Arquímedes 1 Arquímedes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Archive of SID
Archive of SID T r kh-e Elm: Iranian Journal for the History of Science, 6 (2008), pp. 1-36 Two Beautiful Geometrical Theorems by Ab Sahl K h in a 17th Century Dutch Translation Jan P. Hogendijk University of Utrecht [email protected] Abstract (received: 21/09/2008 - accepted: 15/11/2008) This article is devoted to two theorems on tangent circles, which were discovered by the Iranian geometer Ab Sahl K h (4th century A.H.). The two theorems were inspired by the Book of Lemmas (ma kh dh t) attributed to Archimedes. K h 's original treatise is lost, but the two theorems are found in Na r al-D n s 's edition of the Lemmas of Archimedes. They then appeared in Latin translations in 1659 in London, and again in 1661 in Florence, and in 1695 in a revised Dutch version in Amsterdam. The present article compares the original Arabic version of K h 's theorems (in the presentation of s ) with the revised Dutch version. Keywords: K h , s , Archimedes, geometry, circles, 17th century Dutch mathematics Introduction Waijan ibn Rustam Ab Sahl K h was an Iranian geometer and astronomer, who ßourished in the second half of the 4th century A.H./ 10th century A.D. (for biographical data and a list of works of him, see sezgin, V, 314-321, VI, 218-219; Rosenfeld and Ihsano lu, 102-105; for a general analysis of his works, see Berggrenn). K h had an outstanding reputation among his contemporaries: he was even called the Master of his Age in the Art of Geometry (the Arabic term is shaykh asrihi f in at al-handasa; see Berggren, 178). -
Greeks Doing Algebra
Greeks Doing Algebra There is a long-standing consensus in the history of mathematics that geometry came from ancient Greece, algebra came from medieval Persia, and the two sciences did not meet until seventeenth-century France (e.g. Bell 1945). Scholars agree that the Greek mathematicians had no methods comparable to algebra before Diophantus (3rd c. CE) or, many hold, even after him (e.g. Szabó 1969, Unguru and Rowe 1981, Grattan-Guinness 1996, Vitrac 2005. For a survey of arguments see Blåsjö 2016). The problems that we would solve with algebra, the Greeks, especially the authors of the canonical and most often studied works (such as Euclid and Apollonius of Perga), approached with spatial geometry or not at all. This paper argues, however, that the methods which uniquely characterize algebra, such as information compression, quantitative abstraction, and the use of unknowns, do in fact feature in Greek mathematical works prior to Diophantus. We simply have to look beyond the looming figures of Hellenistic geometry. In this paper, we shall examine three instructive cases of algebraic problem-solving methods in Greek mathematical works before Diophantus: The Sand-reckoner of Archimedes, the Metrica of Hero of Alexandria, and the Almagest of Ptolemy. In the Sand-reckoner, Archimedes develops a system for expressing extremely large numbers, in which the base unit is a myriad myriad. His process is indefinitely repeatable, and theoretically scalable to express a number of any size. Simple though it sounds to us, this bit of information compression, by which a cumbersome quantity is set to one in order to simplify notation and computation, is a common feature of modern mathematics but was almost alien to the Greeks. -
Great Inventors of the Ancient World Preliminary Syllabus & Course Outline
CLA 46 Dr. Patrick Hunt Spring Quarter 2014 Stanford Continuing Studies http://www.patrickhunt.net Great Inventors Of the Ancient World Preliminary Syllabus & Course Outline A Note from the Instructor: Homo faber is a Latin description of humans as makers. Human technology has been a long process of adapting to circumstances with ingenuity, and while there has been gradual progress, sometimes technology takes a downturn when literacy and numeracy are lost over time or when humans forget how to maintain or make things work due to cataclysmic change. Reconstructing ancient technology is at times a reminder that progress is not always guaranteed, as when Classical civilization crumbled in the West, but the history of technology is a fascinating one. Global revolutions in technology occur in cycles, often when necessity pushes great minds to innovate or adapt existing tools, as happened when humans first started using stone tools and gradually improved them, often incrementally, over tens of thousands of years. In this third course examining the greats of the ancient world, we take a close look at inventions and their inventors (some of whom might be more legendary than actually known), such as vizier Imhotep of early dynastic Egypt, who is said to have built the first pyramid, and King Gudea of Lagash, who is credited with developing the Mesopotamian irrigation canals. Other somewhat better-known figures are Glaucus of Chios, a metallurgist sculptor who possibly invented welding; pioneering astronomer Aristarchus of Samos; engineering genius Archimedes of Siracusa; Hipparchus of Rhodes, who made celestial globes depicting the stars; Ctesibius of Alexandria, who invented hydraulic water organs; and Hero of Alexandria, who made steam engines. -
A Centennial Celebration of Two Great Scholars: Heiberg's
A Centennial Celebration of Two Great Scholars: Heiberg’s Translation of the Lost Palimpsest of Archimedes—1907 Heath’s Publication on Euclid’s Elements—1908 Shirley B. Gray he 1998 auction of the “lost” palimp- tains four illuminated sest of Archimedes, followed by col- plates, presumably of laborative work centered at the Walters Matthew, Mark, Luke, Art Museum, the palimpsest’s newest and John. caretaker, remind Notices readers of Heiberg was emi- Tthe herculean contributions of two great classical nently qualified for scholars. Working one century ago, Johan Ludvig support from a foun- Heiberg and Sir Thomas Little Heath were busily dation. His stature as a engaged in virtually “running the table” of great scholar in the interna- mathematics bequeathed from antiquity. Only tional community was World War I and a depleted supply of manuscripts such that the University forced them to take a break. In 2008 we as math- of Oxford had awarded ematicians should honor their watershed efforts to him an honorary doc- make the cornerstones of our discipline available Johan Ludvig Heiberg. torate of literature in Photo courtesy of to even mathematically challenged readers. The Danish Royal Society. 1904. His background in languages and his pub- Heiberg lications were impressive. His first language was In 1906 the Carlsberg Foundation awarded 300 Danish but he frequently published in German. kroner to Johan Ludvig Heiberg (1854–1928), a He had publications in Latin as well as Arabic. But classical philologist at the University of Copenha- his true passion was classical Greek. In his first gen, to journey to Constantinople (present day Is- position as a schoolmaster and principal, Heiberg tanbul) to investigate a palimpsest that previously insisted that his students learn Greek and Greek had been in the library of the Metochion, i.e., the mathematics—in Greek. -
The Fascinating Story Behind Our Mathematics
The Fascinating Story Behind Our Mathematics Jimmie Lawson Louisiana State University Story of Mathematics – p. 1 Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. Math was needed in developing branches of knowledge: astronomy, timekeeping, calendars, construction, surveying, navigation Math was interesting: In many ancient cultures (Egypt, Mesopotamia, India, China) mathematics became an independent subject, practiced by scribes and others. Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Story of Mathematics – p. 2 Math was needed in developing branches of knowledge: astronomy, timekeeping, calendars, construction, surveying, navigation Math was interesting: In many ancient cultures (Egypt, Mesopotamia, India, China) mathematics became an independent subject, practiced by scribes and others. Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. Story of Mathematics – p. 2 Math was interesting: In many ancient cultures (Egypt, Mesopotamia, India, China) mathematics became an independent subject, practiced by scribes and others. Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. Math was needed in developing branches of knowledge: astronomy, timekeeping, calendars, construction, surveying, navigation Story of Mathematics – p. 2 Introduction In every civilization that has developed writing we also find evidence for some level of mathematical knowledge. Math was needed for everyday life: commercial transactions and accounting, government taxes and records, measurement, inheritance. -
Archimedes Palimpsest a Brief History of the Palimpsest Tracing the Manuscript from Its Creation Until Its Reappearance Foundations...The Life of Archimedes
Archimedes Palimpsest A Brief History of the Palimpsest Tracing the manuscript from its creation until its reappearance Foundations...The Life of Archimedes Birth: About 287 BC in Syracuse, Sicily (At the time it was still an Independent Greek city-state) Death: 212 or 211 BC in Syracuse. His age is estimated to be between 75-76 at the time of death. Cause: Archimedes may have been killed by a Roman soldier who was unaware of who Archimedes was. This theory however, has no proof. However, the dates coincide with the time Syracuse was sacked by the Roman army. The Works of Archimedes Archimedes' Writings: • Balancing Planes • Quadrature of the Parabola • Sphere and Cylinder • Spiral Lines • Conoids and Spheroids • On Floating Bodies • Measurement of a Circle • The Sandreckoner • The Method of Mechanical Problems • The Stomachion The ABCs of Archimedes' work Archimedes' work is separated into three Codeces: Codex A: Codex B: • Balancing Planes • Balancing Planes • Quadrature of the Parabola • Quadrature of the Parabola • Sphere and Cylinder • On Floating Bodies • Spiral Lines Codex C: • Conoids and Spheroids • The Method of Mechanical • Measurement of a Circle Problems • The Sand-reckoner • Spiral Lines • The Stomachion • On Floating Bodies • Measurement of a Circle • Balancing Planes • Sphere and Cylinder The Reappearance of the Palimpsest Date: On Thursday, October 29, 1998 Location: Christie's Acution House, NY Selling price: $2.2 Million Research on Palimpsest was done by Walter's Art Museum in Baltimore, MD The Main Researchers Include: William Noel Mike Toth Reviel Netz Keith Knox Uwe Bergmann Codex A, B no more Codex A and B no longer exist. -
Greece: Archimedes and Apollonius
Greece: Archimedes and Apollonius Chapter 4 Archimedes • “What we are told about Archimedes is a mix of a few hard facts and many legends. Hard facts – the primary sources –are the axioms of history. Unfortunately, a scarcity of fact creates a vacuum that legends happily fill, and eventually fact and legend blur into each other. The legends resemble a computer virus that leaps from book to book, but are harder, even impossible, to eradicate.” – Sherman Stein, Archimedes: What Did He Do Besides Cry Eureka?, p. 1. Archimedes • Facts: – Lived in Syracuse – Applied mathematics to practical problems as well as more theoretical problems – Died in 212 BCE at the hands of a Roman soldier during the attack on Syracuse by the forces of general Marcellus. Plutarch, in the first century A.D., gave three different stories told about the details of his death. Archimedes • From sources written much later: – Died at the age of 75, which would put his birth at about 287 BCE (from The Book of Histories by Tzetzes, 12th century CE). – The “Eureka” story came from the Roman architect Vitruvius, about a century after Archimedes’ death. – Plutarch claimed Archimedes requested that a cylinder enclosing a sphere be put on his gravestone. Cicero claims to have found that gravestrone in about 75 CE. Archimedes • From sources written much later: – From about a century after his death come tales of his prowess as a military engineer, creating catapults and grappling hooks connected to levers that lifted boats from the sea. – Another legend has it that he invented parabolic mirrors that set ships on fire. -
Meet the Philosophers of Ancient Greece
Meet the Philosophers of Ancient Greece Everything You Always Wanted to Know About Ancient Greek Philosophy but didn’t Know Who to Ask Edited by Patricia F. O’Grady MEET THE PHILOSOPHERS OF ANCIENT GREECE Dedicated to the memory of Panagiotis, a humble man, who found pleasure when reading about the philosophers of Ancient Greece Meet the Philosophers of Ancient Greece Everything you always wanted to know about Ancient Greek philosophy but didn’t know who to ask Edited by PATRICIA F. O’GRADY Flinders University of South Australia © Patricia F. O’Grady 2005 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the prior permission of the publisher. Patricia F. O’Grady has asserted her right under the Copyright, Designs and Patents Act, 1988, to be identi.ed as the editor of this work. Published by Ashgate Publishing Limited Ashgate Publishing Company Wey Court East Suite 420 Union Road 101 Cherry Street Farnham Burlington Surrey, GU9 7PT VT 05401-4405 England USA Ashgate website: http://www.ashgate.com British Library Cataloguing in Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask 1. Philosophy, Ancient 2. Philosophers – Greece 3. Greece – Intellectual life – To 146 B.C. I. O’Grady, Patricia F. 180 Library of Congress Cataloging-in-Publication Data Meet the philosophers of ancient Greece: everything you always wanted to know about ancient Greek philosophy but didn’t know who to ask / Patricia F. -
The Reader and the Poet
THE READER AND THE POET THE TRANSFORMATION OF LATIN POETRY IN THE FOURTH CENTURY A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Aaron David Pelttari August 2012 i © 2012 Aaron David Pelttari ii The Reader and the Poet: The Transformation of Latin Poetry in the Fourth Century Aaron Pelttari, Ph.D. Cornell University 2012 In Late Antiquity, the figure of the reader came to play a central role in mediating the presence of the text. And, within the tradition of Latin poetry, the fourth century marks a turn towards writing that privileges the reader’s involvement in shaping the meaning of the text. Therefore, this dissertation addresses a set of problems related to the aesthetics of Late Antiquity, the reception of Classical Roman poetry, and the relation between author and reader. I begin with a chapter on contemporary methods of reading, in order to show the ways in which Late Antique authors draw attention to their own interpretations of authoritative texts and to their own creation of supplemental meaning. I show how such disparate authors as Jerome, Augustine, Servius, and Macrobius each privileges the work of secondary authorship. The second chapter considers the use of prefaces in Late Antique poetry. The imposition of paratextual borders dramatized the reader’s involvement in the text. In the third chapter, I apply Umberto Eco’s idea of the open text to the figural poetry of Optatianus Porphyrius, to the Psychomachia of Prudentius, and to the centos from Late Antiquity. -
REFLECTIONS on the ARBELOS Written in Block Capitals
REFLECTIONS ON THE ARBELOS HAROLD P. BOAS Written in block capitals on lined paper, the letter bore a postmark from a Northeastern seaport. \I have a problem that I would like to solve," the letter began, \but unfortunately I cannot. I dropped out from 2nd year high school, and this problem is too tough for me." There followed the diagram shown in Figure 1 along with the statement of the problem: to prove that the line segment DE has the same length as the line segment AB. Figure 1. A correspondent's hand-drawn puzzle \I tried this and went even to the library for information about mathematics," the letter continued, \but I have not succeeded. Would you be so kind to give me a full explanation?" Mindful of the romantic story [18] of G. H. Hardy's discovery of the Indian genius Ramanujan, a mathematician who receives such a letter wants ¯rst to rule out the remote possibility that the writer is some great unknown talent. Next, the question arises of whether the correspondent falls into the category of eccentrics whom Underwood Dudley terms mathematical cranks [14], for one ought not to encourage cranks. Date: October 26, 2004. This article is based on a lecture delivered at the nineteenth annual Rose-Hulman Undergraduate Mathematics Conference, March 15, 2002. 1 2 HAROLD P. BOAS Since this letter claimed no great discovery, but rather asked politely for help, I judged it to come from an enthusiastic mathematical am- ateur. Rather than ¯le such letters in the oubliette, or fob them o® on junior colleagues, I try to reply in a friendly way to communica- tions from coherent amateurs. -
VARIATIONS on the ARBELOS 1. Introduction
Journal of Applied Mathematics and Computational Mechanics 2017, 16(2), 123-133 www.amcm.pcz.pl p-ISSN 2299-9965 DOI: 10.17512/jamcm.2017.2.10 e-ISSN 2353-0588 VARIATIONS ON THE ARBELOS Michał Różański, Alicja Samulewicz, Marcin Szweda, Roman Wituła Institute of Mathematics, Silesian University of Technology Gliwice, Poland [email protected], [email protected] [email protected], [email protected] Received: 12 April 2017; accepted: 18 May 2017 Abstract. We recall the ancient notion of arbelos and introduce a number of concepts gene- ralizing it. We follow the ideas presented by J. Sondow in his article on parbelos, the para- bolic analogue of the classic arbelos. Our concepts concern the curves constructed of arcs which resemble each other and surfaces obtained in a similar way. We pay special attention to ellarbelos, the curves built of semi-ellipses, because of their possible application in engi- neering, e.g. in determining the static moments of arc rod constructions or in problems of structural stability and durability of constructions. MSC 2010: 51N20, 51M25 Keywords: arbelos, parbelos, similarity, ellarbelos, F-arbelos 1. Introduction The starting point of this article was a discussion on the parabolic analogue of arbelos described in [1]. We tried to find other ways of generalizing this notion and we investigated the relationships between them. Since the issue was rather elemen- tary, the students had the opportunity to work on a par with more experienced mathematicians and all involved enjoyed this cooperation. Some of our interpreta- tions of the ancient subject are described in the following. -
Helenistik Dönemde Mekanik Anlayişi: Tekhnê’Den Automata’Ya Geçiş
T.C. İSTANBUL MEDENİYET ÜNİVERSİTESİ SOSYAL BİLİMLER ENSTİTÜSÜ FELSEFE ANABİLİM DALI HELENİSTİK DÖNEMDE MEKANİK ANLAYIŞI: TEKHNÊ’DEN AUTOMATA’YA GEÇİŞ Yüksek Lisans Tezi ALPER COPLUGİL DANIŞMAN Prof. Dr. İhsan Fazlıoğlu EKİM 2018 ii BİLDİRİM Hazırladığım tezin tamamen kendi çalışmam olduğunu, akademik ve etik kuralları gözeterek çalıştığımı ve her alıntıya kaynak gösterdiğimi taahhüt ederim. İmza Alper Coplugil Danışmanlığını yaptığım işbu tezin tamamen öğrencinin çalışması olduğunu, akademik ve etik kuralları gözeterek çalıştığını taahhüt ederim. Prof. Dr. İhsan Fazlıoğlu iii iv İMZA SAYFASI Alper Coplugil tarafından hazırlanan ‘Helenistik Dönemde Mekanik Anlayışı: Tekhnê’den Automata’ya Geçiş’ başlıklı bu yüksek lisans tezi, Felsefe Anabilim Dalında hazırlanmış ve jürimiz tarafından kabul edilmiştir. JÜRİ ÜYELERİ İMZA Tez Danışmanı: [Prof. Dr. İhsan Fazlıoğlu] ............................. Kurumu: İstanbul Medeniyet Üniversitesi Üyeler: [Dr. Öğr. Üyesi Nihal Petek Boyacı Gülenç] ............................. Kurumu: İstanbul Medeniyet Üniversitesi [Prof. Dr. Mustafa Kaçar] ............................. Kurumu: Fatih Sultan Mehmet Vakıf Üniversitesi Tez Savunma Tarihi: 28.09.2018 v vi ÖNSÖZ Makine, insanlar için her zaman büyüleyicidir. İnsan gücünün yetmediği işleri kolaylıkla yapabilmesi, ona karşı duyulan hayranlığın nedenidir. Aslında bu hayranlık makineye değil, insanın kendisine duyduğu hayranlıktır. Nihayetinde insan, kol gücüyle yerine getiremediği veya bilişsel kapasitesinin yetmediği işleri yine kendisinin ürettiği bir “makine”