Palaeoenvironmental Changes in Southern Patagonia During the Late-Glacial and the Holocene: Implications
Total Page:16
File Type:pdf, Size:1020Kb
Palaeoenvironmental changes in southern Patagonia during the Late-glacial and the Holocene: implications for forest establishment and climate reconstructions. Claudia A. Mansilla Submitted for the degree of Doctor of Philosophy Biological and Environmental Sciences School of Natural Sciences University of Stirling 2015 STATEMENT OF ORIGINALITY I hereby confirm that the research contained in this thesis is original, has been completed by the author and all work contained herein has not been submitted for any other degree. All published material has been duly acknowledged and cited. ………………………………………………………………….. Claudia A. Mansilla Date: ii ABSTRACT Three continuous terrestrial high-resolution palaeoenvironmental records for the Late-glacial and the Holocene have been reconstructed for different ecosystems in Fuego-Patagonia on a longitudinal transect at latitude 53°S. The records describe the nature and extent of environmental and climatic changes inferred from palynological evidence supported by lithostratigraphy, tephrochronology and radiocarbon dating. The environmental changes recorded at the three sites displays a significant degree of synchrony in response to similar large-scale climatic changes. Clear stratigraphical evidence alongside the pollen record indicates a shift to warmer interstadial conditions between c. 14,800 Cal yr BP and 14,400 Cal yrs BP. During the period coeval with ACR the vegetation was dominated by cold resistant dry land herbs such as Poaceae, Asteraceae (Suf. Asteroideae) and Acaena, by c. 13,200 Cal yr BP the vegetation changed from the dominance of cold resistant dry land herbs towards more mesic conditions and the expansion of steppe dominated by Poaceae with patches of Nothofagus forest. The establishment of the forest and an eastward shift of the forest-steppe ecotone by c. 12,500 Cal yr BP from which a gradual shift from colder to warmer conditions and the relatively stronger influences of the SSWs is inferred. The sequence of Late-glacial environmental changes places Fuego-Patagonia within the new palaeoecological data provided by this study includes “the earliest” evidence for the establishment of subantarctic Nothofagus forest during the LGIT in Fuego-Patagonia. During the Early-Holocene two major phases of Nothofagus forest expansion were registered between c. 11,700 - 10,500 Cal yr BP and c. 9,500 - 8,200 Cal yr BP. These intervals of expansion of Nothofagus forest are separated by an interval of forest contraction in response to lower effective moisture between c. 10,500 - 9,500 Cal yr BP. An intense arid phase is inferred between c. 8,250 Cal yr BP and 6,800 Cal yr BP and probably leading to an increase in the amount of dry fuel available during the mid-Holocene in Fuego-Patagonia leading to the highest fire activity promoted by very weak SSWs at this time. The later Holocene was characterised by an increase in humidity and an inferred intensification of the SSWs. iii GLOSSARY OF TERMS Spanish Geographical Names Canal: Channel Lago: Lake Cabo: Cape Punta: Point Cordillera: Mountain range Puerto: Port Bahía: Bay Región: Region Estancia: Farm or Ranch Río: River Estrecho: Strait Seno: Sound Hambre: Hunger Volcán: Volcano Isla: Island Abbreviations ACC: Antarctic circumpolar current SPI: South Patagonian Icefield ACR: Antarctic cold reversal SSA: Southern South America AMS: Accelerator Mass Spectrometry SSTs: Sea surface temperatures asl: Above sea level SWWs: Southern westerly winds AVZ: Austral Volcanic Zone SVZ: Southern Volcanic zone Cal yr BP: Calibrated years before present TLP: Total Land pollen (relative to AD 1950) YD: Younger Dryas 13 13 12 LIGT: Last Glacial/Interglacial Transition δ CVPDB (‰): value for C: C ratio LGM: Last Glacial Maximum relative to VPDB (for “Vienna PDB”), LPAZ: Local pollen assemblage zone reported in parts per thousand. NPI: North Patagonian Icefield iv ACKNOWLEDGMENTS First and foremost my thanks, respect and gratitude go to my supervisor Dr. Robert McCulloch whose help was always on hand, and made the PhD a thoroughly enjoyable experience. I extend my thanks also to Dr. Mary McCulloch who has continually pushed me in the right direction. The thesis was funded by CONICYT Becas-Chile Scholarship (Gobierno de Chile) and the Quaternary Research Association research fund provided support for fieldwork. The Scottish Alliance for Geoscience, Environment and Society (SAGES) and the Tephra Analytical Unit, School of GeoSciences, The University of Edinburgh provided support for the Electron Microprobe analyses of tephra samples. I am grateful to Professor Gordon Cook, Scottish Universities Environmental Research Centre and to Dr. Pauline Gulliver, Natural Environmental Research Council Radiocarbon Laboratory, East Kilbride (NERC-RCL: Allocation No.: 1696.0413) for supporting the radiocarbon measurements. I would like to thank Flavia Morello, Centro de Estudios del Hombre Austral, Instituto de la Patagonia, Universidad de Magallanes, Punta Arenas, for providing support in the field and for ensuring safe transfer of the core samples to Scotland. I am grateful to the Armada de Chile for logistical support for field work on Isla Dawson. Particular thanks go to the station staff at Puerto Harris, Isla Dawson, and the captains and crews of the LEP-1601 ‘Ona’ and the PSH-77 ‘Cabrales. I am also grateful to Jim Blakie, Emma Lees and Jonathan Kitchen who assisted with fieldwork on Tierra del Fuego and Isla Dawson. v TABLE OF CONTENTS STATEMENT OF ORIGINALITY .............................................................................................. ii ABSTRACT ................................................................................................................................. iii GLOSSARY OF TERMS ............................................................................................................ iv ACKNOWLEDGMENTS ............................................................................................................ v TABLE OF CONTENTS ............................................................................................................. vi LIST OF FIGURES ...................................................................................................................... x LIST OF TABLES ..................................................................................................................... xvi CHAPTER 1: Introduction ........................................................................................................ 1 1.1 Framework .......................................................................................................................... 1 1.2 The scope of the research project ........................................................................................ 2 1.3 Objectives ............................................................................................................................ 3 1.4 Outline ................................................................................................................................. 4 1.5 Background ......................................................................................................................... 6 1.5.1 Setting and topography of Patagonia ........................................................................... 6 1.5.2 Past climatic changes: focus on Fuego-Patagonia (~53°–55°S) ............................... 11 1.5.3 Glacial records ........................................................................................................... 17 1.5.4 Vegetation communities in Fuego-Patagonia ............................................................ 18 1.5.5 Past vegetation in Fuego-Patagonia ........................................................................... 26 1.5.6 Human occupation versus vegetation in central-north of Tierra del Fuego Island .... 28 1.5.7 Past fire activity ................................................................................................ 29 1.6 Summary .......................................................................................................................... 32 CHAPTER 2: Methodology .................................................................................................... 33 2.1 Study sites ......................................................................................................................... 33 2.1.1 Rio Grande, Isla Dawson (53°39’37”S, 70°30’27”W, altitude 79m asl.) .................. 34 2.1.2 Punta Yartou, Tierra del Fuego (53°51’41”S, 70°08’20”W, altitude 51m asl.) ........ 37 2.1.3 Lago Lynch, Tierra del Fuego (53°54’20”S, 69°26’19”W, altitude165m asl.) ......... 40 2.2 Stratigraphy and Loss on ignition (LOI) ........................................................................... 41 2.3 Tephrochronology ............................................................................................................ 42 2.3.1 Visual tephra recognition ........................................................................................... 43 2.3.2 Isolation and preparation of tephra for geochemical analysis .................................... 43 vi 2.3.3 Geochemical analysis ................................................................................................. 44 2.4 Chronology ........................................................................................................................ 45 2.4.1 Sediment accumulation rate ......................................................................................