The Evolution of Apomixis in Angiosperms: a Reappraisal E

Total Page:16

File Type:pdf, Size:1020Kb

The Evolution of Apomixis in Angiosperms: a Reappraisal E This article was downloaded by: [Universita Di Pisa], [L. Peruzzi] On: 13 September 2012, At: 08:11 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Societa Botanica Italiana Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tplb20 The evolution of apomixis in angiosperms: A reappraisal E. Hörandl a & D. Hojsgaard a a Department of Systematic Botany, Georg-August-University of Göttingen, Untere Karspüle 2, Göttingen, 37073, Germany Accepted author version posted online: 15 Aug 2012.Version of record first published: 13 Sep 2012. To cite this article: E. Hörandl & D. Hojsgaard (2012): The evolution of apomixis in angiosperms: A reappraisal, Plant Biosystems - An International Journal Dealing with all Aspects of Plant Biology: Official Journal of the Societa Botanica Italiana, 146:3, 681-693 To link to this article: http://dx.doi.org/10.1080/11263504.2012.716795 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material. Plant Biosystems, Vol. 146, No. 3, September 2012, pp. 681–693 NEW TRENDS IN PLANT CYTOGENETICS AND CYTOEMBRYOLOGY – DEDICATED TO THE MEMORY OF EMILIO BATTAGLIA The evolution of apomixis in angiosperms: A reappraisal E. HO¨ RANDL & D. HOJSGAARD Department of Systematic Botany, Georg-August-University of Go¨ttingen, Untere Karspu¨le 2, 37073 Go¨ttingen, Germany Abstract Apomixis, the asexual reproduction via seed, has long been regarded a blind alley of evolution. This hypothesis was based on the assumption that apomixis is an irreversible, phylogenetically derived trait that would rapidly lead to extinction of the respective lineages. However, recent updates of the taxonomic distribution of apomixis in angiosperms suggest an alternative evolutionary scenario. Apomixis is taxonomically scattered and occurs in both early and late branching lineages, with several reversals from apomixis to obligate sex along phylogeny. Genetic control of apomixis is based on altered expression patterns of the same genes that control sexual development; epigenetic changes following polyploidization and/or hybridization may trigger shifts from sexuality to apomixis. Mendelian inheritance confirms the facultative nature and possible reversibility of apomixis to sexual reproduction. Apomixis, therefore, could represent a transition period in the evolution of polyploid complexes, with polyspory in paleopolyploids being a remnant of lost apomixis. In neopolyploids, apomixis helps to overcome sterility and allows for geographical range expansions of agamic polyploid complexes. The facultative nature of apomixis allows for reversal to sexuality and further speciation of paleopolyploid lineages. Thus, apomixis may facilitate diversification of polyploid complexes and evolution in angiosperms. Keywords: Apomixis, angiosperm phylogeny, evolution, polyploidy, polyspory Phylogenetic patterns and evolution of reproductive tion is rare in mosses, hornworts, and liverworts, modes represent the most challenging questions in quite frequent in ferns (c. 10% of species), while in evolutionary biology. Sexual reproduction, i.e., the seed plants frequencies drop down to less than 1% of combined process of reductional cell division (meio- species (Burt 2000). The phylogenetic pattern of sis) and fusion of reduced gametes (mixis), is by far asexuality has been recognized as scattered in all the most frequent mode of reproduction in eukar- major groups (Burt 2000; Simon et al. 2003; Van yotes. It is nowadays well established that meiosis Dijk & Vijverberg 2005). first arose in protists and probably originated from In general, such a pattern can be explained by bacterial DNA repair mechanisms (Ramesh et al. three different phylogenetic models (Williams 1975): 2005; Schurko & Logsdon 2008). The prevalence of (1) sex changes irreversibly to asexuality, but Downloaded by [Universita Di Pisa], [L. Peruzzi] at 08:11 13 September 2012 sexual reproduction is striking because of its obvious increases the risk of rapid extinction; (2) sex changes high costs, the loss of gene combinations during occasionally to asexuality, but the reversal happens meiosis, and the need of two parental individuals. more readily; and (3) shifts from sexuality to Alternatively, asexual reproduction potentially avoids asexuality are rare. Initially, the first scenario was these costs and is expected to result in higher the most popular, as asexuality is thought to be quantities of offspring (Maynard Smith 1978; Bell hampered by the accumulation of deleterious muta- 1982). Despite its potential benefits, asexuality tions and by the loss of genetic variability. However, appears to be rare in higher eukaryotes; only in some evidence from long-term obligate asexuality in phyla of protists it is the only mode of reproduction. animals (e.g., Butlin 2002) and from the short-term In fungi, about 20% of species are estimated to be success of asexuals in geographical dimensions asexual, while in animals frequencies of asexuality (Kearney 2005; Ho¨randl 2006) questions the basic are less than 1%. In land plants, asexual reproduc- assumptions of this model. The second hypothesis Correspondence: E. Ho¨randl, Department of Systematic Botany, Albrecht-von-Haller Institute of Plant Sciences, Georg-August-University of Go¨ttingen, Untere Karspu¨ le 2, 37073 Go¨ttingen, Germany. Tel: þ49 551 397843. Fax: þ49 551 3922329. Email: [email protected] ISSN 1126-3504 print/ISSN 1724-5575 online ª 2012 Societa` Botanica Italiana http://dx.doi.org/10.1080/11263504.2012.716795 682 E. Ho¨randl and D. Hojsgaard regards asexuality as a complex trait, which is, also called adventitious embryony (Naumova 1992). according to Dollo’s law, not easily reversed; In the end, the seed contains both sexual and however, recent empirical evidence in animals apomictic embryos (polyembryony). We do not suggests that such reversals are possible (Domes consider vegetative propagation, which does not et al. 2007). The third hypothesis is indirectly involve development from a single-cell stage, and is supported by the recognition of several functional not regarded as a mode of apomictic reproduction, constraints for shifts to asexuality in animals and but rather as a mode of clonal growth (see Mogie plants (Engelsta¨dter 2008; Ho¨randl 2009a) and by 1992). Fertilization of the polar nuclei (pseudogamy) the complexity of regulatory mechanisms (see, for is retained in c. 90% of apomicts (Mogie 1992), example, Koltunow & Grossniklaus 2003). while pollen-independent endosperm development is Angiosperms are an interesting model system for rare (autonomous apomixis). Uniparental reproduc- studying evolution of asexuality in a highly late tion is possible for pseudogamous apomicts, since branched eukaryotic group because of their great they are usually self-fertile (Ho¨randl 2010). Thus, variety of reproductive pathways. The sexual mode the fundamental difference between sexual repro- follows the general life cycle in land plants, with the duction and apomixis in flowering plants is not alternation of a sporophytic (2n) and a gametophytic reproduction via a single or two parents, but is (n) generation, separated by meiosis and mixis, mostly based on meiotic versus apomeiotic develop- respectively (Figure 1). The four- to eight-celled ment. Interestingly, apomixis often occurs in the gametophyte can be produced from single spores same taxa that exhibit sexual polyspory, i.e., the (monospory) or from two or four spores (bispory and formation of embryo sacs out of more than one spore tetraspory, respectively) via mitotic divisions. (Carman 1997). Although meiosis–mixis cycles represent the typical Apomixis in angiosperms is heritable, but the elements of eukaryotic sex, some special features of genetic regulatory mechanisms are unexpectedly angiosperms need to be noted: (1) a late differentia- complex. For gametophytic apomixis, the two tion of archesporial cells within tissue of the adult components, apomeiosis and parthenogenesis, are sporophyte; (2) the potential to start developmental under different genetic control and can be uncoupled programs from both a reduced (haploid) and an (Ozias-Akins & Van Dijk 2007). In natural systems, unreduced (somatic) archespore; (3) the capacity for apomeiosis is due to temporal or spatial de-regula- parthenogenetic development in both reduced and tion of the genes controlling the sexual pathway unreduced egg cells; (4) the extreme reduction of rather than to an independent trait (e.g., Grimanelli
Recommended publications
  • Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae
    fpls-11-00514 May 26, 2020 Time: 17:57 # 1 ORIGINAL RESEARCH published: 28 May 2020 doi: 10.3389/fpls.2020.00514 Chromosomal Evolution and Apomixis in the Cruciferous Tribe Boechereae Terezie Mandáková1, Petra Hloušková1, Michael D. Windham2, Thomas Mitchell-Olds2, Kaylynn Ashby3, Bo Price3, John Carman3 and Martin A. Lysak1* 1 CEITEC, Masaryk University, Brno, Czechia, 2 Department of Biology, Duke University, Durham, NC, United States, 3 Plants, Soils, and Climate Department, Utah State University, Logan, UT, United States The mustard family (Brassicaceae) comprises several dozen monophyletic clades usually ranked as tribes. The tribe Boechereae plays a prominent role in plant research due to the incidence of apomixis and its close relationship to Arabidopsis. This tribe, largely confined to western North America, harbors nine genera and c. 130 species, with >90% of species belonging to the genus Boechera. Hundreds of apomictic diploid and triploid Boechera hybrids have spurred interest in this genus, but the remaining Boechereae genomes remain virtually unstudied. Here we report on comparative Edited by: genome structure of six genera (Borodinia, Cusickiella, Phoenicaulis, Polyctenium, Steven Dodsworth, Nevada, and Sandbergia) and three Boechera species as revealed by comparative University of Bedfordshire, United Kingdom chromosome painting (CCP). All analyzed taxa shared the same seven-chromosome Reviewed by: genome structure. Comparisons with the sister Halimolobeae tribe (n = 8) showed Ana Paula Moraes, that the ancestral Boechereae genome (n = 7) was derived from an older n = 8 Universidade Federal do ABC, Brazil Aretuza Sousa Dos Santos, genome by descending dysploidy followed by the divergence of extant Boechereae Ludwig Maximilian University taxa.
    [Show full text]
  • Diploid Apomicts of the Boechera Holboellii Complex Display Large-Scale Chromosome Substitutions and Aberrant Chromosomes
    Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes Laksana Kantama*†, Timothy F. Sharbel‡, M. Eric Schranz§, Thomas Mitchell-Olds¶, Sacco de Vries*, and Hans de Jongʈ** *Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, NL-6703 HA, Wageningen, The Netherlands; ‡Apomixis Research Group, Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany; §Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 318, NL-1098 MS, Amsterdam, The Netherlands; ¶Department of Biology, Duke University, Durham, NC 27708; and ʈLaboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD, Wageningen, The Netherlands Communicated by Maarten Koornneef, Wageningen University and Research Centre, Wageningen, The Netherlands, July 15, 2007 (received for review May 20, 2007) We conducted a cytogenetic study of sexual lines of Boechera holboellii is polyphyletic. Its sequence and microsatellite analyses and seven diploid apomic- have shown that B. divaricarpa arose through hybridization (14 ؍ stricta and Boechera holboellii (2n tic accessions of their interspecific hybrid Boechera divaricarpa and between sexual B. stricta and B. holboellii or a closely related or 15). By studying chromosome morphology, species (3, 5, 6). The level of allelic variation is comparable 14 ؍ B. holboellii (2n rDNA repeats, genome painting, male meiosis, pollen morphology, between B. divaricarpa and B. holboellii, and a low number of and flow-cytometry seed screens, we revealed an unexpected species-specific alleles suggests that the hybrid originated re- plethora of chromosome forms, pairing behavior, and hybrid cently (6). Multiple evolutionary origins of triploidy in Boechera composition in all apomictic lines.
    [Show full text]
  • Karyotype Evolution in Apomictic Boechera and the Origin of the Aberrant Chromosomes
    The Plant Journal (2015) 82, 785–793 doi: 10.1111/tpj.12849 Karyotype evolution in apomictic Boechera and the origin of the aberrant chromosomes Terezie Mandakov a1, M. Eric Schranz2, Timothy F. Sharbel3, Hans de Jong4 and Martin A. Lysak1,* 1CEITEC – Central European Institute of Technology, Masaryk University, Brno, CZ-62500 Czech Republic, 2Plant Systematics Group, Wageningen University (WU), Droevendaalsesteeg 1, Wageningen, 6708 PB The Netherlands, 3Apomixis Research Group, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, D-06466 Germany, and 4Laboratory of Genetics, Wageningen UR PSG, P.O. Box 16, Wageningen, 6700 AA The Netherlands Received 17 February 2015; revised 24 March 2015; accepted 1 April 2015; published online 10 April 2015. *For correspondence (e-mail [email protected]). SUMMARY Chromosome rearrangements may result in both decrease and increase of chromosome numbers. Here we have used comparative chromosome painting (CCP) to reconstruct the pathways of descending and ascend- ing dysploidy in the genus Boechera (tribe Boechereae, Brassicaceae). We describe the origin and structure of three Boechera genomes and establish the origin of the previously described aberrant Het and Del chro- mosomes found in Boechera apomicts with euploid (2n = 14) and aneuploid (2n = 15) chromosome number. CCP analysis allowed us to reconstruct the origin of seven chromosomes in sexual B. stricta and apomictic B. divaricarpa from the ancestral karyotype (n = 8) of Brassicaceae lineage I. Whereas three chromosomes (BS4, BS6, and BS7) retained their ancestral structure, five chromosomes were reshuffled by reciprocal translocations to form chromosomes BS1-BS3 and BS5. The reduction of the chromosome number (from x = 8tox= 7) was accomplished through the inactivation of a paleocentromere on chromosome BS5.
    [Show full text]
  • The Boechera Genus As a Resource for Apomixis Research
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2019 The Boechera Genus as a Resource for Apomixis Research Brukhin, Vladimir ; Osadtchiy, Jaroslaw V ; Florez-Rueda, Ana Marcela ; Smetanin, Dmitry ; Bakin, Evgeny ; Nobre, Margarida Sofia ; Grossniklaus, Ueli Abstract: he genera Boechera (A. Löve et D. Löve) and Arabidopsis, the latter containing the model plant Arabidopsis thaliana, belong to the same clade within the Brassicaceae family. Boechera is the only among the more than 370 genera in the Brassicaceae where apomixis is well documented. Apomixis refers to the asexual reproduction through seed, and a better understanding of the underlying mechanisms has great potential for applications in agriculture. The Boechera genus currently includes 110 species (of which 38 are reported to be triploid and thus apomictic), which are distributed mostly in the North America. The apomictic lineages of Boechera occur at both the diploid and triploid level and show signs of a hybridogenic origin, resulting in a modification of their chromosome structure, as reflected by alloploidy, aneuploidy, substitutions of homeologous chromosomes, and the presence of aberrant chromosomes. In this review, we discuss the advantages of the Boechera genus to study apomixis, consider its modes of reproduction as well as the inheritance and possible mechanisms controlling apomixis. We also consider population genetic aspects and a possible role of hybridization at the origin of apomixis in Boechera. The molecular tools available to study Boechera, such as transformation techniques, laser capture microdissection, analysis of transcriptomes etc. are also discussed. We survey available genome assemblies of Boechera spp.
    [Show full text]
  • Apomeiotic Pollen Mother Cell Development in the Apomictic Boechera Species
    BIOLOGIA PLANTARUM 53 (3): 468-474, 2009 Apomeiotic pollen mother cell development in the apomictic Boechera species K.M. TASKIN1*, K. TURGUT2 and R.J. SCOTT3 Department of Biology, Canakkale Onsekiz Mart University, 17100 Canakkale,Turkey1 Department of Field Crops, Akdeniz University, 07100 Antalya, Turkey2 Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, Avon, England3 Abstract Pollen mother cell (PMC) development in the apomictic Boechera species B. holboellii, B. gunnisoniana and B. divaricarpa were investigated by various cytological methods. In prophase I, in triploid species B. holboellii and B. gunnisoniana the individual chromosomes condensed into long strands within the nucleus. Then, in metaphase I, each PMC formed a restitutional nucleus thereby bypassing the rest of the first meiotic division. This is interpreted as representing apomeiosis. Subsequently, the restitution nuclei underwent a single cytokinesis as evidenced by the production of dyads. The cells within each dyad were separated by a callose wall. Most of the PMC in B. holboellii and B. gunnisoniana produced dyads, but a small proportion generated conspicuous tetrads. In contrast, diploid apomict B. divaricarpa produced only tetrads by simultaneous cytokinesis. Additional key word: apomixis, endosperm, male gametes. Introduction In most angiosperm species genetically diverse offspring forming an embryo without prior meiosis (apomeiosis); are produced by sexual reproduction. Central to this the spontaneous, fertilization-independent development process is the generation of female and male gametes of the embryo (parthenogenesis); and the capacity to within specialized haploid gametophytes. The female either produce endosperm autonomously or to use an gametophyte is the embryo sac that contains two gametes, endosperm derived from fertilization (Bicknell and the egg and central cell.
    [Show full text]
  • Happy New Year 2018 MONTANA NATIVE PLANT ENTHUSIASTS! Thursday, April 12, 7:00 P.M
    Volume 31 No. 2 | Winter 2018 elseyaNewsletter of the Montana Native Plant Society Kelseya uniflora K ill. by Bonnie Heidel Dyeing with Native Plants CALYPSO CHAPTER WORKSHOP By Jesse Salix, Forest Botanist, Beaverhead-Deerlodge National Forest xtracting color from native plants is not a new skill, but these days we often stumble upon old techniques via our Enew technologies. For instance, I first learned about dyeing with native plants from a podcast, “Growing Color,” in which native dye expert Rebecca Burgess described the process of dyeing yarn with native plants. I didn’t know how to knit, but the thought of using native plants to make beautiful colored yarn was way too exciting to let that stop me. So I bought Burgess’s book “Harvesting Color.” It’s pages are filled with the history of dyes and dyeing, color photos of plants, dyed yarn, and excellent step by step recipes. From there I began making color from Montana’s native plants: sagebrush, rabbit brush, goldenrod, wolf lichen, Douglas-fir bark, chokecherry, and elderberry. And when I visited my folks in Michigan, I made dye from pokeberry, sumac, and black walnut. I also enrolled my daughter and myself in a knitting class at our local yarn shop in Dillon, so that we could put these beautiful colors into form. But as you all know, knitting takes time! So when my co-worker, Aleta Lavender, mentioned dyeing silk scarves, and after we spent a day experimenting, I was hooked. In October 2016, we held our first “Dyeing with Native Plants Workshop.” We discovered that there is a lot of interest the fiber arts! Folks from Butte, Polaris, Philipsburg, and Dillon attended.
    [Show full text]
  • Diploid Apomicts of the Boechera Holboellii Complex Display Large-Scale Chromosome Substitutions and Aberrant Chromosomes
    Diploid apomicts of the Boechera holboellii complex display large-scale chromosome substitutions and aberrant chromosomes Laksana Kantama*†, Timothy F. Sharbel‡, M. Eric Schranz§, Thomas Mitchell-Olds¶, Sacco de Vries*, and Hans de Jongʈ** *Laboratory of Biochemistry, Wageningen University, Dreijenlaan 3, NL-6703 HA, Wageningen, The Netherlands; ‡Apomixis Research Group, Department of Cytogenetics and Genome Analysis, Leibniz Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany; §Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Kruislaan 318, NL-1098 MS, Amsterdam, The Netherlands; ¶Department of Biology, Duke University, Durham, NC 27708; and ʈLaboratory of Genetics, Wageningen University, Arboretumlaan 4, NL-6703 BD, Wageningen, The Netherlands Communicated by Maarten Koornneef, Wageningen University and Research Centre, Wageningen, The Netherlands, July 15, 2007 (received for review May 20, 2007) We conducted a cytogenetic study of sexual lines of Boechera holboellii is polyphyletic. Its sequence and microsatellite analyses and seven diploid apomic- have shown that B. divaricarpa arose through hybridization (14 ؍ stricta and Boechera holboellii (2n tic accessions of their interspecific hybrid Boechera divaricarpa and between sexual B. stricta and B. holboellii or a closely related or 15). By studying chromosome morphology, species (3, 5, 6). The level of allelic variation is comparable 14 ؍ B. holboellii (2n rDNA repeats, genome painting, male meiosis, pollen morphology, between B. divaricarpa and B. holboellii, and a low number of and flow-cytometry seed screens, we revealed an unexpected species-specific alleles suggests that the hybrid originated re- plethora of chromosome forms, pairing behavior, and hybrid cently (6). Multiple evolutionary origins of triploidy in Boechera composition in all apomictic lines.
    [Show full text]
  • Checklist of Vascular Plants of the Southern Rocky Mountain Region
    Checklist of Vascular Plants of the Southern Rocky Mountain Region (VERSION 3) NEIL SNOW Herbarium Pacificum Bernice P. Bishop Museum 1525 Bernice Street Honolulu, HI 96817 [email protected] Suggested citation: Snow, N. 2009. Checklist of Vascular Plants of the Southern Rocky Mountain Region (Version 3). 316 pp. Retrievable from the Colorado Native Plant Society (http://www.conps.org/plant_lists.html). The author retains the rights irrespective of its electronic posting. Please circulate freely. 1 Snow, N. January 2009. Checklist of Vascular Plants of the Southern Rocky Mountain Region. (Version 3). Dedication To all who work on behalf of the conservation of species and ecosystems. Abbreviated Table of Contents Fern Allies and Ferns.........................................................................................................12 Gymnopserms ....................................................................................................................19 Angiosperms ......................................................................................................................21 Amaranthaceae ............................................................................................................23 Apiaceae ......................................................................................................................31 Asteraceae....................................................................................................................38 Boraginaceae ...............................................................................................................98
    [Show full text]
  • Population Structure, Genetic Diversity
    Brigham Young University BYU ScholarsArchive All Theses and Dissertations 2016-03-01 Population Structure, Genetic Diversity, Geographic Distribution, and Morphology of Two Boechera (Brassicaceae) Parental Species (Boechera thompsonii and Boechera formosa) and of Their Resultant Hybrid Boechera duchesnensis Christina Elizabeth Fox Call Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Plant Sciences Commons BYU ScholarsArchive Citation Fox Call, Christina Elizabeth, "Population Structure, Genetic Diversity, Geographic Distribution, and Morphology of Two Boechera (Brassicaceae) Parental Species (Boechera thompsonii and Boechera formosa) and of Their Resultant Hybrid Boechera duchesnensis" (2016). All Theses and Dissertations. 6233. https://scholarsarchive.byu.edu/etd/6233 This Dissertation is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in All Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. TITLE PAGE Population Structure, Genetic Diversity, Geographic Distribution, and Morphology of Two Boechera (Brassicaceae) Parental Species (Boechera thompsonii and Boechera formosa) and of Their Resultant Hybrid Boechera duchesnensis Christina Elizabeth Fox Call A dissertation submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Steven L.
    [Show full text]
  • A Review of Apomixis and Differential Expression Analyses Using Microarrays
    Utah State University DigitalCommons@USU All Graduate Plan B and other Reports Graduate Studies 8-2013 A Review of Apomixis and Differential Expression Analyses Using Microarrays Jonathan Harris Cardwell Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/gradreports Part of the Plant Sciences Commons Recommended Citation Cardwell, Jonathan Harris, "A Review of Apomixis and Differential Expression Analyses Using Microarrays" (2013). All Graduate Plan B and other Reports. 289. https://digitalcommons.usu.edu/gradreports/289 This Report is brought to you for free and open access by the Graduate Studies at DigitalCommons@USU. It has been accepted for inclusion in All Graduate Plan B and other Reports by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. A REVIEW OF APOMIXIS AND DIFFERENTIAL EXPRESSION ANALYSES USING MICROARRAYS By Jonathan Cardwell A Plan B paper submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Plant Science Approved: _________________________ _________________________ John G. Carman Paul Johnson Major Professor Committee Member _________________________ John Stevens Committee Member UTAH STATE UNIVERSITY Logan, Utah 2013 1 ACKNOWLEDGEMENTS I would like to thank my wife, Katy, for all of her support and enCouragement throughout my degree. Without her, I would not have ever finished. Thanks to my committee members, Drs. John Stevens and Paul Johnson for their assistanCe and willingness to help, and speCial thanks to my major professor, Dr. John Carman, for his constant motivation to help me to finally Complete my degree. Thanks also to Gao Lei, Mayelyn Bautista, and David Sherwood, for all of their help the lab, whiCh was integral to my experienCe at USU.
    [Show full text]
  • Kenai National Wildlife Refuge's Species List
    Kenai National Wildlife Refuge Species List, version 2017-06-30 Kenai National Wildlife Refuge biology staff June 30, 2017 2 Cover images represent changes to the checklist. Top left: Halobi- sium occidentale observed at Gull Rock, June 8, 2017 (https://www. inaturalist.org/observations/6565787). Image CC BY Matt Bowser. Top right: Aegialites alaskaensis observed at Gull Rock, June 8, 2017 (http://www.inaturalist.org/observations/6612922). Image CC BY Matt Bowser. Bottom left: Fucus distichus observed at Gull Rock, June 8, 2017 (https://www.inaturalist.org/observations/6612338). Image CC BY Matt Bowser. Bottom right: Littorina subrotundata observed at Gull Rock, June 8, 2017 (http://www.inaturalist.org/observations/6612398). Image CC BY Matt Bowser. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 24 Vascular Plants........................................................ 47 Bryophytes .......................................................... 59 Chromista........................................................... 63 Fungi ............................................................. 63 Protozoa............................................................ 72 Non-native species 73
    [Show full text]
  • Annotated Checklist of Vascular Flora Dinosaur National Monument
    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Dinosaur National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2009/225 ON THE COVER Paria evening-primrose (Oenothera caespitosa var. navajoensis). Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Dinosaur National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2009/225 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 July 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The National Park Service, Natural Resource Program Center publishes a range of reports that address natural resource topics of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, con- servation and environmental constituencies, and the public. The Natural Resource Technical Report Series is used to disseminate results of scientifi c stud- ies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service mission. The series provides contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the in- formation is scientifi cally credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner. This report received informal peer review by subject-matter experts who were not directly involved in the collection, analy- sis, or reporting of the data.
    [Show full text]