An Evaluation of Ethernet As Data Transport System in Avionics

Total Page:16

File Type:pdf, Size:1020Kb

An Evaluation of Ethernet As Data Transport System in Avionics EXAMENSARBETE INOM TEKNIK, GRUNDNIVÅ, 15 HP STOCKHOLM, SVERIGE 2020 An Evaluation of Ethernet as Data Transport System in Avionics RICKARD DOVERFELT KTH SKOLAN FÖR ELEKTROTEKNIK OCH DATAVETENSKAP An Evaluation of Ethernet as Data Transport System in Avionics RICKARD DOVERFELT Degree Programme in Information and Communication Technology Date: 7th October 2020 Supervisor: Markus Hidell Examiner: Peter Sjödin School of Electrical Engineering and Computer Science Host company: ÅF Digital Solutions AB Swedish title: En utvärdering av Ethernet som datatransportssystem inom avionik An Evaluation of Ethernet as Data Transport System in Avionics / En utvärdering av Ethernet som datatransportssystem inom avionik © 2020 Rickard Doverfelt Abstract | i Abstract ÅF Digital Solutions AB are looking to replace their current legacy system for audio transmissions within aircrafts with a new system based on Ethernet. They also want the system to be as closely matching the current Audio Integration System as possible as well as preferably using commercial off the shelf components. The issue evaluated in this thesis is whether it is feasible to port the legacy protocol over to an Ethernet based solution with as few modifications as possible, what performance requirements are present on the Ethernet solution as well as what remaining capacity is available in the network. Furthermore is ÅF Digital Solutions AB interested in what avionics related Ethernet based protocols and standards are already present on the market. The work is conducted in two tracks - one track of experimental measurements and statistical analysis of the latency present in the proposed solutions and one track with a survey regarding the integration of the present Audio Integration System protocol into the propesed Ethernet based solutions. The study finds two standards present on the market: Avionics Full-Duplex Ethernet (AFDX) and Time-Triggered Ethernet (TTEthernet). Two prototype implementations are built, one implementing AFDX and one custom built upon Ethernet and UDP. The latency of these are measured and found to be largely similar at ideal conditions. Ethernet is found to be more flexible, whilst AFDX allow for interoperation with other manufacturers and TTEthernet facilitates strict timing requirements at the cost of specialised hardware. The bandwidth utilisation of AFDX at ideal conditions is found to be 0.980% per stream and for the Ethernet solution 0.979% per stream. It is proposed that ÅF Digital Solutions AB pursue a custom Ethernet based solution unless they require interoperability on the same network with other manufacturers as a custom solution with full control over the network allows the largest flexibility in regards to timings and load. If interoperability is required is AFDX proposed instead as it is a standardised protocol and without the, for ÅF Digital Solutions AB, unnecessary overhead of TTEthernet. Keywords AFDX, Avionics, Bandwidth utilisation, Ethernet, Latency, Legacy systems ii | Abstract Sammanfattning | iii Sammanfattning Åf Digital Solutions AB vill undersöka möjligheterna att byta sitt nuvarande legacysystem för kommunikation inom flygplan till ett Ethernet-baserat system. Detta på ett sätt som håller implementationen så nära deras nuvarande Audio Integration System som möjligt. Problemet som undersöks är huruvida det är rimligt att flytta legacyprotokollet till Ethernet med så lite modifikationer som möjligt. Utöver detta vill ÅF Digital Solutions AB veta prestandakraven som blir på en Ethernet-lösning samt hur mycket resterande kapacitet som eventuellt finns kvar för framtida användning. Vidare vill de veta vilka standarder som redan finns på marknaden. Arbetet genomförs genom två spår - ett med experimentella mätningar och statistisk analys och en med ett case-study av integrationen av Audio Integration System och Ethernet. Undersökningen finner två standarder på marknaden relaterat till avionik; Avionics Full-Duplex Ethernet (AFDX) samt Time-Triggered Ethernet (TTEthernet). Två prototyper byggs, en baserad på AFDX och en baserad på UDP och Ethernet. Latencyn för dessa två mäts och finns vara snarlika vid deras respektive ideala scenarion. Ethernet finns vara mer flexibelt, AFDX mer interoperabel och TTEthernet mer lämplig vid strikta tidskrav. Bandbreddsutnyttjandet för AFDX finns vara 0.980% vid ideala förhållanden och 0.979% för Ethernet vid ideala förhållanden. Det rekommenderas att ÅF Digital Solutions använder sig av en egenutformad Ethernetbaserad lösning om de inte har krav på interoperabilitet ty det ger mer flexibilietet gällande tidskrav, protokoll och dataflödet. Nyckelord AFDX, Avionik, Bandbreddsutyttjande, Ethernet, Latency, Legacysystem iv | Sammanfattning Acknowledgments | v Acknowledgments I would like to thank Alexander Pukhanov at AFRY for his supervision of this thesis work and his willingness to help and find information on how the present optical system works. I would also like to thank Kenneth Fornstål for providing ideas on how to measure the latency of the present optical system and help performing said measurements. AFRY should also have a thank you for letting me do this thesis and providing the documents, standards, materials and equipment that I needed. Stockholm, October 2020 Rickard Doverfelt vi | Acknowledgments CONTENTS | vii Contents 1 Introduction1 1.1 Background...........................1 1.2 Problem.............................2 1.2.1 Original problem and definition............2 1.2.2 Scientific and engineering issues............2 1.3 Purpose.............................3 1.4 Goals..............................3 1.5 Work Structure.........................4 1.6 Delimitations..........................4 1.7 Structure of the Thesis.....................5 2 Background7 2.1 Avionics and Aircraft Audio System and Equipment......7 2.1.1 Avionics and Aerospace Industry...........7 2.1.2 European Technical Standard Order..........8 2.1.3 Aircraft Audio System and Equipment.........8 2.2 IEEE 802.3 Ethernet......................9 2.2.1 Network Layer..................... 11 2.2.2 Transport Layer..................... 12 2.3 Current System at ÅFDS.................... 12 2.4 Related Work.......................... 13 2.4.1 Airbus’ Ethernet Implementation AFDX........ 14 2.4.2 Time-Triggered Ethernet................ 15 2.5 Summary............................ 15 3 Method 17 3.1 Survey Process......................... 17 3.2 Prototype Development..................... 18 viii | Contents 3.3 Experimental Design and Planned Measurements..................... 19 3.3.1 Test Environment.................... 19 3.3.2 Hardware/Software................... 21 4 Prototype Design 23 4.1 Study of present solutions.................... 23 4.1.1 ARINC 664p7..................... 23 4.1.2 AS6802......................... 23 4.2 System Design......................... 24 4.2.1 AFDX Packet Structure................. 25 4.2.2 Ethernet Packet Structure................ 26 4.3 Implementation......................... 27 4.3.1 Addressing Scheme................... 27 4.3.2 Hardware........................ 28 4.3.3 Software........................ 29 5 Results and Analysis 33 5.1 The Ethernet System...................... 33 5.2 The AFDX Solution....................... 36 5.3 AIS............................... 40 5.4 Literature............................ 40 5.4.1 Functional Aspects................... 41 5.5 Bandwidth utilisation...................... 42 6 Discussion 45 6.1 AFDX and Ethernet....................... 46 6.2 Stability of the AIS....................... 47 6.3 TTEthernet........................... 47 6.4 Comparison of Systems..................... 48 6.5 Bandwidth Utilisation...................... 49 7 Conclusions and Future work 51 7.1 Conclusions........................... 51 7.2 Limitations........................... 52 7.3 Future work........................... 53 7.4 Reflections........................... 53 References 55 LIST OF FIGURES | ix List of Figures 2.1 Structure of MAC packet.................... 10 2.2 Structure of IPv4 header [9].................. 11 2.3 Structure of UDP header [12].................. 12 2.4 Structure of a packet in AIS................... 13 3.1 Survey Process......................... 18 3.2 Test setup, calibration...................... 19 3.3 Test setup, latency........................ 19 3.4 Visualisation of timestamp placement during send....... 20 3.5 Visualisation of timestamp placement during receive..... 20 3.6 Structure of a log entry for both solutions........... 21 3.7 Test setup, latency (AIS).................... 22 4.1 Layout without central hub................... 24 4.2 Layout with central hub..................... 25 4.3 Structure of an AFDX packet, based on [13].......... 26 4.4 Structure of AFDX Payload for AFDS’s data streams..... 27 4.5 Structure of Multicast IP for AFDX............... 28 4.6 Structure of Unicast IP for AFDX................ 28 4.7 Structure of Multicast MAC for AFDX............. 28 4.8 Structure of Source MAC for AFDX.............. 28 4.9 ÅFDS payload as struct..................... 29 5.1 Ethernet Calibration....................... 33 5.2 Ethernet Latency........................ 34 5.3 Ethernet Latency (Compensated)................ 34 5.4 Ethernet Latency Distribution................. 35 5.5 AFDX Calibration........................ 36 5.6 AFDX Latency (Crowded)................... 37 5.7 AFDX Latency (Compensated, Crowded)........... 37 x | LIST OF FIGURES 5.8 AFDX Latency Distribution (Crowded)............ 38 5.9 AFDX Latency (Ideal)..................... 39 5.10 AFDX Latency (Compensated,
Recommended publications
  • On Ttethernet for Integrated Fault-Tolerant Spacecraft Networks
    On TTEthernet for Integrated Fault-Tolerant Spacecraft Networks Andrew Loveless∗ NASA Johnson Space Center, Houston, TX, 77058 There has recently been a push for adopting integrated modular avionics (IMA) princi- ples in designing spacecraft architectures. This consolidation of multiple vehicle functions to shared computing platforms can significantly reduce spacecraft cost, weight, and de- sign complexity. Ethernet technology is attractive for inclusion in more integrated avionic systems due to its high speed, flexibility, and the availability of inexpensive commercial off-the-shelf (COTS) components. Furthermore, Ethernet can be augmented with a variety of quality of service (QoS) enhancements that enable its use for transmitting critical data. TTEthernet introduces a decentralized clock synchronization paradigm enabling the use of time-triggered Ethernet messaging appropriate for hard real-time applications. TTEther- net can also provide two forms of event-driven communication, therefore accommodating the full spectrum of traffic criticality levels required in IMA architectures. This paper explores the application of TTEthernet technology to future IMA spacecraft architectures as part of the Avionics and Software (A&S) project chartered by NASA's Advanced Ex- ploration Systems (AES) program. Nomenclature A&S = Avionics and Software Project AA2 = Ascent Abort 2 AES = Advanced Exploration Systems Program ANTARES = Advanced NASA Technology Architecture for Exploration Studies API = Application Program Interface ARM = Asteroid Redirect Mission
    [Show full text]
  • Data Center Ethernet 2
    DataData CenterCenter EthernetEthernet Raj Jain Washington University in Saint Louis Saint Louis, MO 63130 [email protected] These slides and audio/video recordings of this class lecture are at: http://www.cse.wustl.edu/~jain/cse570-15/ Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-1 OverviewOverview 1. Residential vs. Data Center Ethernet 2. Review of Ethernet Addresses, devices, speeds, algorithms 3. Enhancements to Spanning Tree Protocol 4. Virtual LANs 5. Data Center Bridging Extensions Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-2 Quiz:Quiz: TrueTrue oror False?False? Which of the following statements are generally true? T F p p Ethernet is a local area network (Local < 2km) p p Token ring, Token Bus, and CSMA/CD are the three most common LAN access methods. p p Ethernet uses CSMA/CD. p p Ethernet bridges use spanning tree for packet forwarding. p p Ethernet frames are 1518 bytes. p p Ethernet does not provide any delay guarantees. p p Ethernet has no congestion control. p p Ethernet has strict priorities. Washington University in St. Louis http://www.cse.wustl.edu/~jain/cse570-15/ ©2015 Raj Jain 4-3 ResidentialResidential vs.vs. DataData CenterCenter EthernetEthernet Residential Data Center Distance: up to 200m r No limit Scale: Few MAC addresses r Millions of MAC Addresses 4096 VLANs r Millions of VLANs Q-in-Q Protection: Spanning tree r Rapid spanning tree, … (Gives 1s, need 50ms) Path determined by r Traffic engineered path spanning tree Simple service r Service Level Agreement.
    [Show full text]
  • Study of the Time Triggered Ethernet Dataflow
    Institutionen f¨ordatavetenskap Department of Computer and Information Science Final thesis Study of the Time Triggered Ethernet Dataflow by Niclas Rosenvik LIU-IDA/LITH-EX-G{15/011|SE 2015-07-08 Linköpings universitet Linköpings universitet SE-581 83 Linköping, Sweden 581 83 Linköping Link¨opingsuniversitet Institutionen f¨ordatavetenskap Final thesis Study of the Time Triggered Ethernet Dataflow by Niclas Rosenvik LIU-IDA/LITH-EX-G{15/011|SE 2015-07-08 Supervisor: Unmesh Bordoloi Examiner: Petru Eles Abstract In recent years Ethernet has caught the attention of the real-time commu- nity. The main reason for this is that it has a high data troughput, 10Mbit/s and higher, and good EMI characteristics. As a protocol that might be used in real-time environments such as control systems for cars etc, it seems to fulfil the requirements. TTEthernet is a TDMA extension to normal Eth- ernet, designed to meet the hard deadlines required by real-time networks. This thesis describes how TTEthernet handles frames and the mathemat- ical formulas to calculate shuffle delay of frames in such a network. Open problems related to TTEthernet are also discussed. iii Contents 1 Introduction 1 2 Ethernet 2 2.1 Switching . 2 2.2 Ethernet frame format . 3 2.3 The need for TTEthernet . 4 3 TTEthernet 6 3.1 TTEthernet spec . 6 3.1.1 Protocol control frames . 6 3.1.2 Time-triggered frames . 7 3.1.3 Rate constrained frames . 9 3.1.4 Best effort frames . 10 3.2 Integration Algorithms . 10 3.2.1 Shuffling . 10 3.2.2 Preemption .
    [Show full text]
  • PROFINET for Network Geeks
    PROFINET for Network Geeks (and those who want to be) Introduction PROFINET is an open Industrial Ethernet standard. It is a communication protocol that exchanges data between automation controllers and devices. With over 25 million installed nodes (as of 2018), PROFINET is one of the most widely used Industrial Ethernet standards worldwide. But even though millions of users are familiar with PROFINET, not all users understand how it works. This white paper starts with a brief overview of Ethernet and the 7-layer ISO-OSI model. Then, it describes how PROFINET’s 3 communication channels fit in the model: TCP/IP and UDP/IP, Real-Time (RT), and Isochronous Real-Time (IRT). 1 Ethernet The transition from using 4-20 mA analog signals for I/O communication to digital fieldbuses provided the benefits of reduced wiring, access to network data, and robust diagnostics. The later transition from digital fieldbuses to Ethernet was also similarly a shift to a more modern technology. Ethernet incorporated and improved upon the benefits of fieldbuses. Ethernet is ubiquitous and PROFINET uses standard Ethernet. Ethernet gives PROFINET the ability to provide faster updates, more bandwidth, larger messages, an unlimited address space, and even more diagnostic capabilities. Also, as commercial Ethernet evolves, PROFINET can take advantage of these physical layer improvements. Figure 1 ISO-OSI Model The ISO-OSI Model Ethernet-based communications can be represented by a seven-layer model: the ISO/OSI Reference Model. The model generically describes the means and methods used to transmit data. Each layer has a specific name and function, as shown in Figure 1.
    [Show full text]
  • Generating Synthetic Voip Traffic for Analyzing Redundant Openbsd
    UNIVERSITY OF OSLO Department of Informatics Generating Synthetic VoIP Traffic for Analyzing Redundant OpenBSD-Firewalls Master Thesis Maurice David Woernhard May 23, 2006 Generating Synthetic VoIP Traffic for Analyzing Redundant OpenBSD-Firewalls Maurice David Woernhard May 23, 2006 Abstract Voice over IP, short VoIP, is among the fastest growing broadband technologies in the private and commercial sector. Compared to the Plain Old Telephone System (POTS), Internet telephony has reduced availability, measured in uptime guarantees per a given time period. This thesis makes a contribution towards proper quantitative statements about network availability when using two redun- dant, state synchronized computers, acting as firewalls between the Internet (WAN) and the local area network (LAN). First, methods for generating adequate VoIP traffic volumes for loading a Gigabit Ethernet link are examined, with the goal of using a minimal set of hardware, namely one regular desktop computer. pktgen, the Linux kernel UDP packet generator, was chosen for generating synthetic/artificial traffic, reflecting the common VoIP packet characteristics packet size, changing sender and receiver address, as well as typical UDP-port usage. pktgen’s three main parameters influencing the generation rate are fixed inter-packet delay, packet size and total packet count. It was sought to relate these to more user-friendly val- ues of amount of simultaneous calls, voice codec employed and call duration. The proposed method fails to model VoIP traffic accurately, mostly due to the cur- rently unstable nature of pktgen. However, it is suited for generating enough packets for testing the firewalls. Second, the traffic forwarding limit and failover behavior of the redun- dant, state-synchronized firewalls was examined.
    [Show full text]
  • Žilinská Univerzita V Žiline Elektrotechnická Fakulta Katedra Telekomunikácií
    Žilinská univerzita v Žiline Elektrotechnická fakulta Katedra telekomunikácií Teoretický návrh a realizácia sieťového uzla na báze protokolov 802.1Q, IP a BGP Pavol Križan 2006 Teoretický návrh a realizácia sieťového uzla na báze protokolov 802.1Q, IP a BGP DIPLOMOVÁ PRÁCA PAVOL KRIŽAN ŽILINSKÁ UNIVERZITA V ŽILINE Elektrotechnická fakulta Katedra telekomunikácií Študijný odbor: TELEKOMUNIKÁCIE Vedúci diplomovej práce: Ing. Peter Zuberec Stupeň kvalifikácie: inžinier (Ing.) Dátum odovzdania diplomovej práce: 19.05.2006 ŽILINA 2006 Abstrakt Diplomová práca popisuje základy fungovania počítačových sietí VLAN, protokoly, ktoré sa v nich využívajú a základy smerovacích protokolov, špeciálne Border Gateway Protokol (BGP). Práca sa tiež zaoberá vytvorením modelu sieťového uzla, ktorý bude poskytovať smerovanie s použitím BGP protokolu, podporu VLAN a vysokú redundanciu zariadení alebo liniek. This diploma work is dealing with basic functions of Virtual Local Area Networks, protocols used in those netwoks and basics of routing protocols, specially Border Gateway Protocol (BGP). It describes creation of network node, which will provide routing using BGP protocol, VLAN support and high redundancy of devices or links . Žilinská univerzita v Žiline, Elektrotechnická fakulta, Katedra telekomunikácií ________________________________________________________________________ ANOTAČNÝ ZÁZNAM - DIPLOMOVÁ PRÁCA Priezvisko, meno: Križan Pavol školský rok: 2005/2006 Názov práce: Teoretický návrh a realizácia sieťového uzla na báze protokolov 802.1Q, IP a BGP Počet strán: 50 Počet obrázkov: 23 Počet tabuliek: 0 Počet grafov: 0 Počet príloh: 0 Použitá lit.: 16 Anotácia: Diplomová práca popisuje základy fungovania počítačových sietí VLAN, protokoly, ktoré sa v nich využívajú a základy smerovacích protokolov, špeciálne Border Gateway Protokol (BGP). Práca sa tiež zaoberá vytvorením modelu sieťového uzla, ktorý bude poskytovať smerovanie s použitím BGP protokolu, podporu VLAN a vysokú redundanciu zariadení alebo liniek.
    [Show full text]
  • IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
    IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • Developments in Audio Networking Protocols By: Mel Lambert
    TECHNICAL FOCUS: SOUND Copyright Lighting&Sound America November 2014 http://www.lightingandsoundamerica.com/LSA.html Developments in Audio Networking Protocols By: Mel Lambert It’s an enviable dream: the ability to prominent of these current offerings, ular protocol and the basis for connect any piece of audio equip- with an emphasis on their applicability Internet-based systems: IP, the ment to other system components within live sound environments. Internet protocol, handles the and seamlessly transfer digital materi- exchange of data between routers al in real time from one device to OSI layer-based model for using unique IP addresses that can another using the long-predicted con- AV networks hence select paths for network traffic; vergence between AV and IT. And To understand how AV networks while TCP ensures that the data is with recent developments in open work, it is worth briefly reviewing the transmitted reliably and without industry standards and plug-and-play OSI layer-based model, which divides errors. Popular Ethernet-based proto- operability available from several well- protocols into a number of smaller cols are covered by a series of IEEE advanced proprietary systems, that elements that accomplish a specific 802.3 standards running at a variety dream is fast becoming a reality. sub-task, and interact with one of data-transfer speeds and media, Beyond relaying digital-format signals another in specific, carefully defined including familiar CAT-5/6 copper and via conventional AES/EBU two-chan- ways. Layering allows the parts of a fiber-optic cables. nel and MADI-format multichannel protocol to be designed and tested All AV networking involves two pri- connections—which requires dedicat- more easily, simplifying each design mary roles: control, including configur- ed, wired links—system operators are stage.
    [Show full text]
  • Overview on IP Audio Networking Andreas Hildebrand, RAVENNA Evangelist ALC Networx Gmbh, Munich Topics
    Overview on IP Audio Networking Andreas Hildebrand, RAVENNA Evangelist ALC NetworX GmbH, Munich Topics: • Audio networking vs. OSI Layers • Overview on IP audio solutions • AES67 & RAVENNA • Real-world application examples • Brief introduction to SMPTE ST2110 • NMOS • Control protocols Overview on IP Audio Networking - A. Hildebrand # 1 Layer 2 Layer 1 AVB EtherSound Layer 3 Audio over IP Audio over Ethernet ACIP TCP unicast RAVENNA AES67 multicast RTP UDP X192 Media streaming Dante CobraNet Livewire Overview on IP Audio Networking - A. Hildebrand # 3 Layer 2 Layer 1 AVB Terminology oftenEtherSound Layer 3 Audio over IP • ambiguousAudio over Ethernet ACIP TCP unicast • usedRAVENNA in wrongAES67 context multicast RTP • marketingUDP -driven X192 Media streaming • creates confusion Dante CobraNet Livewire Overview on IP Audio Networking - A. Hildebrand # 4 Layer 2 Layer 1 AVB Terminology oftenEtherSound Layer 3 Audio over IP • ambiguousAudio over Ethernet ACIP TCP Audio over IP unicast • usedRAVENNA in wrongAES67 context multicast RTP • marketingUDP -driven X192 Media streaming • creates confusion Dante CobraNet Livewire Overview on IP Audio Networking - A. Hildebrand # 5 Layer 7 Application Application Application and Layer 6 Presentation protocol-based layers Presentation HTTP, FTP, SMNP, Layer 5 Session Session POP3, Telnet, TCP, Layer 4 Transport UDP, RTP Transport Layer 3 Network Internet Protocol (IP) Network Layer 2 Data Link Ethernet, PPP… Data Link Layer 1 Physical 10011101 Physical Overview on IP Audio Networking - A. Hildebrand # 10 Physical transmission Classification by OSI network layer: Layer 1 Systems Transmit Receive Layer 1 Physical 10011101 Physical Overview on IP Audio Networking - A. Hildebrand # 12 Physical transmission Layer 1 systems: • Examples: SuperMac (AES50), A-Net Pro16/64 (Aviom), Rocknet 300 (Riedel), Optocore (Optocore), MediorNet (Riedel) • Fully proprietary systems • Make use of layer 1 physical transport (e.g.
    [Show full text]
  • Model 5421 Dante® Intercom Audio Engine
    Model 5421 Dante® Intercom Audio Engine Key Features • 16-channel audio engine creates multiple • DDM support and AES67 compliant virtual party-line (PL) intercom circuits • PoE powered, Gigabit Ethernet interface • Dante audio-over-Ethernet technology • Configured using STcontroller application • Auto Mix for enhanced audio performance • Table-top, portable, or optional rack-mount • Supports Studio Technologies’ intercom installation beltpacks Overview The Model 5421 Dante® Intercom Audio Engine is a high- enclosure can be used stand-alone or mounted in one space performance, cost-effective, flexible solution for creating (1U) of a standard 19-inch rack enclosure with an optional party-line (PL) intercom circuits. It’s directly compatible rack-mount installation kit. To meet the latest interoper- with the Studio Technologies’ range of 1-, 2-, and 4-chan- ability standard the Model 5421’s Dante implementation nel Dante-enabled beltpacks and other interface-related meets the requirements of AES67 as well as supporting the products. The unit is suitable for use in fixed and mobile Dante Domain Manager (DDM) application. Using DDM, broadcast facilities, post-production studios, commercial compliance with ST 2110-30 may be possible. and educational theater environments, and entertainment The Model 5421 provides one 16-channel audio engine applications. which can be configured to provide from one to four “virtual” Only a Gigabit Ethernet network connection with Power- intercom circuits. The term “audio engine” was selected over-Ethernet (PoE) support is required for the Model to describe a set of audio input, processing, routing, and 5421 to provide a powerful resource in a variety of Dante output resources that can be configured to support spe- applications.
    [Show full text]
  • 10-Port 2.5GBASE-T Web Smart Switch with 2 X 10G SFP+ Slots
    TEG-30102WS 10-Port 2.5GBASE-T Web Smart Switch with 2 x 10G SFP+ Slots TEG-30102WS (v1.0R) • 8 x 2.5GBASE-T RJ-45 ports with 2 x 10G SFP+ slots • 2.5GBASE-T supports up to 2.5Gbps connection speeds • Compatible with existing Cat5e or better cabling • Easy to use web-based management interface • Supports up to 32 IPv4/IPv6 static routes • Supports LACP, VLAN, and IGMP Snooping • IEEE 802.1p QoS with queue scheduling support • Per port MAC restriction and dynamic ARP inspection • Bandwidth control per port • 80Gbps switching capacity • 1U rack mountable (brackets included) TRENDnet’s 10-Port 2.5GBASE-T Web Smart Switch with eight 2.5GBASE-T ports and two 10G SFP+ slots, model TEG-30102WS, delivers advanced management features with an 80Gbps switching capacity. The TEG-30102WS is equipped with 2.5GBASE-T RJ-45 ports that provide higher gigabit speeds capable of up to 2.5Gbps over existing Cat5e or better cabling. This rack mountable IPv6 ready switch comes with an intuitive web-based interface. Advanced traffic management controls include IP routing, VLAN, QoS, access controls, link aggregation, troubleshooting, and SNMP monitoring, making this a powerful solution for SMB networks. TEG-30102WS Web Smart Management 2.5GBASE-T Ports 10G SFP+ Slots Provides an easy to use web-based GUI Equipped with eight 2.5GBASE-T RJ-45 Offers two 10G SFP+ slots for high-speed management interface for advanced traffic ports that provide higher gigabit speeds network connections providing a cost- management controls, IP routing, VLAN, capable of up to 2.5Gbps over existing effective solution in adding 10G link QoS, access controls, link aggregation, Cat5e or better cabling.
    [Show full text]
  • Converged Networking in the Data Center
    Converged Networking in the Data Center Peter P. Waskiewicz Jr. LAN Access Division, Intel Corp. [email protected] Abstract data center as a whole. In addition to the general power and cooling costs, other areas of focus are the physical The networking world in Linux has undergone some sig- amount of servers and their associated cabling that re- nificant changes in the past two years. With the expan- side in a typical data center. Servers very often have sion of multiqueue networking, coupled with the grow- multiple network connections to various network seg- ing abundance of multi-core computers with 10 Gigabit ments, plus they’re usually connected to a SAN: ei- Ethernet, the concept of efficiently converging different ther a Fiber Channel fabric or an iSCSI infrastructure. network flows becomes a real possibility. These multiple network and SAN connections mean large amounts of cabling being laid down to attach a This paper presents the concepts behind network con- server. Converged Networking takes a 10GbE device vergence. Using the IEEE 802.1Qaz Priority Group- that is capable of Data Center Bridging in hardware, ing and Data Center Bridging concepts to group mul- and consolidates all of those network connections and tiple traffic flows, this paper will demonstrate how dif- SAN connections into a single, physical device and ca- ferent types of traffic, such as storage and LAN traf- ble. The rest of this paper will illustrate the different fic, can efficiently coexist on the same physical connec- aspects of Data Center Bridging, which is the network- tion.
    [Show full text]