Toward a Self-Consistent Local and Global Strain History for Ganymede

Total Page:16

File Type:pdf, Size:1020Kb

Toward a Self-Consistent Local and Global Strain History for Ganymede Forming Ganymede's grooves at smaller strain: Toward a self-consistent local and global strain history for Ganymede Michael T. Bland1, and William B. McKinnon1 1Department of Earth and Planetary Sciences and McDonnell Center for the Space Sciences, Washington University in St. Louis, Saint Louis, MO 63130 50 total pages including 11 figures Submitted to Icarus January 3, 2014 Proposed Running Head: Forming Ganymede's grooves at smaller strain. Corresponding Author: Michael T. Bland Department of Earth and Planetary Sciences and McDonnell Center for Space Science Washington University in St. Louis Saint Louis, MO 63130 [email protected] phone: (314) 935-4810 fax: (314) 935-7361 2 Abstract The ubiquity of tectonic features formed in extension, and the apparent absence of ones formed in contraction, has led to the hypothesis that Ganymede has undergone global expan- sion in its past. Determining the magnitude of such expansion is challenging however, and extrapolation of locally or regionally inferred strains to global-scales often result in strain estimates that exceed those based on global constraints. Here we use numerical simulations of groove terrain formation to develop a strain history for Ganymede that is generally consis- tent at local, regional, and global scales. These simulations reproduce groove-like amplitudes, wavelengths, and average slopes at modest regional extensions (10-15%). The modest strains are more consistent with global constraints on Ganymede's expansion. Yet locally, surface strains can be much larger (30-60%), consistent with observations of highly-extended impact craters. Thus our simulations satisfy both the smallest-scale and largest-scale inferences of strain on Ganymede. The growth rate of the topography is consistent with (or exceeds) pre- dictions of analytical models, and results from the use of a non-associated plastic rheology that naturally permits localization of brittle failure (plastic strain) into linear fault-like shear zones. These fault-like zones are organized into periodically-spaced graben-like structures with stepped, inward-dipping faults. As in previous work groove amplitudes and wave- lengths depend on both the imposed heat flux and surface temperature, but because our brittle strength is depth-dependent, we find (for the parameters explored) that the growth rate of topography is initially faster for lower heat flows. Keywords: Ganymede; Tectonics; Ices. 3 1 Background 1.1 Ganymede's surface strain Ganymede's iconic \grooved terrain" consists of tens- to hundreds-of-kilometers-wide swaths of parallel, periodically spaced ridges and troughs that form a complex tectonic patch- work across the surface. Dominated at the smallest scales by apparent normal faults, and at larger scales by periodic ridges and troughs (or horst and graben, see below), the grooved terrain almost certainly formed via lithospheric extension. In contrast, features formed in contraction have not been identified. Thus, Ganymede's surface is apparently dominated by extensional strain (Pappalardo et al., 2004; Collins et al., 2010). This observation has lead to the suggestion that Ganymede has experienced a period of global expansion during either differentiation (Squyres, 1980; Mueller and McKinnon, 1988) or resonance passage (Showman et al., 1997; Bland et al., 2009). Differentiation yields the greatest areal expan- sion (up to ∼6% (Mueller and McKinnon, 1988)) as high-density ice deep in the satellite's core is brought up to lower pressure and converts to lower-density phases. The inferred age for the grooved terrain of 2 Ga (albeit with large uncertainty) (Zahnle et al., 2003) poses a challenge for the differentiation hypothesis unless it can be delayed until relatively late in Ganymede's history (e.g., Mueller and McKinnon, 1988). The timing problem is over- come by the resonance-passage hypothesis, which can yield up to ∼2% areal expansion of Ganymede as high-pressure phases of ice melt and transition to lower-density liquid water (Showman et al., 1997; Bland et al., 2009). However, such melting is only transient (current tidal heating in Ganymede is negligible), and it's unclear how global compression during the slow refreezing of Ganymede's ice mantle would affect its surface deformation. Furthermore, Ganymede's orbital evolution into the Laplace-resonance is far from certain (see, e.g., Peale and Lee, 2002; Malhotra, 1991; Greenberg, 1987; Yoder, 1979), and need not include passage through the paleo-resonances necessary for tidal dissipation to occur. There are several independent constraints on Ganymede's global, regional, and local strain (see Fig. 1). McKinnon (1981) argued that the increase in Ganymede's surface area 4 must be less than ∼2% (i.e., less than 1% increase in radius) based on the observation that Galileo Regio, a large, roughly-circular region of dark terrain, retains its intact shape. Radial expansions larger than 1% should have resulted in obvious, circumferential, exten- sional deformation (e.g., graben) within the Regio (Fig 1A). This observational constraint is consistent with the degree of global expansion suggested by the theoretical considerations described above. In contrast, structural analysis of Ganymede's grooved terrain itself indicate larger re- gional and global strains (Collins, 2006, 2008). Collins et al. (1998) estimated strains of roughly 50% in a portion of the Uruk Sulcus region from structural reconstruction of grooved terrain swaths. More general estimates of the strain required to produce large-scale grooves suggests 25-100% extension may be typical (Collins, 2006); however, images with resolution sufficient to reconstruct pre-deformation surfaces are limited. Lower-amplitude grooves are presumed to require less strain to form (Collins, 2006). Extrapolation of these strain magni- tudes to the rest of the satellite suggests that Ganymede underwent an areal increase of 6 - 20%, with a nominal value of 8% (Collins, 2008, 2009) (Fig. 1C and D). The low-end estimate may be consistent with strain magnitudes resulting from differentiation; however, these esti- mates are generally larger than those based on Galileo Regio, and exceed the global strains resulting from internal melting. To date these difference have not been fully reconciled. At the smallest scales, surface strain on Ganymede can be quite large. Deformed craters on Ganymede, whose initially circular shape lends itself to strain analysis without requiring an assumption of tectonic structure, indicate that localized strains can exceed 100% (Pap- palardo and Collins, 2005) (Fig. 1B). Many of these measurements were performed in craters 20-30 km in diameter with extensional zones ∼10 km wide. Despite this evidence for large lo- cal strains, the majority of Ganymede's grooves must have formed at lower extensional strain (Collins, 2008, 2009). Bubastis Sulcus near Ganymede's south pole is ∼600 km across and includes large-amplitude grooves (Fig. 2). Forming the Bubastis grooves at 100% extension of the original surface would require a 300 km increase (1.8%) in Ganymede's circumference, or a 3.6% increase in Ganymede's surface area for Bubastis Sulcus alone. The strain mag- 5 nitude exceeds that which can be produced by melting and is nearly half that produced by global expansion. Whereas Bubastis is one of Ganymede's widest groove swaths, invoking strains of 50-100% wherever large-amplitude grooves are observed would result in cumulative global strains that well exceed current estimates. This observation alone suggests that even large-amplitude grooves must be able to form at relatively small regional strains (∼10%), or that large amounts of hitherto unrecognized crustal consumption has occurred. 1.2 Salient features of the grooved terrain Truly constraining Ganymede's strain history requires a detailed understanding of the formation of its dominant extensional tectonic feature: the grooved terrain. Nearly two- thirds of Ganymede is composed of bright terrain, much of which includes tectonic structures dubbed grooves (Patterson et al., 2010). The remaining third of the surface is heavily- cratered, lower-albedo terrain. In generic terms, the grooved terrain consists of swaths of periodically spaced ridges and troughs with amplitudes of several hundred meters (Squyres, 1981; Giese et al., 1998; and Fig 2). The salient feature of the grooved terrain is the strong periodicity of the ridges and troughs within a single groove swath. Across the satellite these wavelengths vary from 3-17 km from one groove swath to the next (Grimm and Squyres, 1985; Patel et al., 1999). At large spatial scales topographic slopes are generally low, giving the grooved terrain an undulatory character (Squyres, 1981; Giese et al., 1998), though regional variations exist (see Fig 2b). In addition to the large-scale grooves first observed in Voyager images, higher-resolution images from Galileo have revealed complex, finer-scale lineations (presumably fractures) with periodic spacings of order 1 km (Pappalardo et al., 1998; Patel et al., 1999). A detailed review of grooved terrain (and Ganymede's tectonics in general) is provided in Pappalardo et al. (2004) and Collins et al. (2010). The general description above belies the complexity and variability of bright terrain morphologies present on Ganymede. Patterson et al. (2010) subdivided the bright terrain into three basic morphologies: grooved, subdued, and irregular. Grooved terrains, the focus of this paper, consist of lanes of large-amplitude, evenly-spaced ridges and grooves. Both groove
Recommended publications
  • JUICE Red Book
    ESA/SRE(2014)1 September 2014 JUICE JUpiter ICy moons Explorer Exploring the emergence of habitable worlds around gas giants Definition Study Report European Space Agency 1 This page left intentionally blank 2 Mission Description Jupiter Icy Moons Explorer Key science goals The emergence of habitable worlds around gas giants Characterise Ganymede, Europa and Callisto as planetary objects and potential habitats Explore the Jupiter system as an archetype for gas giants Payload Ten instruments Laser Altimeter Radio Science Experiment Ice Penetrating Radar Visible-Infrared Hyperspectral Imaging Spectrometer Ultraviolet Imaging Spectrograph Imaging System Magnetometer Particle Package Submillimetre Wave Instrument Radio and Plasma Wave Instrument Overall mission profile 06/2022 - Launch by Ariane-5 ECA + EVEE Cruise 01/2030 - Jupiter orbit insertion Jupiter tour Transfer to Callisto (11 months) Europa phase: 2 Europa and 3 Callisto flybys (1 month) Jupiter High Latitude Phase: 9 Callisto flybys (9 months) Transfer to Ganymede (11 months) 09/2032 – Ganymede orbit insertion Ganymede tour Elliptical and high altitude circular phases (5 months) Low altitude (500 km) circular orbit (4 months) 06/2033 – End of nominal mission Spacecraft 3-axis stabilised Power: solar panels: ~900 W HGA: ~3 m, body fixed X and Ka bands Downlink ≥ 1.4 Gbit/day High Δv capability (2700 m/s) Radiation tolerance: 50 krad at equipment level Dry mass: ~1800 kg Ground TM stations ESTRAC network Key mission drivers Radiation tolerance and technology Power budget and solar arrays challenges Mass budget Responsibilities ESA: manufacturing, launch, operations of the spacecraft and data archiving PI Teams: science payload provision, operations, and data analysis 3 Foreword The JUICE (JUpiter ICy moon Explorer) mission, selected by ESA in May 2012 to be the first large mission within the Cosmic Vision Program 2015–2025, will provide the most comprehensive exploration to date of the Jovian system in all its complexity, with particular emphasis on Ganymede as a planetary body and potential habitat.
    [Show full text]
  • High-Resolution Mosaics of the Galilean Satellites from Galileo SSI
    Lunar and Planetary Science XXIX 1833.pdf High-Resolution Mosaics of the Galilean Satellites from Galileo SSI. M. Milazzo, A. McEwen, C. B. Phillips, N. Dieter, J. Plassmann. Planetary Image Research Laboratory, LPL, University of Arizona, Tucson, AZ 85721; [email protected] The Galileo Spacecraft began mapping the Jovian orthographic projection centered at the latitude and system in June 1996. Twelve orbits of Jupiter and more longitude coordinates of the sub-spacecraft point to than 1000 images later, the Solid State Imager (SSI) is still preserve their perspective. Depending on the photometric collecting images, most far superior in resolution to geometry and scale, it may be necessary to apply a anything collected by the Voyager spacecraft. The data photometric normalization to the images. Next, the collected includes: low to medium resolution color data, individual frames are mosaicked together, and mosaicked medium resolution data to fill gaps in Voyager coverage, and onto a portion of the base map for regional context. Once very high-resolution data over selected areas. We have the mosaic is finished, it is checked to make sure that the tie been systematically processing the SSI images of the and match points were correct, and that the frames mesh. Galilean satellites to produce high-resolution mosaics and to We produce 3 final products: (i) an SSI-only mosaic, (ii) SSI place them into the regional context provided by medium- images mosaicked onto regional context, and (iii) the resolution mosaics from Voyager and/or Galileo. addition of a latitude-longitude grid to the context mosaic. Production of medium-resolution global mosaics is The purpose of this poster is to show the mosa- described in a companion abstract [1].
    [Show full text]
  • Appendix Contains a Timeline, Galileo Mission Overview (June 1996–December 1997), and a Set of Quick–Look Orbit Facts Sheets
    A P P E N D I X This appendix contains a timeline, Galileo Mission Overview (June 1996–December 1997), and a set of Quick–Look Orbit Facts sheets. The essentials of each orbit are listed. We have provided them as a handy reference while the orbiter’s tour progresses in the months to come. Appendix • Page A-1 Project Galileo Quick-Look Orbit Facts Appendix • Page A- 5 PROJECT GALILEO QUICK-LOOK ORBIT FACTS Fact Sheet Guide Title Quick Facts Indicates the target satellite and the number of the This section provides a summary listing of the orbit in the satellite tour. In this example, Ganymede is characteristics of the target satellite encounter as well the target satellite on the first orbit of the orbital tour. as the Jupiter encounter. PROJECT GALILEO QUICK-LOOK ORBIT FACTS PROJECT GALILEO QUICK-LOOK ORBIT FACTS Ganymede - Orbit 1 Ganymede - Orbit 1 Encounter Trajectory Quick Facts Ganymede Flyby Geometry +30 min Ganymede Encounter Earth Sun 27 June 1996 Ganymede C/A +15 min 06:29 UTC Ganymede C/A Altitude: 844 km Jupiter 6/27 6/26 133 times closer than VGR1 70 times closer than VGR2 Earth Speed: 7.8 km/s 0W -15 min Sun Jupiter C/A 6/28 Latitude: 30 deg N Longitude: 112 deg W 270W -30 min Perijove Io 28 June 1996 00:31 UTC Europa Jupiter Range: 11.0 Rj Time Ordered Listing Ganymede 6/29 Earth Range: 4.2 AU EVENT TIME (PDT-SCET) EVENT (continued) TIME (PDT-SCET) OWLT: 35 min Start Encounter 23 June 96 09:00 Europa C/A (156000 km) 18:22 Callisto Start Ganymede-1 real-time survey (F&P) 09:02 Europa global observation (NIMS/SSI) 18:43
    [Show full text]
  • The Global Colors of Ganymede As Seen by Galileo Ssi
    Lunar and Planetary Science XXX 1822.pdf THE GLOBAL COLORS OF GANYMEDE AS SEEN BY GALILEO SSI. T. Denk1, K.K. Khurana2, R.T. Pappalardo3, G. Neukum1, J.W. Head3, T.V. Rosanova4, and the Galileo SSI Team, 1DLR, Institute of Planetary Exploration, 12484 Berlin, Germany, e-mail: [email protected], 2UCLA, Los Angeles, CA, 3Brown University, Providence, RI, 4USGS, Flagstaff, AZ. Ganymede, as observed by the Galileo SSI Dark vs. bright and polar terrain. The bright camera, shows a banded, latitude-dependent color ("sulci") and dark ("regio") areas as well as the polar structure which is partly independent of geologic caps are the most obvious surface features on Ganyme- units. A correlation of the surface color with the de when seen at global scale from large distances. The magnetic field of Ganymede is reported, with areas albedo of the polar caps on the leading side is highest, exposed to the charged particles coming from the of the "regio" areas lowest, and of the "sulci" areas in Jovian environment often being redder than shielded between. (The polar caps of the trailing side will be terrain. The northern polar cap can be subdivided discussed below.) The bright polar caps are probably into a whitish area on the pole and the leading side, caused by water frost (e.g., Smith et al. 1981, Hillier and a darker, reddish area on the trailing side. The frost of the south-polar cap appears less opaque than in the north. The spectra of the dark "regio" areas are redder at the long SSI wavelength range than those of the brighter "sulci" terrains, but not significantly different at short SSI wavelengths.
    [Show full text]
  • Radar Imaging of Solar System Ices
    RADAR IMAGING OF SOLAR SYSTEM ICES A DISSERTATION SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING AND THE COMMITTEE ON GRADUATE STUDIES OF STANFORD UNIVERSITY IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Leif J. Harcke May 2005 © Copyright by Leif J. Harcke 2005 All Rights Reserved ii iv Abstract We map the planet Mercury and Jupiter’s moons Ganymede and Callisto using Earth-based radar telescopes and find that all bodies have regions exhibiting high, depolarized radar backscatter and polarization inversion (µc > 1). Both characteristics suggest volume scat- tering from water ice or similar cold-trapped volatiles. Synthetic aperture radar mapping of Mercury’s north and south polar regions at fine (6 km) resolution at 3.5 cm wavelength corroborates the results of previous 13 cm investigations of enhanced backscatter and po- larization inversion (0:9 µc 1:3) from areas on the floors of craters at high latitudes, ≤ ≤ where Mercury’s near-zero obliquity results in permanent Sun shadows. Co-registration with Mariner 10 optical images demonstrates that this enhanced scattering cannot be caused by simple double-bounce geometries, since the bright, reflective regions do not appear on the radar-facing wall but, instead, in shadowed regions not directly aligned with the radar look direction. A simple scattering model accounts for exponential, wavelength-dependent attenuation through a protective regolith layer. Thermal models require the existence of this layer to protect ice deposits in craters at other than high polar latitudes. The additional attenuation (factor 1:64 15%) of the 3.5 cm wavelength data from these experiments over previous 13 cm radar observations supports multiple interpretations of layer thickness, ranging from 0 11 to 35 15 cm, depending on the assumed scattering law exponent n.
    [Show full text]
  • The Origin of Ganymede's Polar Caps
    Icarus 191 (2007) 193–202 www.elsevier.com/locate/icarus The origin of Ganymede’s polar caps Krishan K. Khurana a,∗, Robert T. Pappalardo b, Nate Murphy c, Tilmann Denk d a Institute of Geophysics and Planetary Physics, University of California at Los Angeles, Los Angeles, CA 90095, USA b Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA c Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309-0392, USA d Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin, Germany Received 7 August 2006; revised 13 April 2007 Available online 5 May 2007 Abstract Since their discovery in Voyager images, the origin of the bright polar caps of Ganymede has intrigued investigators. Some models attributed the polar cap formation to thermal migration of water vapor to higher latitudes, while other models implicated plasma bombardment in brightening ice. Only with the arrival of Galileo at Jupiter was it apparent that Ganymede possesses a strong internal magnetic field, which blocks most of the plasma from bombarding the satellite’s equatorial region while funneling plasma onto the polar regions. This discovery provides a plausible explanation for the polar caps as related to differences in plasma-induced brightening in the polar and the equatorial regions. In this context, we analyze global color and high resolution images of Ganymede obtained by Galileo, finding a very close correspondence between the observed polar cap boundary and the open/closed field lines boundary obtained from new modeling of the magnetic field environment. This establishes a clear link between plasma bombardment and polar cap brightening.
    [Show full text]
  • Challenging the Paradigm: the Legacy of Galileo Symposium
    Challenging the Paradigm: The Legacy of Galileo Symposium November 19, 2009 California Institute of Technology Pasadena, California Proceedings of the 2009 Symposium and Public Lecture Challenging the Paradigm: The Legacy of Galileo NOVEMBER 19, 2009 CAHILL BUILDING - HAMEETMAN AUDITORIUM CALIFORNIA INSTITUTE OF TECHNOLOGY PASADENA, CALIFORNIA, USA © 2011 W. M. KECK INSTITUTE FOR SPACE STUDIES, ISBN-13: 978-1-60049-005-07 CALIFORNIA INSTITUTE OF TECHNOLOGY ISBN-10: 1-60049-005-0 Sponsored by The W.M. Keck Institute for Space Studies Supported by The Italian Consulate – Los Angeles The Italian Cultural Institute – Los Angeles Italian Scientists and Scholars in North America Foundation The Planetary Society Organizing Committee Dr. Cinzia Zuffada – Jet Propulsion Laboratory (Chair) Professor Mike Brown – California Institute of Technology (Co-Chair) Professor Giorgio Einaudi – Università di Pisa Dr. Rosaly Lopes – Jet Propulsion Laboratory Professor Jonathan Lunine - University of Arizona Dr. Marco Velli – Jet Propulsion Laboratory Table of Contents Introduction……………………………………………………………………………….. 1 Galileo's New Paradigm: The Ultimate Inconvenient Truth…………………………... 3 Professor Alberto Righini University of Florence, Italy Galileo and His Times…………………………………………………………………….. 11 Professor George V. Coyne, S.J. Vatican Observatory The Galileo Mission: Exploring the Jovian System…………………………………….. 19 Dr. Torrence V. Johnson Jet Propulsion Laboratory, California Institute of Technology What We Don't Know About Europa……………………………………………………. 33 Dr. Robert T. Pappalardo Jet Propulsion Laboratory, California Institute of Technology The Saturn System as Seen from the Cassini Mission…………………………………. 55 Dr. Angioletta Coradini IFSI – Istituto di Fisica dello Spazio Interplanetario dell’INAF - Roma Solar Activity: From Galileo's Sunspots to the Heliosphere………………………….. 67 Professor Eugene N. Parker University of Chicago From Galileo to Hubble and Beyond - The Contributions and Future of the Telescope: The Galactic Perspective…………………………………………………….
    [Show full text]
  • Modern Mars' Geomorphological Activity
    Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, Matthew Chojnacki, Susan Conway, Colin Dundas, Candice Hansen, Alfred Mcewen, et al. To cite this version: Serina Diniega, Ali Bramson, Bonnie Buratti, Peter Buhler, Devon Burr, et al.. Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity. Geomorphology, Elsevier, 2021, 380, pp.107627. 10.1016/j.geomorph.2021.107627. hal-03186543 HAL Id: hal-03186543 https://hal.archives-ouvertes.fr/hal-03186543 Submitted on 31 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Title: Modern Mars’ geomorphological activity, driven by wind, frost, and gravity 2 3 Authors: Serina Diniega1,*, Ali M. Bramson2, Bonnie Buratti1, Peter Buhler3, Devon M. Burr4, 4 Matthew Chojnacki3, Susan J. Conway5, Colin M. Dundas6, Candice J. Hansen3, Alfred S. 5 McEwen7, Mathieu G. A. Lapôtre8, Joseph Levy9, Lauren Mc Keown10, Sylvain Piqueux1, 6 Ganna Portyankina11, Christy Swann12, Timothy N. Titus6,
    [Show full text]
  • Gany 15Ppi.Pdf
    180° 0° 55° –55° . Geb Ur Sulcus 210° 330° 150° . Latpon 30° 60° –60° . Namtar . Agrotes Elam Philae Sulcus Sulci . Nigirsu Borsip Sulcus Lakhmu Fossae 70° –70° 240° 300° 60° 120° Galileo . Humbaba . Lagamal 80° . Wepwawet –80° . Teshub 90° 270° 90° 270° . Hathor Regio Bubastis Sulci Anubis . Neheh Dukug Sulcus 80° –80° Anzu Hamra. Patera . Adapa Etana GILGAMESH . Kishar . Aya 120° 60° 300° 240° . Ptah –70° . 70° Isis Ninkasi . Anu Enlil . Zaqar . Gula . Tanit . Sapas . Achelous Sebek 60° –60° 30° 150° 330° Mummu Sulci 210° . Adad 55° –55° 0° 180° North Pole South Pole 180° 170° 160° 150° 140° 130° 120° 110° 100° 90° 80° 70° 60° 50° 40° 30° 20° 10° 0° 350° 340° 330° 320° 310° 300° 290° 280° 270° 260° 250° 240° 230° 220° 210° 200° 190° 180° 57° 57° Geb . Enlil Elam Sulci . Asshur . Sin Ur Sulcus 50° 50° Aquarius Sulcus . Kadi Nun Sulci . Hershef Mashu Sulcus . Upuant Lakhmu Fossae . Galileo . Nefertum Mont Ur . Shu Byblus Sulcus Nippur Sulcus Sulcus Philus Sulcus 40° Enki Catena 40° Zu Fossae Nergal . Akitu Sulcus Tettu Facula . Lumha . Harakhtes . Halieus Abydos . Gir . Perrine Regio Khnum . Amon Facula Regio Kulla Catena . Anhur . Marius Nippur Sulcus M . Ammura Zakar . 30° Sati Mor a Bigeh . s 30° . Mehit Min . h Akhmin Facula Haroeris u Neith . Sicyon Sulcus Ta-urt S Facula Edfu Xibalba Sulcus Nineveh Sulcus u Anshar Sulcus l c Facula u . Ba'al s Epigeus . Bau Diment . Lugalmeslam Epigeus . Ilah Atra-hasis Hermopolis . Facula 20° Khepri Gushkin 20° . Ea . Heliopolis . Geinos Nidaba Nanshe . Facula Memphis Catena Seima . Agreus Busiris Chrysor.. Aleyin .
    [Show full text]
  • Linking Asteroids and Meteorites Through Reflectance Spectroscopy
    Astronomy 101 The Solar System Tuesday, Thursday 2:30-3:45 pm Hasbrouck 20 Tom Burbine [email protected] Course • Course Website: – http://blogs.umass.edu/astron101-tburbine/ • Textbook: – Pathways to Astronomy (2nd Edition) by Stephen Schneider and Thomas Arny. • You also will need a calculator. Office Hours • Mine • Tuesday, Thursday - 1:15-2:15pm • Lederle Graduate Research Tower C 632 • Neil • Tuesday, Thursday - 11 am-noon • Lederle Graduate Research Tower B 619-O Homework • We will use Spark • https://spark.oit.umass.edu/webct/logonDisplay.d owebct • Homework will be due approximately twice a week Class Averages • For people who took all 4 tests: • Class average is 81 • Grades range from a 98.5 to a 55.4 • Scores will go up when the lowest exam grade is dropped after the final • A (92.50 – 100) • A- (89.50 – 92.49) • B+ (87.50 – 89.49) • B (82.50 – 87.49) • B- (79.50 – 82.49) • C+ (77.50 – 79.49) • C (72.50 – 77.49) • C- (69.50 – 72.49) • D (59.50 – 69.49) • F (below 59.49) Final • Cumulative • Monday - 12/14 • 4:00 pm • Hasbrouck 20 • Review Session • Sunday -12/13 • 3:00 pm • Hasbrouck 134 Formulas you may need to know • p2 = a3 • F = GMm/r2 • F = ma • a = GM/r2 • Escape velocity = sqrt(2GM/r) • T (K) = T (oC) + 273.15 • c = f*λ • E = h*f • KE = 1/2mv2 • E = mc2 • Density = mass/volume • Volume = 4/3πr3 More Formulas • Power emitted per unit surface area = σT4 • λmax (nm) = (2,900,000 nm*K)/T • Apparent brightness = Luminosity 4π x (distance)2 Intelligent Life • Intelligent life that we can detect is usually defined as life that can build a radio telescope Radio • Transmitting information over radio waves is very cheap • uses equipment that is easy to build • has the information-carrying capacity necessary for the task • The information also travels at the speed of light.
    [Show full text]
  • Surface Composition and Properties of Ganymede: Updates from Ground-Based Observations with the Near-Infrared
    Surface composition and properties of Ganymede: updates from ground-based observations with the near-infrared imaging spectrometer SINFONI/VLT/ESO. Ligier N. 1, Paranicas C. 2, Carter J. 3, Poulet F. 3, Calvin W.M. 4, Nordheim T.A. 5, Snodgrass C. 1,6, Ferellec L. 3 1School of Physical Sciences, The Open University, Milton Keynes MK7 6AA, UK. 2Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723, USA. 3Institut d’Astrophysique Spatiale, Université Paris-Saclay, 91405 Orsay Cedex, France. 4Geological Sciences & Engineering, University of Nevada, Reno, NV 89557, USA. 5Jet Propulsion Laboratory, Pasadena, CA 91109, USA. 6School of Physics and Astronomy, University of Edinburgh, Edinburgh EH8 9YL, UK. First author’s e-mail: [email protected] ABSTRACT Ganymede’s surface exhibits great geological diversity, with old dark terrains, expressed through the surface composition, which is known to be dominated by two constituents: H2O-ice and an unidentified darkening agent. In this paper, new investigations of the composition of Ganymede’s surface at global scale are presented. The analyses are derived from the linear spectral modeling of a high spectral resolution dataset, acquired with the near-infrared (1.40 – 2.50 µm) ground-based integral field spectrometer SINFONI (SINgle Faint Object Near-IR Investigation) of the Very Large Telescope (VLT hereafter) located in Chile. We show that, unlike the neighboring moon Europa, photometric corrections cannot be performed using a simple Lambertian model. However, we find that the Oren- Nayar (1994) model, generalizing the Lambert’s law for rough surfaces, produces excellent results. Spectral modeling confirms that Ganymede’s surface composition is dominated by H2O-ice, which is predominantly crystalline, as well as a darkening agent, but it also clearly highlights the necessity of secondary species to better fit the measurements: sulfuric acid hydrate and salts, likely sulfates and chlorinated.
    [Show full text]
  • DARK HALO CRATERS and the THICKNESS of GROOVED TERRAIN on GANYMEDE, Paul M
    DARK HALO CRATERS AND THE THICKNESS OF GROOVED TERRAIN ON GANYMEDE, Paul M. Schenk and William B. McKinnon, Dept. of Earth & Planetary Sciences, Washington University, St. Louis, MO. 63130. Dark halo craters in grooved terrain on Ganymede represent potential probes of the subsurface geology of Ganymede. Pamentier et al. (1) have suggested that bright grooved terrain may have formed by the flooding of gra- ben within older and darker cratered terrain. If the flooded material is thin enough, craters forming in it may have excavated darker cratered terrain material from below the bri'ghter grooved terrain unit, incorporating the dark material into its ejecta. As the bright ray and rim materials equilibrate with the space environment (approach the albedo of undisturbed grooved ter- rain), the darker material in the ejecta will remain as a darker albedo ejec- ta deposit; i .e., dark halo craters. The existence of a transition diameter between craters that do and do not excavate into the buried darker cratered terrain should therefore provide an estimate of the thickness of the flooded material, if this model is valid. We assume that the low albedo is not a photometric effect. Dark halo craters (DHC) are surrounded by broad, circular, low a1 bedo deposits interpreted here as ejecta (Fig. 1). As such, they are distinct from dark ray craters. Dark ray craters and those with bright deposits were not considered because of the ray deposits. DHCs have been identifiable in most large tracts of grooved terrain, %55% are concentrated within Uruk Sulcus, the zone of grooved terrain immediately southwest of Galileo Regio.
    [Show full text]