88. Jahrestagung 88Th Annual Meeting

Total Page:16

File Type:pdf, Size:1020Kb

88. Jahrestagung 88Th Annual Meeting Wissenschaftliches Programm • Sontag, 19.9.2010 FROM DUST TO DUST 88. JAHRESTAGUNG der Deutschen Mineralogischen Gesellschaft 88th ANNUAL MEETING of the German Mineralogical Society 19.–22. September 2010 •1 Münster Abstracts Table of Content PLENARY TALKS 4 GOLDSCHMIDT LECTURE 8 S 01: Early differentiation and core formation of the terrestrial planets Oral Presentations 11 Poster Presentations 215 S 02: Functional materials, Archaeometry Oral Presentations 22 Poster Presentations 221 S 03: Metamorphic processes Oral Presentations 33 Poster Presentations 228 S 04: CO2 sequestration into geological reservoirs and laboratory Oral Presentations 43 Poster Presentations 235 S 05: Early solar system Oral Presentations 55 Poster Presentations 258 S 06: Experimental and theoretical petrology Oral Presentations 77 Poster Presentations 267 S 07: General and applied crystallography Oral Presentations 87 Poster Presentations 281 S 08: Subduction zone processes Oral Presentations 105 Poster Presentations 303 S 09: Environmental mineralogy and geochemistry Oral Presentations 112 Poster Presentations 308 S 10: Mineralogy of the deep earth Oral Presentations 125 Poster Presentations 316 S 11: Fluid-rock and fluid-mineral interaction Oral Presentations 132 Poster Presentations 321 S 12: Geochemical signatures in environmental archives: Formation, preservation and application Oral Presentations 149 Poster Presentations 330 2 S 13: Ion Microprobe characterization of geo-materials Oral Presentations 163 Poster Presentations 349 S 14: Magmatic processes Oral Presentations 170 Poster Presentations 358 S 15: Time constraints on geological processes Oral Presentations 202 Poster Presentations 365 AUTHOR INDEX 367 3 PLENARY TALKS 4 Mineralogical Evolution of Meteorites Timothy J. McCoy (presenting author)1 1Dept. of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560-0119 USA. In a provocative paper, Hazen et al. (2008) argued that the mineralogy of terrestrial planets evolves as a consequence of a range of physical, chemical and biological processes. From an initial inventory of approximately a dozen currently-known presolar minerals, processes including melting in the solar nebula, impact, melting and differentiation, plate tectonics, metamorphism, evaporation, atmospheric oxidation, and the rise of life produced the ~4300 mineral known today. Examining mineralogy in the light of planetary evolution introduces geologic time to the study of, and teaching of, this fundamental geological discipline. In this abstract, I explore the earliest stages of such evolution, examining how the mineralogy recorded in meteorites tracks this diversification and questioning whether such a diversification is, in fact, linear. The earliest mineral record dates from before the formation of our own Solar System. Presolar grains formed in a previous generation of stars seeded the solar nebula. First inferred from noble gas anomalies, acid dissolution and physical separation led to the identification of the carbon-bearing phases diamond, silicon carbide and graphite. In situ studies have subsequently identified nitrides, carbides, oxides and silicates. Among the most active areas of meteorite research, the inventory of minerals, including the identification of new minerals and the recognition of abundant amorphous materials, is likely to grow dramatically in the coming decade. Condensation during cooling of the solar nebula produced the precursors of calcium-aluminum-inclusions (CAIs) and chondrules which were subsequently remelted by transient heating events. Composed of refractory oxides and silicates, the minerals found in CAI’s sample all the crystal systems. Magnesian silicates dominate primitive, chondritic meteorites but are joined by a range of sulfides, oxides, carbides, silicides, and phosphides that reflect the oxygen fugacity under which the meteorites formed. The accretion of chondritic components into km-sized asteroids initiated thermal and aqueous alteration, as well as leading to a dynamic impact environment. Within these asteroids, melting of ice produced phyllosilicates, oxides, carbonates, sulfates and halides. Thermal metamorphism produced albitic plagioclase and may have been responsible for the formation of phosphates, silica polymorphs, sinoite (Si2N2O), amphibole and others. Shock metamorphism transformed olivine into ringwoodite and wadsleyite, while pyroxene, ilmenite and SiO2 all suffered similar fates. The onset of melting first created additional diversity with S,C,P-rich metallic melts reacting to form Na-Ca-Mg phosphates and carbides. At this point, the seemingly unending increase in mineralogical diversity essentially reversed itself, as near-total melting produced a molten planet that may have only had olivine as a residual, solid mineral phase. However, separation into core, mantle and crust gave rise to a new set of minerals, with new silicates and oxides forming in the crust as a result of fractional crystallization and Fe,Ni, phosphide, nitride, sulfide and phosphate phases appearing in the core. Absent from Earth, some meteoritic minerals were formed in environments that would never be repeated. A more remarkable feature is that many meteoritic minerals formed from processes – aqueous alteration, metamorphism, igneous differentiation – that formed and would continue to form many of the diverse minerals found on Earth. Reference: Hazen, R.M. et al. (2008) Mineral evolution. American Mineralogist 93, 1693-1720. 5 Oceanic floor basalts - a view of mantle processes and mantle history from the experimental study of phase relations and trace-element distributions Hugh O’Neill1, Xi Liu2 and Frances Jenner3 1Research School of Earth, The Australian National University, Canberra ACT, Australia 2Now at: School of Earth and Space Sciences, Peking University, Beijing 100871, P. R. China 3Now at: Institute for Study of the Earth's Interior, Okayama University at Misasa, Yamada 827, Misasa, Tottori 682-0193, Japan. The processes leading to the production of ocean-floor basalts (OFBs) by passive upwelling at mid-ocean ridges and other spreading centres are now considered to be reasonably well understood, but many interesting questions remain, such as what the variations in chemical composition of OFBs reveal about the physical conditions of melting, as opposed to chemical inhomogeneity in the mantle. The phase equilibrium relations of partial melting of peridotitic mantle can be parameterized starting with a four- component system, the components being SiO2, AlO1.5, CaO and MO, where M stands for Mg and Fe2+. Partial melting of upper mantle peridotite involves five phases, namely melt plus four solid phases: olivine, orthopyroxene, clinopyroxene, and an aluminous phase – plagioclase, spinel or garnet, depending on pressure. With five phases and four components, partial melting is thermodynamically univariant, so melt compositions and melting temperatures can be rigorously parameterized as a function of pressure without specifying the compositions of the solid phases. The isobaric invariance of the system is maintained if the concentration of each minor component added to the system is specified in just one phase. Hence the parameterization can be extended to natural composition using the concentrations of Na2O, TiO2, K2O, P2O5, H2O and CO2 in the melt, all of which components are concentrated in the melt during partial melting. The effect of varying Mg/Fe2+ in the system can also be explicitly accounted for using this ratio in the melt; importantly, it has only a minor influence. The only significant compositional variable that cannot be accounted for adequately by its concentration in the melt is Cr, because of its highly compatible nature. Cr is important because Cr-Al solid solutions in the solid phases determine the activity of Al2O3 in the melt. The effect of Cr is parameterized using the molar Cr/(Al+Cr) (i.e., the Cr#) in spinel. Hence the parameterization is at present limited to melting in the spinel-lherzolite facies. Calibration of the parameterization utilizes the extensive experimental database in the literature on multiply saturated melting in both simple and complex (“natural”) systems from 0 to 3.0 GPa. This database now comprises over 200 experiments. We have applied the parameterization to analyses of mid-ocean ridge basaltic glasses from active spreading centres that are sufficiently primitive to have crystallized only olivine (± minor chromite) at low pressure, to infer for each glass: 1) its pressure of partial melting, assuming batch melting; 2) the Cr# of residual spinel; and 3) the extent of subsequent olivine fractionation. Unlike other petrologic methods aimed at obtaining the pressure of origin of oceanic basalts, no assumption needs to be made about the composition of the source mantle, nor does the calculated extent of olivine fractionation depend on assumptions about Mg-Fe partitioning. The calculated melting pressure of the glasses correlates well with the depth of water over the mid-ocean ridge from which it was sampled. However, variations in mantle potential temperatures are calculated to be small, suggesting that the variations in melting pressure may be due to cessation of melting due to heat loss by conduction to the surface. The concentrations of 66 elements have been determined by electron microprobe and laser-ablation ICP-MS in 340 ocean floor basaltic glasses from the Smithsonian collection (Melson et al. 2002). The statistical distributions of K, P and
Recommended publications
  • Gemeinsame Stellungnahme
    10.10.2018 Gemeinsame Stellungnahme Der agl-Konzeptvorschlag zur Rohstoffsicherung in der Vulkaneifel - Fakten, Kritik, Wertung - Zusammenfassung und Wertung Von der Vielzahl der Lagerstätten mit Lava und Basalt des Landkreises Vulkaneifel hat das Landesamt für Geologie (LGB) 46 Lagerstätten als Rohstoffpotenzialflächen in einer Karte dargestellt. Dabei wurde, anders als bisher, keine Nutzungsempfehlung (Vorrang- bzw. Vor- behaltsgebiet) ausgesprochen. Diese Vorgehensweise ist zu begrüßen, da sie zu einer freieren und sachgerechteren Entscheidung durch die Entscheidungsträger beiträgt. Von den 46 erfass- ten Potenzialflächen werden 13 überhaupt nicht für den Rohstoffabbau in Anspruch genom- men. An weiteren 14 wird der Abbau nur noch in dem bereits genehmigten Umfang fortge- führt. Dadurch bleibt eine Vielzahl unverzichtbarer Landschaftselemente erhalten, die durch die früheren Vorschläge für den neuen Raumordnungsplan (ROPneu) akut gefährdet waren. Zu begrüßen ist die Ausweisung eines Gebietes, in dem über den genehmigten Umfang hinaus ein weiterer Gesteinsabbau ausgeschlossen wird. In der vorgeschlagenen Abgrenzung ge- währleistet das Gebiet jedoch nicht den Erhalt des charakteristischen Aussehens der hiesigen Vulkanlandschaft. Es ist daher entsprechend dieser Zielsetzung zu arrondieren. Die 19 für einen Abbau bzw. künftigen Abbau vorgeschlagenen Flächen (Vorranggebiete für die Rohstoffgewinnung bzw. Vorranggebiete für die vorsorgende Rohstoffsicherung und Vorbehaltsgebiete) sind zumeist auf landschaftlich bereits stark vorgeschädigte
    [Show full text]
  • Hymenoptera: Aculeata) Der Eifel 1115-1154 Esser Und Cölln: Bedeutung Von Tuff- Und Lavagruben Für Stechimmen 1115
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Fauna und Flora in Rheinland-Pfalz Jahr/Year: 2000-2002 Band/Volume: 9 Autor(en)/Author(s): Esser Jürgen, Cölln Klaus Artikel/Article: Bedeutung von Tuff- und Lavagruben für die Stechimmenfauna (Hymenoptera: Aculeata) der Eifel 1115-1154 Esser und Cölln: Bedeutung von Tuff- und Lavagruben für Stechimmen 1115 Fauna Flora Rheinland-Pfalz 9: Heft 4 (2002): S.l 115-1154. Landau Bedeutung von Tuff- und Lavagruben für die Stechimmenfauna (Hymenoptera: Aculeata) der Eifel* von Jürgen Esser und Klaus Cölln (mit Zeichnungen von Jochen Jacobi) Inhaltsübersicht Kurzfassung Abstract Resume 1. Einleitung 2. Untersuchungsgebiet 3. Material und Methoden 4. Ergebnisse 4.1 Stechimmen und assoziierte Tierarten der Tuffsteilwand 4.2 Stechimmenfauna der Gruben insgesamt 4.3 Bemerkenswerte Nachweise 5. Diskussion 5.1 Die Seidenbiene im Zentrum der Steilwandbiozönose 5.2 Bedeutung von Tuff- und Lavagruben für den Arten- und Biotopschutz 6. Literatur Kurzfassung Die vorliegende Arbeit beschäftigt sich mit den Hymenoptera Aculeata der Tuff- und Lavagruben des Westeifeier Vulkanfeldes. Die vegetationslosen Steilwände dieser Ab­ grabungen sind relativ artenarm. Dabei ist unter den Primärbesiedlem die Seidenbiene Colletes daviesanus in vielen Fällen die eudominante Spezies. Dagegen treten die we­ nigen anderen selbstgrabenden Arten, die alle zur Familie der Sphecidae gehören, von der Individuenzahl her deutlich zurück. Zu den Folgenutzern der geschaffenen Bauten gehören eine Art der Pompilidae und sechs Spezies der Apidae. Außerdem wurden w Baustein der BMU-Aktion „Leben braucht Vielfalt“. braucht o * Herrn Prof. Dr. Albrecht EGELHAAF zum 80. Geburtstag gewidmet. 1116 Fauna Flora Rheinland-Pfalz 9: Heft 4, 2002, S.l 115-1154 noch Arachnida, Collembola, Dermaptera, Diptera und Hymenoptera als Kommensalen, Prädatoren oder Parasitoide registriert, so dass sich das Nahrungsnetz in der Steilwand in erster Näherung beschreiben lässt.
    [Show full text]
  • Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING on a VARIETY of SCALES 1:30 P.M
    Lunar and Planetary Science XLVIII (2017) sess453.pdf Wednesday, March 22, 2017 [W453] MARTIAN METEORITE MADNESS: MIXING ON A VARIETY OF SCALES 1:30 p.m. Waterway Ballroom 5 Chairs: Arya Udry Geoffrey Howarth 1:30 p.m. Nielsen S. G. * Magna T. Mezger K. The Vanadium Isotopic Composition of Mars and Evidence for Solar System Heterogeneity During Planetary Accretion [#1225] Vanadium isotope composition of Mars distinct from Earth and chondrites. 1:45 p.m. Tait K. T. * Day J. M. D. Highly Siderophile Element and Os-Sr Isotope Systematics of Shergotittes [#3025] The shergottite meteorites represent geochemically diverse, broadly basaltic, and magmatically-derived rocks from Mars. New samples were processed and analyzed. 2:00 p.m. Armytage R. M. G. * Debaille V. Brandon A. D. Agee C. B. The Neodymium and Hafnium Isotopic Composition of NWA 7034, and Constraints on the Enriched End-Member for Shergottites [#1065] Couple Sm-Nd and Lu-Hf isotopic systematics in NWA 7034 suggest that such a crust is not the enriched end-member for shergottites. 2:15 p.m. Howarth G. H. * Udry A. Nickel in Olivine and Constraining Mantle Reservoirs for Shergottite Meteorites [#1375] Ni enrichment in olivine from enriched versus depleted shergottites provide evidence for constraining mantle reservoirs on Mars. 2:30 p.m. Jean M. M. * Taylor L. A. Exploring Martian Mantle Heterogeneity: Multiple SNC Reservoirs Revealed [#1666] The objective of the present study is to assess how many mixing components can be recognized, and address ongoing debates within the martian isotope community. 2:45 p.m. Udry A. * Day J.
    [Show full text]
  • Geopark Progress Reports
    EUROPEAN GEOPARKS NETWORK Geopark Progress Reports March 2012- September 2012 Updated: 2012-09-16 INDEX OF GEOPARKS Page Adamello Brenta – ITALY 3 Apuan Alps - ITALY 5 Arouca - PORTUGAL 7 Basque Coast – SPAIN 9 Bauges – FRANCE 11 Beigua - ITALY 13 Bergstrasse-Odenwald - GERMANY 15 Bohemian Paradise – CZECH REPUBLIC 17 Burren and Cliffs of Moher- REPUBLIC OF IRELAND 19 Cabo de Gata – Nijar Natural Park - SPAIN 21 Chelmos Vouraikos – GREECE 23 Copper Coast – IRELAND 24 English Riviera – UK 26 Fforest Fawr – Wales, UK 28 Gea Norvegica – NORWAY 30 GeoMon – Wales, UK 31 Harz Braunschweiger Land Ostfalen – GERMANY 33 Hateg Country Dinosaurs – ROMANIA 35 Katla – ICELAND 37 Madonie Geopark – ITALY 39 Maestrazgo Cultural Park – SPAIN 41 Magma – NORWAY 43 Marble Arch Caves– NORTHERN IRELAND and REP OF IRELAND 45 Muskau Arch – GERMANY and POLAND 47 Naturtejo – PORTUGAL 49 North Pennines AONB – ENGLAND UK 51 Novohrad-Nógrád - HUNGARY and SLOVAKIA 53 Papuk – CROATIA 55 Parco Nazionale del Cilento e Vallo di Diano, Campania – ITALY 57 Park Naturel Régional du Luberon – FRANCE 59 Petrified Forest of Lesvos – GREECE 61 Psiloritis Natural Park – GREECE 63 Rocca di Cerere – ITALY 64 Rokua – FINLAND 66 Shetland – SCOTLAND UK 68 Sierra Norte de Sevilla Natural Park - SPAIN 70 Sierras Subbeticas Natural Park – SPAIN 72 Sobrarbe – SPAIN 74 Steirische Eisenwurzen – AUSTRIA 76 Swabian Alb – GERMANY 78 Terra.Vita Naturpark – GERMANY 80 Vikos Aoos – GREECE 82 Villuercas-Ibores-Jara – SPAIN 84 Vulkaneifel European – GERMANY 86 1 No report from: North West Highlands – SCOTLAND UK; Réserve Géologique de Haute - Provence – FRANCE, Sardenia Geominerario Park – ITALY and Tuskan Mining Geopark - ITALY. 2 Adamello Brenta Nature Park – ITALY Adamello Brenta Nature Park, consistently with its wider and more complex conservation strategy of the natural, historical and cultural heritage, has continued its work to improve the geological heritage conservation and geotouristic and popularization activities.
    [Show full text]
  • Putative Microbial Mediation in NASA Lunar Sample Set: Microtextural Features at High Magnification
    EPSC Abstracts Vol. 13, EPSC-DPS2019-1-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Putative microbial mediation in NASA lunar sample set: microtextural features at high magnification Szaniszló Bérczi (1), Márta Polgári (2,3), Ildikó Gyollai (2), Arnold Gucsik A.(3) (1) Eötvös University, Institute of Physics, Dept. Materials Physics, Cosmic Materials Space Res. Group, H-1117 Bu-dapest, Pázmány Péter sétány 1/a. Hungary, ([email protected]), (2) Institute for Geological and Geochemical Research, RCAES, Biogeochemical Working Group, HAS, H-1112 Budapest, Budaörsi u. 45, Hungary, ([email protected]), ([email protected]), (3) Eszterházy Károly University, Department of Natural Geography and Geoinformatics, 3300 Eger, Leányka str. 6, Hungary ([email protected]). Abstract 60025 lunar sample is a coarse grained brecciated (cata- The NASA Lunar Educational Set is since 25 year in clastic) anorthosite, in which rarely pyroxene is spotted. In Hungary, curating by B. Sz. at Eötvös University. As non- the vicinity of the pyroxenes the texture was interwoven by destructive method, only high resolution optical mi-crobial-like filamentous biosignatures (Fig. 3). microscopy is allowed by NASA. This method is good for microtextural studies of processes, where we found 2. Results and Discussion putative microbial features. To determination of microbial Optical microscopy is the allowed study form for the signatures Raman and FTIR spectroscopy would be NASA educational samples. We used it in extremely large requires to identify fine-grained biominerals and organic magnifica-tion capacity in order to see the texture in fine material, as the authors did by other meteorite and details [3, 4, 5, 6, 7].
    [Show full text]
  • 18Th EANA Conference European Astrobiology Network Association
    18th EANA Conference European Astrobiology Network Association Abstract book 24-28 September 2018 Freie Universität Berlin, Germany Sponsors: Detectability of biosignatures in martian sedimentary systems A. H. Stevens1, A. McDonald2, and C. S. Cockell1 (1) UK Centre for Astrobiology, University of Edinburgh, UK ([email protected]) (2) Bioimaging Facility, School of Engineering, University of Edinburgh, UK Presentation: Tuesday 12:45-13:00 Session: Traces of life, biosignatures, life detection Abstract: Some of the most promising potential sampling sites for astrobiology are the numerous sedimentary areas on Mars such as those explored by MSL. As sedimentary systems have a high relative likelihood to have been habitable in the past and are known on Earth to preserve biosignatures well, the remains of martian sedimentary systems are an attractive target for exploration, for example by sample return caching rovers [1]. To learn how best to look for evidence of life in these environments, we must carefully understand their context. While recent measurements have raised the upper limit for organic carbon measured in martian sediments [2], our exploration to date shows no evidence for a terrestrial-like biosphere on Mars. We used an analogue of a martian mudstone (Y-Mars[3]) to investigate how best to look for biosignatures in martian sedimentary environments. The mudstone was inoculated with a relevant microbial community and cultured over several months under martian conditions to select for the most Mars-relevant microbes. We sequenced the microbial community over a number of transfers to try and understand what types microbes might be expected to exist in these environments and assess whether they might leave behind any specific biosignatures.
    [Show full text]
  • Aqueous Alteration in Martian Meteorites: Comparing Mineral Relations in Igneous-Rock Weathering of Martian Meteorites and in the Sedimentary Cycle of Mars
    AQUEOUS ALTERATION IN MARTIAN METEORITES: COMPARING MINERAL RELATIONS IN IGNEOUS-ROCK WEATHERING OF MARTIAN METEORITES AND IN THE SEDIMENTARY CYCLE OF MARS MICHAEL A. VELBEL Department of Geological Sciences, 206 Natural Science Building, Michigan State University, East Lansing, Michigan 48824-1115 USA e-mail: [email protected] ABSTRACT: Many of the minerals observed or inferred to occur in the sediments and sedimentary rocks of Mars, from a variety of Mars-mission spacecraft data, also occur in Martian meteorites. Even Martian meteorites recovered after some exposure to terrestrial weathering can preserve preterrestrial evaporite minerals and useful information about aqueous alteration on Mars, but the textures and textural contexts of such minerals must be examined carefully to distinguish preterrestrial evaporite minerals from occurrences of similar minerals redistributed or formed by terrestrial processes. Textural analysis using terrestrial microscopy provides strong and compelling evidence for preterrestrial aqueous alteration products in a numberof Martian meteorites. Occurrences of corroded primary rock-forming minerals and alteration products in meteorites from Mars cover a range of ages of mineral–water interaction, from ca. 3.9 Ga (approximately mid-Noachian), through one or more episodes after ca. 1.3 Ga (approximately mid–late Amazonian), through the last half billion years (late Amazonian alteration in young shergottites), to quite recent. These occurrences record broadly similar aqueous corrosion processes and formation of soluble weathering products over a broad range of times in the paleoenvironmental history of the surface of Mars. Many of the same minerals (smectite-group clay minerals, Ca-sulfates, Mg-sulfates, and the K-Fe–sulfate jarosite) have been identified both in the Martian meteorites and from remote sensing of the Martian surface.
    [Show full text]
  • Wenn Es Unter Den Maaren Brodelt. Das
    Forschung aktuell Wenn es unter den Maaren brodelt Das Eifelvulkanfeld ist noch lebendig ie Vulkane der Eifel sind weltweit bekannt und für DGeowissenschaftler von großer Bedeutung. Seit der Gründung des »Vulkaneifel European Geopark« sind die Vulkane nun auch zu einer Attraktion für Ur- lauber geworden. Besucher aus Deutschland, Belgien und den Niederlanden bewundern in zunehmender Zahl die geologischen Schätze, die lange Zeit nur von der Baustoffi ndustrie genutzt wurden. Die Geowissen- schaften und die Faszination, die von der gewaltigen Kraft der Erde ausgeht, sind nun ein populäres Thema. Von den neuen Geo-Touristen als auch von den An- wohnern der Region kommen viele Fragen: Insbeson- dere wollen sie wissen, ob das Vulkanfeld ausgestorben ist oder sich nur in einer Ruhephase befi ndet. Und falls weitere Ausbrüche möglich wären, folgen eine gan- ze Reihe weiterer Fragen: Wo wird es losgehen? Wie wird eine Eruption aussehen? Wird sie groß oder klein sein? Ist das Katastrophen-Szenario in dem Buch »Die Flucht der Ameisen«/1/ realistisch? Die Eifel lässt sich in zwei kleinere Gebiete aufteilen: die Ost-Eifel rund um den Laacher See und die West- Eifel, die sich von der belgischen Grenze circa 50 Ki- lometer bis fast ins Moselletal im Südosten ausstreckt. Geowissenschaftler haben etwa 100 vulkanische Zent- ren in der Ost-Eifel und 250 Zentren in der West-Eifel identifi ziert./2/ 1 Die letzte vulkanische Aktivität in der Ost-Eifel war vor 12 900 Jahren. Damals gab es eine riesige Eruption, die den Laacher See gebildet hat. In der West-Eifel ist das Ulmener Maar, östlich von Gerol- 1 Die Maare in der Vulkaneifel sehen an der Oberfl äche ruhig aus.
    [Show full text]
  • Appendix a Recovery of Ejecta Material from Confirmed, Probable
    Appendix A Recovery of Ejecta Material from Confirmed, Probable, or Possible Distal Ejecta Layers A.1 Introduction In this appendix we discuss the methods that we have used to recover and study ejecta found in various types of sediment and rock. The processes used to recover ejecta material vary with the degree of lithification. We thus discuss sample processing for unconsolidated, semiconsolidated, and consolidated material separately. The type of sediment or rock is also important as, for example, carbonate sediment or rock is processed differently from siliciclastic sediment or rock. The methods used to take and process samples will also vary according to the objectives of the study and the background of the investigator. We summarize below the methods that we have found useful in our studies of distal impact ejecta layers for those who are just beginning such studies. One of the authors (BPG) was trained as a marine geologist and the other (BMS) as a hard rock geologist. Our approaches to processing and studying impact ejecta differ accordingly. The methods used to recover ejecta from unconsolidated sediments have been successfully employed by BPG for more than 40 years. A.2 Taking and Handling Samples A.2.1 Introduction The size, number, and type of samples will depend on the objective of the study and nature of the sediment/rock, but there a few guidelines that should be followed regardless of the objective or rock type. All outcrops, especially those near industrialized areas or transportation routes (e.g., highways, train tracks) need to be cleaned off (i.e., the surface layer removed) prior to sampling.
    [Show full text]
  • Heating Experiments of Maskelynite in Zagami, Elephant Moraine A79001 and Allan Hills 77005: Implications for the Effect of Shock Heating
    51st Lunar and Planetary Science Conference (2020) 1803.pdf HEATING EXPERIMENTS OF MASKELYNITE IN ZAGAMI, ELEPHANT MORAINE A79001 AND ALLAN HILLS 77005: IMPLICATIONS FOR THE EFFECT OF SHOCK HEATING. R. Shikina1,2 and T. Mikouchi1,2, 1Department of Earth and Planet. Science, The University of Tokyo, Hongo, Tokyo 113-0033, Japan ([email protected]), 2The University Museum, The University of Tokyo, Hongo, Tokyo 113-0033, Japan. Introduction: Plagioclase is one of the important along the cracks and at edges of the original grains. constituents of extraterrestrial materials and is sensi- Although maskelynites appear to have a smooth sur- tive to the shock metamorphism. Maskelynite is under- face through optical microscopy, the recrystallized stood as a diaplectic plagioclase glass that has been plagioclase shows a dirty devitrified texture. Electron transformed from plagioclase in solid-state transfor- microprobe analysis (shown in Fig. 2) revealed that Na mation by strong impact and is commonly found in and K are reduced, but Ca is enriched in the recrystal- Martian meteorites [1]. Maskelynite is known to be lized plagioclase of the samples showing partial recrys- easily converted to crystalline plagioclase by reheating tallization (900 °C for 8 and 24 hours and 1000 °C for and the degree of recrystallization depends upon shock 1 hour). In the maskelynite grains heated at 900 °C for pressure [2]. Such plagioclase recrystallizations is 168 hours, small glass regions enriched in Na and K found in meteorites. For example, the lunar meteorite are present (Na2O: ~6.5 wt%, K2O: ~2.5 wt%), sug- Y-793169 shows a recrystallized polycrystalline plagi- gesting that Na and K concentrate in areas where re- oclase texture by a reheating event after the formation crystallization did not start yet.
    [Show full text]
  • Planungsgemeinschaft Trier Herrn Leitenden Planer Wernig Herrn
    Struktur- und Genehmigungsdirektion Nord Stresemannstraße 3-5 Postfach 20 03 61 I 56003 Koblenz 56068 Koblenz Telefon 0261 120-0 Planungsgemeinschaft Trier Telefax 0261 120-2200 Herrn Leitenden Planer Wernig [email protected] www.sgdnord.rlp.de Herrn Klemens Weber Deworastraße 8 D-54290 Trier 15.12.2011 Mein Aktenzeichen Ihr Schreiben vom Ansprechpartner(in)/ E-Mail Telefon/Fax Az. 423 Michael Konermann 0261 120-2116 [email protected] 0261 120-882116 Stellungnahme der oberen Naturschutzbehörde zum Konflikt Rohstoffabbau und Na- turschutz in der Vulkaneifel im Zuge der Landschaftsrahmenplanung Anlage I: Landschaftsbildanalyse mit Karte als Anlage Anlage II: Ausarbeitung der Arbeitsgemeinschaft Dauner Naturschutzverbände Sehr geehrter Herr Wernig, sehr geehrter Herr Weber, nach Abschluss der Landschaftsrahmenplanung mit Stand September 2009 legte das Lan- desamt für Geologie und Bergbau eine Rohstoffplanung vor, die zum Zeitpunkt der Erstel- lung des Landschaftsrahmenplans noch nicht bekannt war. Vor diesem Hintergrund und auf- grund der besonderen Konfliktsituation in der Vulkaneifel wurde die obere Naturschutzbe- hörde von der Geschäftsstelle der Planungsgemeinschaft gebeten, den Aspekt Landschafts- bild für diesen Teilraum in Bezug auf die Rohstoffplanung in einer präzisierenden Stellung- nahme im Zuge der Landschaftsrahmenplanung vertieft zu behandeln. Der Entwurf dieser Stellungnahme wurde Ihnen im Juni 2011 zugeleitet und in einer Bespre- chung am 27.10.2011 in unserem Hause vorgestellt. Hiermit erhalten Sie,
    [Show full text]
  • Paleomagnetic Investigation of Quaternary West Eifel Volcanics (Germany): Indication for Increased Volcanic Activity During Geomagnetic Excursion/Event?
    |00000058|| 1 Geophys (1987) 62:5{}-61 Journal of Geophysics Paleomagnetic investigation of Quaternary West Eifel volcanics (Germany): indication for increased volcanic activity during geomagnetic excursion/event? H. Bohne) 1 *, N. Reismann 1 **, G. Jager 1 ***, U. Haverkamp 1 ****, J.F.W. Negendank 2 , and H.-U. Schmincke 3 1 Institut fur Geophysik, Universitiit Munster, CorrensstraBe 24, D-4400 Munster, Federal Republic of Germany 2 Abteilung Geologie, Universitiit Trier, Postfach 3825, D-5500 Trier, Federal Republic of Germany 3 Institut fiir Mineralogie, Ruhr-Universitiit Bochum, Postfach 102148, D-4630 Bochum, Federal Republic of Germany Abstract. Eighty-five sites of West Eifel volcanoes were in­ larity of magnetization and (3) to compare the secular varia­ vestigated paleomagnetically, giving 64 independent virtual tion of this region with that determined in the eastern part geomagnetic poles (VGP). The VGP distribution is strongly of the Eifel. asymmetric: about 30% of the VGPs have latitudes below 60° N and are confined to the longitude sector between 30° E and 120° E. This leads to a mean VGP situated at The West Eifel volcanic field 74.0° N/63.9° E, deviating significantly from the north geo­ graphical pole. The VGP distribution is non-Fisherian, but The Quaternary West Eifel volcanic field (covering about the radial component is rather similar to that observed for 600 km2 ) extends for 50 km NW-SE and comprises about Tertiary to Quaternary Icelandic lavas. Tectonic, petro­ 240 eruptive centres (Biichel and Mertes, 1982; Schmincke, graphic, rock magnetic properties and secular variation do 1982; Mertes, 1983; Schmincke et al., 1983) (Fig.
    [Show full text]