Species Concepts and Malaria Parasites
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Basal Body Structure and Composition in the Apicomplexans Toxoplasma and Plasmodium Maria E
Francia et al. Cilia (2016) 5:3 DOI 10.1186/s13630-016-0025-5 Cilia REVIEW Open Access Basal body structure and composition in the apicomplexans Toxoplasma and Plasmodium Maria E. Francia1* , Jean‑Francois Dubremetz2 and Naomi S. Morrissette3 Abstract The phylum Apicomplexa encompasses numerous important human and animal disease-causing parasites, includ‑ ing the Plasmodium species, and Toxoplasma gondii, causative agents of malaria and toxoplasmosis, respectively. Apicomplexans proliferate by asexual replication and can also undergo sexual recombination. Most life cycle stages of the parasite lack flagella; these structures only appear on male gametes. Although male gametes (microgametes) assemble a typical 9 2 axoneme, the structure of the templating basal body is poorly defined. Moreover, the rela‑ tionship between asexual+ stage centrioles and microgamete basal bodies remains unclear. While asexual stages of Plasmodium lack defined centriole structures, the asexual stages of Toxoplasma and closely related coccidian api‑ complexans contain centrioles that consist of nine singlet microtubules and a central tubule. There are relatively few ultra-structural images of Toxoplasma microgametes, which only develop in cat intestinal epithelium. Only a subset of these include sections through the basal body: to date, none have unambiguously captured organization of the basal body structure. Moreover, it is unclear whether this basal body is derived from pre-existing asexual stage centrioles or is synthesized de novo. Basal bodies in Plasmodium microgametes are thought to be synthesized de novo, and their assembly remains ill-defined. Apicomplexan genomes harbor genes encoding δ- and ε-tubulin homologs, potentially enabling these parasites to assemble a typical triplet basal body structure. -
Identification of a Novel Fused Gene Family Implicates Convergent
Chen et al. BMC Genomics (2018) 19:306 https://doi.org/10.1186/s12864-018-4685-y RESEARCH ARTICLE Open Access Identification of a novel fused gene family implicates convergent evolution in eukaryotic calcium signaling Fei Chen1,2,3, Liangsheng Zhang1, Zhenguo Lin4 and Zong-Ming Max Cheng2,3* Abstract Background: Both calcium signals and protein phosphorylation responses are universal signals in eukaryotic cell signaling. Currently three pathways have been characterized in different eukaryotes converting the Ca2+ signals to the protein phosphorylation responses. All these pathways have based mostly on studies in plants and animals. Results: Based on the exploration of genomes and transcriptomes from all the six eukaryotic supergroups, we report here in Metakinetoplastina protists a novel gene family. This family, with a proposed name SCAMK,comprisesSnRK3 fused calmodulin-like III kinase genes and was likely evolved through the insertion of a calmodulin-like3 gene into an SnRK3 gene by unequal crossover of homologous chromosomes in meiosis cell. Its origin dated back to the time intersection at least 450 million-year-ago when Excavata parasites, Vertebrata hosts, and Insecta vectors evolved. We also analyzed SCAMK’s unique expression pattern and structure, and proposed it as one of the leading calcium signal conversion pathways in Excavata parasite. These characters made SCAMK gene as a potential drug target for treating human African trypanosomiasis. Conclusions: This report identified a novel gene fusion and dated its precise fusion time -
The Planktonic Protist Interactome: Where Do We Stand After a Century of Research?
bioRxiv preprint doi: https://doi.org/10.1101/587352; this version posted May 2, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Bjorbækmo et al., 23.03.2019 – preprint copy - BioRxiv The planktonic protist interactome: where do we stand after a century of research? Marit F. Markussen Bjorbækmo1*, Andreas Evenstad1* and Line Lieblein Røsæg1*, Anders K. Krabberød1**, and Ramiro Logares2,1** 1 University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N- 0316 Oslo, Norway 2 Institut de Ciències del Mar (CSIC), Passeig Marítim de la Barceloneta, 37-49, ES-08003, Barcelona, Catalonia, Spain * The three authors contributed equally ** Corresponding authors: Ramiro Logares: Institute of Marine Sciences (ICM-CSIC), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Catalonia, Spain. Phone: 34-93-2309500; Fax: 34-93-2309555. [email protected] Anders K. Krabberød: University of Oslo, Department of Biosciences, Section for Genetics and Evolutionary Biology (Evogene), Blindernv. 31, N-0316 Oslo, Norway. Phone +47 22845986, Fax: +47 22854726. [email protected] Abstract Microbial interactions are crucial for Earth ecosystem function, yet our knowledge about them is limited and has so far mainly existed as scattered records. Here, we have surveyed the literature involving planktonic protist interactions and gathered the information in a manually curated Protist Interaction DAtabase (PIDA). In total, we have registered ~2,500 ecological interactions from ~500 publications, spanning the last 150 years. -
Essential Function of the Alveolin Network in the Subpellicular
RESEARCH ARTICLE Essential function of the alveolin network in the subpellicular microtubules and conoid assembly in Toxoplasma gondii Nicolo` Tosetti1, Nicolas Dos Santos Pacheco1, Eloı¨se Bertiaux2, Bohumil Maco1, Lore` ne Bournonville2, Virginie Hamel2, Paul Guichard2, Dominique Soldati-Favre1* 1Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland; 2Department of Cell Biology, Sciences III, University of Geneva, Geneva, Switzerland Abstract The coccidian subgroup of Apicomplexa possesses an apical complex harboring a conoid, made of unique tubulin polymer fibers. This enigmatic organelle extrudes in extracellular invasive parasites and is associated to the apical polar ring (APR). The APR serves as microtubule- organizing center for the 22 subpellicular microtubules (SPMTs) that are linked to a patchwork of flattened vesicles, via an intricate network composed of alveolins. Here, we capitalize on ultrastructure expansion microscopy (U-ExM) to localize the Toxoplasma gondii Apical Cap protein 9 (AC9) and its partner AC10, identified by BioID, to the alveolin network and intercalated between the SPMTs. Parasites conditionally depleted in AC9 or AC10 replicate normally but are defective in microneme secretion and fail to invade and egress from infected cells. Electron microscopy revealed that the mature parasite mutants are conoidless, while U-ExM highlighted the disorganization of the SPMTs which likely results in the catastrophic loss of APR and conoid. Introduction *For correspondence: Toxoplasma gondii belongs to the phylum of Apicomplexa that groups numerous parasitic protozo- Dominique.Soldati-Favre@unige. ans causing severe diseases in humans and animals. As part of the superphylum of Alveolata, the ch Apicomplexa are characterized by the presence of the alveoli, which consist in small flattened single- membrane sacs, underlying the plasma membrane (PM) to form the inner membrane complex (IMC) Competing interest: See of the parasite. -
(Alveolata) As Inferred from Hsp90 and Actin Phylogenies1
J. Phycol. 40, 341–350 (2004) r 2004 Phycological Society of America DOI: 10.1111/j.1529-8817.2004.03129.x EARLY EVOLUTIONARY HISTORY OF DINOFLAGELLATES AND APICOMPLEXANS (ALVEOLATA) AS INFERRED FROM HSP90 AND ACTIN PHYLOGENIES1 Brian S. Leander2 and Patrick J. Keeling Canadian Institute for Advanced Research, Program in Evolutionary Biology, Departments of Botany and Zoology, University of British Columbia, Vancouver, British Columbia, Canada Three extremely diverse groups of unicellular The Alveolata is one of the most biologically diverse eukaryotes comprise the Alveolata: ciliates, dino- supergroups of eukaryotic microorganisms, consisting flagellates, and apicomplexans. The vast phenotypic of ciliates, dinoflagellates, apicomplexans, and several distances between the three groups along with the minor lineages. Although molecular phylogenies un- enigmatic distribution of plastids and the economic equivocally support the monophyly of alveolates, and medical importance of several representative members of the group share only a few derived species (e.g. Plasmodium, Toxoplasma, Perkinsus, and morphological features, such as distinctive patterns of Pfiesteria) have stimulated a great deal of specula- cortical vesicles (syn. alveoli or amphiesmal vesicles) tion on the early evolutionary history of alveolates. subtending the plasma membrane and presumptive A robust phylogenetic framework for alveolate pinocytotic structures, called ‘‘micropores’’ (Cavalier- diversity will provide the context necessary for Smith 1993, Siddall et al. 1997, Patterson -
Body Condition of a Puerto Rican Anole
SHORTER COMMUNICATIONS 489 Journal Vol. No. 489-491,2000 of Herpetology, 34, 3, pp. study site and details of its natural are in Rea- Copyright2000 Societyfor the Study of Amphibiansand Reptiles history gan and Wade (1996). Anolis gundlachi lizards are com- mon at the site, perching on trees and large logs with- in of Condition of a Puerto Rican reach human observers. Anoles were captured Body along trails within a 36 ha plot with a slip noose at- Anole, Anolis gundlachi:Effect of a tached to a pole or by hand during five periods: July Malaria Parasite and Weather Variation 1996, July 1997, January 1998, May 1998, and March 1999. Only males with an intact tail were used for this Jos. J. SCHALLAND ANJA R. PEARSON,Department of study because the mass of females would vary with Biology, University of Vermont, Burlington, Vermont reproductive condition, and animals with broken or 05405, USA. E-mail: [email protected] regenerated tails would have a body mass atypical for their SVL. Each lizard was maintained in a mesh sack until Over 70 of malaria Plasmodium species parasites, when a blood smear was made from a lizards as their vertebrate hosts evening drop spp., exploit through- of blood extracted from a SVL out the warmer of the world clipped toe, measured, regions (Schall, 1996). and mass taken with a Pesola cali- Detailed information on the of infection is body spring scale impact brated an balance. known for a few Plasmodium-lizard associations: against electronic The next morn- only all lizards were released at their of P mexicanum and Sceloporus occidentalis in California, ing, points capture. -
Repurposing of Conserved Autophagy-Related Protein ATG8 in a Divergent Eukaryote Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro
Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro To cite this version: Maude Lévêque, Hoa Mai Nguyen, Sébastien Besteiro. Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote. Communicative and Integrative Biology, Taylor & Francis Open, 2016, 9 (4), pp.e1197447. 10.1080/19420889.2016.1197447. hal-01824938 HAL Id: hal-01824938 https://hal.archives-ouvertes.fr/hal-01824938 Submitted on 1 Jun 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License COMMUNICATIVE & INTEGRATIVE BIOLOGY 2016, VOL. 9, NO. 4, e1197447 (4 pages) http://dx.doi.org/10.1080/19420889.2016.1197447 ARTICLE ADDENDUM Repurposing of conserved autophagy-related protein ATG8 in a divergent eukaryote Maude F. Lev eque,^ Hoa Mai Nguyen, and Sebastien Besteiro DIMNP- UMR5235, CNRS, Universite de Montpellier, Montpellier, France ABSTRACT ARTICLE HISTORY Toxoplasma gondii and other apicomplexan parasites contain a peculiar non-photosynthetic plastid Received 18 May 2016 called the apicoplast, which is essential for their survival. The localization of autophagy-related Accepted 30 May 2016 protein ATG8 to the apicoplast in several apicomplexan species and life stages has recently been KEYWORDS described, and we have shown this protein is essential for proper inheritance of this complex plastid apicomplexa; apicoplast; into daughter cells during cell division. -
Cryptosporidium Hominis N. Sp. (Apicomplexa: Cryptosporidiidae) from Homo Sapiens
The Journal of Eukaryotic Microbiology Volume 49 November-December 2002 Number 6 J. Eukiiyor rMioohio/.. 49(6). 2002 pp. 433440 0 2002 by the Society oi Protozoologisls Cryptosporidium hominis n. sp. (Apicomplexa: Cryptosporidiidae) from Homo sapiens UNA M. MORGAN-RYAN,” ABBIE FALL; LUCY A. WARD? NAWAL HIJJAWI: IRSHAD SULAIMAN: RONALD FAYER,” R. C. ANDREW THOMPSON,” M. OLSON,’ ALTAF LAL‘ and LIHUA XUOC “Division of Veterinory and Biomedical Sciences, Murdoch University, Murdoch, Western Australia 6150, and bFood Animal Health Research Program and Department of Veterinuq Preveittative Medicine, Ohio Agricultural Research and Development Centre, The Ohio State University, Wooster, Ohio 44691 USA, rind ‘Division of Parasitic Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Public Health Services, U. S. Department of Health and Huniun Services, Atlantu, Georgia 30341. and W. S. Department of Agriculture, Anitnal Waste Pathogen Laboratory, Beltsville, Maryland 20705, und eUniver.~ir)of Calgary., FaculQ of Medicine, Animal Resources Center, Department OJ‘ Gastrointestinal Science, 3330 Hospital DI-NW, Calgary, Albertu 72N 4NI, Canada ABSTRACT. The structure and infectivity of the oocysts of a new species of Cryptosporidiurn from the feces of humans are described. Oocysts are structurally indistinguishable from those of Cr.y~~tos€,oridiunlpurvum. Oocysts of the new species are passed fully sporulated, lack sporocysts, and measure 4.4-5.4 prn (mean = 4.86) X 4.4-5.9 pm (mean = 5.2 prn) with a length to width ratio 1 .&I .09 (mean 1.07) (n = 100). Oocysts were not infectious for ARC Swiss mice. nude mice, Wistat’ rat pups, puppies, kittens or calves, but were infectious to neonatal gnotobiotic pigs. -
The Apicoplast: a Review of the Derived Plastid of Apicomplexan Parasites
Curr. Issues Mol. Biol. 7: 57-80. Online journalThe Apicoplastat www.cimb.org 57 The Apicoplast: A Review of the Derived Plastid of Apicomplexan Parasites Ross F. Waller1 and Geoffrey I. McFadden2,* way to apicoplast discovery with studies of extra- chromosomal DNAs recovered from isopycnic density 1Botany, University of British Columbia, 3529-6270 gradient fractionation of total Plasmodium DNA. This University Boulevard, Vancouver, BC, V6T 1Z4, Canada group recovered two DNA forms; one a 6kb tandemly 2Plant Cell Biology Research Centre, Botany, University repeated element that was later identifed as the of Melbourne, 3010, Australia mitochondrial genome, and a second, 35kb circle that was supposed to represent the DNA circles previously observed by microscopists (Wilson et al., 1996b; Wilson Abstract and Williamson, 1997). This molecule was also thought The apicoplast is a plastid organelle, homologous to to be mitochondrial DNA, and early sequence data of chloroplasts of plants, that is found in apicomplexan eubacterial-like rRNA genes supported this organellar parasites such as the causative agents of Malaria conclusion. However, as the sequencing effort continued Plasmodium spp. It occurs throughout the Apicomplexa a new conclusion, that was originally embraced with and is an ancient feature of this group acquired by the some awkwardness (“Have malaria parasites three process of endosymbiosis. Like plant chloroplasts, genomes?”, Wilson et al., 1991), began to emerge. apicoplasts are semi-autonomous with their own genome Gradually, evermore convincing character traits of a and expression machinery. In addition, apicoplasts import plastid genome were uncovered, and strong parallels numerous proteins encoded by nuclear genes. These with plastid genomes from non-photosynthetic plants nuclear genes largely derive from the endosymbiont (Epifagus virginiana) and algae (Astasia longa) became through a process of intracellular gene relocation. -
Why the –Omic Future of Apicomplexa Should Include Gregarines Julie Boisard, Isabelle Florent
Why the –omic future of Apicomplexa should include Gregarines Julie Boisard, Isabelle Florent To cite this version: Julie Boisard, Isabelle Florent. Why the –omic future of Apicomplexa should include Gregarines. Biology of the Cell, Wiley, 2020, 10.1111/boc.202000006. hal-02553206 HAL Id: hal-02553206 https://hal.archives-ouvertes.fr/hal-02553206 Submitted on 24 Apr 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Article title: Why the –omic future of Apicomplexa should include Gregarines. Names of authors: Julie BOISARD1,2 and Isabelle FLORENT1 Authors affiliations: 1. Molécules de Communication et Adaptation des Microorganismes (MCAM, UMR 7245), Département Adaptations du Vivant (AVIV), Muséum National d’Histoire Naturelle, CNRS, CP52, 57 rue Cuvier 75231 Paris Cedex 05, France. 2. Structure et instabilité des génomes (STRING UMR 7196 CNRS / INSERM U1154), Département Adaptations du vivant (AVIV), Muséum National d'Histoire Naturelle, CP 26, 57 rue Cuvier 75231 Paris Cedex 05, France. Short Title: Gregarines –omics for Apicomplexa studies -
Haemocystidium Spp., a Species Complex Infecting Ancient Aquatic Turtles of the Family Podocnemididae First Report of These
IJP: Parasites and Wildlife 10 (2019) 299–309 Contents lists available at ScienceDirect IJP: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Haemocystidium spp., a species complex infecting ancient aquatic turtles of the family Podocnemididae: First report of these parasites in Podocnemis T vogli from the Orinoquia Leydy P. Gonzáleza,b, M. Andreína Pachecoc, Ananías A. Escalantec, Andrés David Jiménez Maldonadoa,d, Axl S. Cepedaa, Oscar A. Rodríguez-Fandiñoe, ∗ Mario Vargas‐Ramírezd, Nubia E. Mattaa, a Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia b Instituto de Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia c Department of Biology/Institute for Genomics and Evolutionary Medicine (iGEM), Temple University, Philadelphia, PA, USA d Instituto de Genética, Universidad Nacional de Colombia, Sede Bogotá, Carrera 30 No 45-03, Bogotá, Colombia e Fundación Universitaria-Unitrópico, Dirección de Investigación, Grupo de Investigación en Ciencias Biológicas de la Orinoquía (GINBIO), Colombia ARTICLE INFO ABSTRACT Keywords: The genus Haemocystidium was described in 1904 by Castellani and Willey. However, several studies considered Haemoparasites it a synonym of the genera Plasmodium or Haemoproteus. Recently, molecular evidence has shown the existence Reptile of a monophyletic group that corresponds to the genus Haemocystidium. Here, we further explore the clade Simondia Haemocystidium spp. by studying parasites from Testudines. A total of 193 individuals belonging to six families of Chelonians Testudines were analyzed. The samples were collected in five localities in Colombia: Casanare, Vichada, Arauca, Colombia Antioquia, and Córdoba. From each individual, a blood sample was taken for molecular analysis, and peripheral blood smears were made, which were fixed and subsequently stained with Giemsa. -
Systematic Index
Systematic Index The systematic index contains the scientific names of all taxa mentioned in the book e.g., Anisonema sp., Anopheles and the vernacular names of protists, for example, tintinnids. The index is two-sided, that is, species ap - pear both with the genus-group name first e.g., Acineria incurvata and with the species-group name first ( incurvata , Acineria ). Species and genera, valid and invalid, are in italics print. The scientific name of a subgenus, when used with a binomen or trinomen, must be interpolated in parentheses between the genus-group name and the species- group name according to the International Code of Zoological Nomenclature. In the following index, these paren - theses are omitted to simplify electronic sorting. Thus, the name Apocolpodidium (Apocolpodidium) etoschense is list - ed as Apocolpodidium Apocolpodidium etoschense . Note that this name is also listed under “ Apocolpodidium etoschense , Apocolpodidium ” and “ etoschense , Apocolpodidium Apocolpodidium ”. Suprageneric taxa, communities, and vernacular names are represented in normal type. A boldface page number indicates the beginning of a detailed description, review, or discussion of a taxon. f or ff means include the following one or two page(s), respectively. A Actinobolina vorax 84 Aegyriana paroliva 191 abberans , Euplotes 193 Actinobolina wenrichii 84 aerophila , Centropyxis 87, 191 abberans , Frontonia 193 Actinobolonidae 216 f aerophila sphagnicola , Centropyxis 87 abbrevescens , Deviata 140, 200, 212 Actinophrys sol 84 aerophila sylvatica