune system rather than the presence of parasites. Thus, in chapter 4, “Changes in reproductive investment and hormone levels in response to an acute immune challenge”, I use lipopolysaccharide (LPS) to assess immune-reproductive tradeoffs of male red-sided garter snakes during the breeding season. As LPS is non-pathogenic, I was able to assess the fitness implications of the immune activation itself. My results showed that males depress courtship behaviors and mating success when faced with a single acute immune challenge. For LPS-treated males that did mate, copulatory plug mass was significantly lower compared to controls, while sperm counts did not differ between treatments. This result likely reflects the dissociated breeding pattern of these snakes as spermatogenesis occurs outside the breeding season and, thus, sperm stores were already in place prior to the immune challenge whereas plug material is produced during the breeding season. Further, the LPS treatment was correlated with increased plasma levels of corticosterone, which were 1.8 times higher in LPS-treated males compared to controls, and decreased levels of androgens, which, in LPS-treated males, were only one third as high as androgen levels in control males. Thus, the observed immune-reproduction tradeoff appeared to be hormonally-mediated. Indeed, the low breeding season androgen levels characteristic of this dissociated breeder may have relaxed testosterone-mediated immunosuppression and so facilitate immune-induced suppression of reproductive behaviors. The results of this study highlight the influence of host life history on the consequences of immune activation and also emphasize the complex interactions between the immune, reproductive and endocrine systems. In chapter 5, “Implications of repeated immune challenges in a capital breeder with prolonged hibernation”, I again utilized LPS as a means of investigating the implications of immune activation. In this study, I administered a series of LPS injections to male and mated female snakes throughout the summer feeding season, and, for males, into the autumn. Females give birth during the summer and males undergo testicular recrudescence and spermatogenesis during summer and into autumn so these seasons represent important reproductive periods for red-sided garter snakes. Also, as capital breeders, it is during the summer feeding season that snakes of both sexes accumulate the resources upon which they will rely throughout hibernation and the subsequent breeding season. For the most part, my results did not demonstrate clear immune-reproductive tradeoffs. It appears that the absence of tradeoffs may be due to immune-challenged males and gravid female compensating for the immune challenge and maintaining reproductive processes by increasing their food intake, which was not limited during the study. Indeed, LPS-treated gravid females actually had more offspring per litter compared to gravid control females, suggesting that the immune challenge led to greater investment in offspring. In contrast to gravid females, non-gravid females treated with LPS exhibited reduced food intake which may reflect a survival strategy as anorexia during infections tends to be beneficial for survival. Interestingly, the increased food consumption of males did not translate into greater fat stores, but rather higher liver masses which may be indicative of immunopathological changes which should be explored in future studies. ©Copyright by Emily J. Uhrig April 21, 2015 All Rights Reserved Reproductive Implications of Parasitic Infections and Immune Challenges in Garter Snakes by Emily J. Uhrig A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented April 21, 2015 Commencement June 2015 Doctor of Philosophy dissertation of Emily J. Uhrig presented on April 21, 2015 APPROVED: Major Professor, representing Zoology Chair of the Department of Integrative Biology Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Emily J. Uhrig, Author ACKNOWLEDGEMENTS To my mom and dad, and Uncle Donald for enduring support and encouragement of a waterdog girl. CONTRIBUTION OF AUTHORS For Chapter 2: E. J. Uhrig developed the initial study design, collected and preserved all tissue samples, conducted non-histological lab work, conducted all statistical analyses, and wrote the majority of the manuscript. S. T. Spagnoli prepared histological slides and histology images, contributed to the corresponding methods section and provided histopathological descriptions for the results. M. L. Kent assisted with study design and R. T. Mason assisted with animal collection. For Chapters 3, 4, and 5: E.J. Uhrig designed the studies, performed dissections, collected data and processed sperm samples, conducted all statistical analyses and wrote the manuscript. C.R. Friesen and L. A. Blakemore assisted with data collection. R. T. Mason assisted with animal collection. For chapter 4, D. I. Lutterschmidt collected blood samples and conducted radioimmunoassays. TABLE OF CONTENTS Page CHAPTER1: GENERAL
Recommended publications
  • The Plains Garter Snake, Thamnophis Radix, in Ohio
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 6-30-1945 The Plains Garter Snake, Thamnophis radix, in Ohio Roger Conant Zoological Society of Philadelphia Edward S. Thomas Ohio State Museum Robert L. Rausch University of Washington, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Conant, Roger; Thomas, Edward S.; and Rausch, Robert L., "The Plains Garter Snake, Thamnophis radix, in Ohio" (1945). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 378. https://digitalcommons.unl.edu/parasitologyfacpubs/378 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Faculty Publications from the Harold W. Manter Laboratory of Parasitology by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 1945, NO.2 COPEIA June 30 The Plains Garter Snake, Thamnophis radix, in Ohio By ROGER CONANT, EDWARD S. THOMAS, and ROBERT L. RAUSCH HE announcement that Thamnophis radix, the plains garter snake, oc­ T curs in Ohio and is not rare in at least one county, will surprise most herpetologists and students of animal distribution. Since the publication of Ruthven's monograph on the genus (1908), almost all authors have followed his definition of the range of this species, giving eastern Illinois as its eastern­ most limit. Ruthven (po 80), however, believed that radix very probably would be found in western Indiana, a supposition since substantiated by Schmidt and Necker (1935: 72), who report the species from the dune region of Lake and Porter counties.
    [Show full text]
  • Body Condition of a Puerto Rican Anole
    SHORTER COMMUNICATIONS 489 Journal Vol. No. 489-491,2000 of Herpetology, 34, 3, pp. study site and details of its natural are in Rea- Copyright2000 Societyfor the Study of Amphibiansand Reptiles history gan and Wade (1996). Anolis gundlachi lizards are com- mon at the site, perching on trees and large logs with- in of Condition of a Puerto Rican reach human observers. Anoles were captured Body along trails within a 36 ha plot with a slip noose at- Anole, Anolis gundlachi:Effect of a tached to a pole or by hand during five periods: July Malaria Parasite and Weather Variation 1996, July 1997, January 1998, May 1998, and March 1999. Only males with an intact tail were used for this Jos. J. SCHALLAND ANJA R. PEARSON,Department of study because the mass of females would vary with Biology, University of Vermont, Burlington, Vermont reproductive condition, and animals with broken or 05405, USA. E-mail: [email protected] regenerated tails would have a body mass atypical for their SVL. Each lizard was maintained in a mesh sack until Over 70 of malaria Plasmodium species parasites, when a blood smear was made from a lizards as their vertebrate hosts evening drop spp., exploit through- of blood extracted from a SVL out the warmer of the world clipped toe, measured, regions (Schall, 1996). and mass taken with a Pesola cali- Detailed information on the of infection is body spring scale impact brated an balance. known for a few Plasmodium-lizard associations: against electronic The next morn- only all lizards were released at their of P mexicanum and Sceloporus occidentalis in California, ing, points capture.
    [Show full text]
  • Species Concepts and Malaria Parasites
    doi 10.1098/rspb.2000.1290 Speciesconceptsandmalariaparasites: detecting acrypticspeciesof Plasmodium Susan L.Perki ns { Department of Biology,University of Vermont, Burlington,VT 05405,USA Species ofmalaria parasite (phylum Apicomplexa: genus Plasmodium)havetraditionally been described usingthe similarity species concept(based primarily on di¡ erences inmorphological or life-history characteristics).Thebiological species concept(reproductive isolation) and phylogenetic species concept (basedon monophyly) have not been used beforein de¢ ning species of Plasmodium. Plasmodium azurophilum ,described from Anolis lizardsin the eastern Caribbean,is actuallya two-species cryptic complex.The parasites werestudied from eightislands, from Puerto Rico in the northto Grenada in the south.Morphology of the twospecies isverysimilar (di¡erences areindistinguishable to the eye),but one infects onlyerythrocytes andthe otheronly white blood cells. Moleculardata for the cytochrome b gene revealthat the twoforms arereproductively isolated ;distinct haplotypesare present oneachisland and arenever shared between the erythrocyte-infectingand leucocyte-infecting species. Eachforms amono- phyleticlineage indicating that theydiverged before becoming established inthe anolesof the eastern Caribbean.This comparison of the similarity,biologicaland phylogenetic species concepts formalaria parasites revealsthe limited valueof usingonly similarity measures inde¢ ning protozoan species. Keywords: Plasmodium;species concepts; cryptic species; malaria fora givenspecies
    [Show full text]
  • Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic Turtles of the Family Podocnemididae First Report of These
    IJP: Parasites and Wildlife 10 (2019) 299–309 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis T vogli from the Orinoquia Leydy P. Gonzáleza,b, M. Andreína Pachecoc, Ananías A. Escalantec, Andrés David Jiménez Maldonadoa,d, Axl S. Cepedaa, Oscar A. Rodríguez-Fandiñoe, ∗ Mario Vargas‐Ramírezd, Nubia E. Mattaa, a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia b Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia c Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA d Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia e Fundación Universitaria-Unitrópico, Dirección de Investigación, Grupo de Investigación en Ciencias Biológicas de la Orinoquía (GINBIO), Colombia ARTICLE INFO ABSTRACT Keywords: The genus Haemocystidium was described in 1904 by Castellani and Willey. However, several studies considered Haemoparasites it a synonym of the genera Plasmodium or Haemoproteus. Recently, molecular evidence has shown the existence Reptile of a monophyletic group that corresponds to the genus Haemocystidium. Here, we further explore the clade Simondia Haemocystidium spp. by studying parasites from Testudines. A total of 193 individuals belonging to six families of Chelonians Testudines were analyzed. The samples were collected in five localities in Colombia: Casanare, Vichada, Arauca, Colombia Antioquia, and Córdoba. From each individual, a blood sample was taken for molecular analysis, and peripheral blood smears were made, which were fixed and subsequently stained with Giemsa.
    [Show full text]
  • A MOLECULAR PHYLOGENY of MALARIAL PARASITES RECOVERED from CYTOCHROME B GENE SEQUENCES
    J. Parasitol., 88(5), 2002, pp. 972±978 q American Society of Parasitologists 2002 A MOLECULAR PHYLOGENY OF MALARIAL PARASITES RECOVERED FROM CYTOCHROME b GENE SEQUENCES Susan L. Perkins* and Jos. J. Schall Department of Biology, University of Vermont, Burlington, Vermont 05405. e-mail: [email protected] ABSTRACT: A phylogeny of haemosporidian parasites (phylum Apicomplexa, family Plasmodiidae) was recovered using mito- chondrial cytochrome b gene sequences from 52 species in 4 genera (Plasmodium, Hepatocystis, Haemoproteus, and Leucocy- tozoon), including parasite species infecting mammals, birds, and reptiles from over a wide geographic range. Leucocytozoon species emerged as an appropriate out-group for the other malarial parasites. Both parsimony and maximum-likelihood analyses produced similar phylogenetic trees. Life-history traits and parasite morphology, traditionally used as taxonomic characters, are largely phylogenetically uninformative. The Plasmodium and Hepatocystis species of mammalian hosts form 1 well-supported clade, and the Plasmodium and Haemoproteus species of birds and lizards form a second. Within this second clade, the relation- ships between taxa are more complex. Although jackknife support is weak, the Plasmodium of birds may form 1 clade and the Haemoproteus of birds another clade, but the parasites of lizards fall into several clusters, suggesting a more ancient and complex evolutionary history. The parasites currently placed within the genus Haemoproteus may not be monophyletic. Plasmodium falciparum of humans was not derived from an avian malarial ancestor and, except for its close sister species, P. reichenowi,is only distantly related to haemospordian parasites of all other mammals. Plasmodium is paraphyletic with respect to 2 other genera of malarial parasites, Haemoproteus and Hepatocystis.
    [Show full text]
  • Ecology and Evolution of Malarial Parasites In
    ECOLOGY AND EVOLUTION OF MALARIAL PARASITES IN VERTEBRATE HOSTS A Dissertation Presented to the Faculty of the Graduate School Of Cornell University In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy By Holly Lynn Lutz August 2016 © Holly Lynn Lutz 2016 ECOLOGY AND EVOLUTION OF MALARIAL PARASITES IN VERTEBRATE HOSTS Holly Lynn Lutz, Ph.D. Cornell University 2016 This dissertation represents a culmination of extensive field work and collections of African vertebrates and their symbionts, as well as experimental studies carried out in the laboratory. Field work was conducted primarily in the East African countries of Kenya, Malawi, Mozambique, and Uganda. Throughout these expeditions, efforts were made to improve field protocols for the comprehensive sampling of wild vertebrates and their symbionts, with particular focus on the sampling of avian blood parasites (haematozoa), ectoparasites (arthropods), endoparasites (helminths), and microbial symbionts (bacteria and viruses). This dissertation therefore includes a chapter with detailed guidelines and protocols for sampling avian symbionts based on these experiences. Following chapters rely on data from both field collections and laboratory experiments, which provide a foundation for addressing the ecology, systematics, and molecular evolution of malarial parasites in vertebrate hosts. Specifically, haemosporidian data from 2,539 Afrotropical birds and small mammals (bats, rodents, and shrews) collected during field inventories were used to (1) test hypotheses linking host life history traits and host ecology to patterns of infection by three haemosporidian parasite genera in birds (Plasmodium, Haemoproteus, and Leucocytozoon), and (2) re-evaluate the molecular phylogeny of the order Haemosporida by incorporating existing genomic data from haemosporidian parasites with data from novel parasite lineages infecting major vertebrate host groups, including birds, mammals, and reptiles.
    [Show full text]
  • Reptiles of Alberta
    of Alberta 2 Alberta Conservation Association - Reptiles of Alberta How Can I Help Alberta’s Reptiles? Like many other wildlife species, Alberta’s reptiles struggle to adapt to human impacts on the habitats and ecosystems in which they depend. The destruction and exploitation of natural habitats is causing reptiles to become rare or to disappear from many areas. Chemicals and poisons introduced into their ecosystems harms them directly or indirectly by affecting their food supply. Development and urbanization not only contribute to an increase in road mortality, pollution, and loss of habitat, but also human-snake conflicts that often end unjustly with the demise of snakes. The key to preserving Alberta’s reptiles is to conserve the places where they live. Actively managing the health and function of ecosystems, preserving native habitats, and avoiding the use of pesticides and other harmful chemicals can result in wide-ranging benefits for both reptiles and people alike. While traveling on Alberta roadways be mindful of snakes that may be attracted to warm road surfaces or that may be crossing during their wanderings. Keep a careful lookout for “snake crossing” signs that warn motorists of the possible presence of snakes on roadways in key areas. Perhaps one of the easiest things you can do to help Alberta’s reptiles is sharing what you have learned in this brochure with others, and when it comes to snakes, being more tolerant. What is a Reptile? Reptiles have been around for some 300 million years and date back to the age of the dinosaur. That era has long past and those giants have disappeared, but more than 8000 species of reptiles still thrive today! Snakes, lizards, and turtles are all reptiles.
    [Show full text]
  • Snakes of the Prairie
    National Park Service Scotts Bluff U.S. Department of the Interior Scotts Bluff National Monument Nebraska Snakes of the Prairie Wildlife and Scotts Bluff National Monument is a unique historic landmark which preserves both cultural and Landscapes natural resources. Sweeping from the river valley woodlands, to the mixed-grass prairie, to pine studded bluffs, Scotts Bluff contains a wide variety of wildlife and landscapes. The 3,000 acres com- prising Scotts Bluff conserves one of the last areas of the Great Plains which has not been significant- ly changed by human occupation. Biological Four different species of snakes are known to live at Scotts Bluff National Monument, and may be Diversity of seen by park visitors during the warm months of the year. Though many people regard these rep- the Prairie tiles with feelings of fear and loathing, snakes are generally undeserving of their bad reputation. All snakes are exclusively carniverous and often feed on rodents and insects and should be considered beneficial to humans. They are cold-blooded animals and must avoid extremes of heat and cold. For this reason, you are unlikely to see snakes in the open on hot summer days. If a snake of any kind is encountered, the best advice is to give it plenty of room and a chance to escape. All snakes avoid humans whenever possible and should not be provoked. Prairie Rattlesnake Photo by Steve Thompson Prairie Rattlesnake (Crotalus viridis viridis) The prairie rattlesnake is the only venomous snake found at Scotts Bluff National Monument. Rat- tlesnakes belong to the Pit Viper family of snakes, characterized by temperature sensitive “pits” on either side of the face between the eye and the nostril.
    [Show full text]
  • Observing Copepods Through a Genomic Lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace a Wyngaard6
    Bron et al. Frontiers in Zoology 2011, 8:22 http://www.frontiersinzoology.com/content/8/1/22 DEBATE Open Access Observing copepods through a genomic lens James E Bron1*, Dagmar Frisch2, Erica Goetze3, Stewart C Johnson4, Carol Eunmi Lee5 and Grace A Wyngaard6 Abstract Background: Copepods outnumber every other multicellular animal group. They are critical components of the world’s freshwater and marine ecosystems, sensitive indicators of local and global climate change, key ecosystem service providers, parasites and predators of economically important aquatic animals and potential vectors of waterborne disease. Copepods sustain the world fisheries that nourish and support human populations. Although genomic tools have transformed many areas of biological and biomedical research, their power to elucidate aspects of the biology, behavior and ecology of copepods has only recently begun to be exploited. Discussion: The extraordinary biological and ecological diversity of the subclass Copepoda provides both unique advantages for addressing key problems in aquatic systems and formidable challenges for developing a focused genomics strategy. This article provides an overview of genomic studies of copepods and discusses strategies for using genomics tools to address key questions at levels extending from individuals to ecosystems. Genomics can, for instance, help to decipher patterns of genome evolution such as those that occur during transitions from free living to symbiotic and parasitic lifestyles and can assist in the identification of genetic mechanisms and accompanying physiological changes associated with adaptation to new or physiologically challenging environments. The adaptive significance of the diversity in genome size and unique mechanisms of genome reorganization during development could similarly be explored.
    [Show full text]
  • Guide to the Reptil and Am Hibians of Central Minnesota- Regi N3w
    This document is made available electronically by the Minnesota Legislative Reference Library as part of an ongoing digital archiving project. http://www.leg.state.mn.us/lrl/lrl.asp (Funding for document digitization was provided, in part, by a grant from the Minnesota Historical & Cultural Heritage Program.) Guide to the Reptil and Am hibians of Central Minnesota- Regi n3W Minnesota Department of Natural Resources January 1, 1979 Guide to the Herpetofauna of Central Minnesota Region 3 - West This preliminary guide has been prepared as a reference to the occurrence and distribution of reptiles and amphibians of Region 3 - West in Central Minnesota. Taxonomy and identification are based on "A Field Guide to Reptiles and Amphibians" by Roger Conant (Second Edition 1975). Figure 1 is a map of the region. Counties Included: Benton, Cass, Crow Wing, Morrison, Sherburne, Stearns, Todd, Wadena and Wright. SPECIES LIST Turtles Salamanders Common snapping turtle Blue-spotted salamander Map turtle Eastern tiger salamander Western painted turtle Mudpuppy (?) *Blanding's turtle *Central (Common) newt (?) Western spiny softshell *Red-backed salamander (?) Lizards Toads Northern priaire skink American toad Snakes Frogs Red-bellied snake Northern spring peeper Texas brown (DeKay's) snake Common (gray) treefrog Northern water snake Boreal chorus frog J s.s. Western plains garter snake Western chorus frog Red-sided garter snake] s.s. Mink frog Eastern garter snake Northern leopard frog Eastern hognose snake Green frog *Western smooth green snake} s.s. Wood frog *Eastern smooth green snake Bull snake s.s. - single species (?) - hypothetical species - reports needed * - special interest species - reports needed Summary A total of 24 species are found in Region 3 - West.
    [Show full text]
  • Game Meat: Health Assessment of Human-Pathogenic Parasites
    Bundesinstitut für Risikobewertung www.bfr.bund.de DOI 10.17590/20190627-084353 Game meat: health assessment of human-pathogenic parasites BfR Opinion No. 045/2018, 21 December 2018 Meat of game living in the wild, such as deer, roe deer and boar, is rich in nutrients, low in fat and commonly sustainably sourced. It may, however, contain parasites that can make people ill if the meat has not been prepared in a hygienically flawless manner. There are often un- certainties in the hygienic assessment of meat from hunted game – for example in case of parasite infestation, regarding localization of parasite infestation sites within the animal car- cass. These uncertainties are also due to the limited amount of data on these specific patho- gens in game. The German Federal Institute for Risk Assessment (BfR) has therefore con- ducted an evaluation of own and existing data in order to determine the game species and specific organs respectively in which the parasites listed below have been detected and on the frequency of infestation occurrence. The BfR has used this information to assess the risk of contracting a parasitic disease from consumption of game meat and has put together rec- ommendations on how consumers can avoid such illnesses. In its health assessment, the BfR has considered game species only, whose meat and prod- ucts made from their meat are typically consumed, namely boar, deer, roe deer and fallow deer. Acquired data sets on consumption of game meat show that both adults and children in Germany consume game meat only rarely and only in small quantities.
    [Show full text]
  • AFSSA1 on the Risk to Public Health Associated with the Presence of This Parasite in Wild Boar Meat (Opinion 2007-SA-0008) Was Issued on 14 September 2007
    ANSES Opinion Request No 2015-SA-0052 Related Request no. 2007-SA-008 The Director General Maisons-Alfort, 16 December 2015 OPINION of the French Agency for Food, Environmental and Occupational Health & Safety on the presence of mesocercarial parasites of the trematode Alaria alata in wild boar meat ANSES undertakes independent and pluralistic scientific expert assessments. ANSES's public health mission involves ensuring environmental, occupational and food safety as well as assessing the potential health risks they may entail. It also contributes to the protection of the health and welfare of animals, the protection of plant health and the evaluation of the nutritional characteristics of food. It provides the competent authorities with the necessary information concerning these risks as well as the requisite expertise and technical support for drafting legislative and statutory provisions and implementing risk management strategies (Article L.1313-1 of the French Public Health Code). Its opinions are made public. This opinion is a translation of the original French version. In the event of any discrepancy or ambiguity the French language text dated 16 December 2015 shall prevail. On 26 February 2015 the French Agency for Food, Environmental and Occupational Health & Safety received a formal request from the Directorate General for Food for an opinion on the presence of mesocercarial parasites of the trematode Alaria alata in wild boar meat. 1. BACKGROUND AND PURPOSE OF THE REQUEST Screening for Trichinella in wild boar carcasses sometimes reveals larvae of the trematode Alaria alata. A first opinion by AFSSA1 on the risk to public health associated with the presence of this parasite in wild boar meat (Opinion 2007-SA-0008) was issued on 14 September 2007.
    [Show full text]