Determination of Boltzmann's Constant from the Current-Voltage Characteristic of a Transistor

Total Page:16

File Type:pdf, Size:1020Kb

Determination of Boltzmann's Constant from the Current-Voltage Characteristic of a Transistor Determination of Boltzmann's Constant from the Current-Voltage Characteristic of a Transistor Physics 310 – Thermal Physics Introduction In this experiment you will measure , Boltzmann's constant, which is the fundamental physical constant in thermal physics. The experiment is fairly easy to do, but it requires that you first become acquainted with some background information about semiconductors and transistors. The subject of electrical conduction in semiconductors is a complicated and fascinating application of thermal physics (take a glance at Chapter 13 in Kittel and Kroemer)— luckily we will need only the basic storyline and Boltzmann's law to understand this experiment. Semiconductors A semiconducting material (for example silicon or germanium) is a weak conductor of electricity. At room temperature, most atoms in the semiconductor are holding their valence electrons tightly, so these electrons are not free to move about the crystal and to serve as free charges to carry an electrical current. However, a few atoms are ionized at room temperature, contributing a free electron which can help carry a current. The probability that an atom is ionized at a given temperature is proportional to / , as given by the Boltzmann law, where is the ionization energy of the atom in the crystal.− When an atom is ionized, not only is a free electron created, but the ionized atom is left behind as a positive charge. This positive ion can capture the electron of a neighboring atom, leaving the neighbor ionized. The location of the positive ion can thereby migrate through the crystal: we call this a "hole" and we can treat it as positively-charged particle analogous to the electron. In a pure semiconductor, the densities of holes (denoted p) and electrons (denoted n) are equal, because each ionization process creates one electron and one hole. Doped semiconductors To make useful devices, one adds impurities, or dopants, to pure semiconductors. Let's take the example of silicon, which has 4 valence electrons. If one adds some arsenic (5 valence electrons) to silicon, the arsenic atom fits into the silicon crystal making bonds with the four neighboring silicon atoms, and holds its remaining electron rather loosely: this "extra" electron is readily freed. Note that the ionized arsenic atom does not function as a hole since it is not inclined to capture a neighboring electron: it is simply a fixed positive charge within the silicon crystal. Arsenic atoms are called donor atoms in silicon because they donate electrons, and arsenic-doped silicon is called an n-type semiconductor. The n-type semiconductor has a higher electron density than its hole density, with the large majority of its electrons coming from the donor atoms. Alternatively, one can add some gallium (3 valence electrons) to silicon. The gallium fits into the silicon lattice, attempting to bond to the 4 neighboring silicon atoms, and readily captures the electron from a neighboring silicon atom. In other words, gallium atoms are electron-acceptors which contribute holes to the semiconductor. Gallium-doped silicon has a higher hole density than its electron density, with the large majority of holes coming from the acceptor atoms; it is called a p-type semiconductor. We will use the terms majority and minority carriers to refer to the electrons and holes: in an n-type material, electrons are the majority carriers and holes are the minority carriers; this is reversed in a p-type material. pn Junctions and Diodes The essential part of a semiconductor device is the junction between the p-type and n-type materials. The simplest device is called a diode, and consists of a p-type material and an n-type material with a boundary or junction between them. Near the junction, the density of electrons is much higher in the n-type material than in the p-type material, so random thermal motion leads to a net diffusion of electrons from the n-material to the p-material. These electrons recombine with holes in the p-type material, leading to a zone depleted of holes in the p-type material near the junction. This depletion zone has a net negative charge, since it still has the fixed negative ions (acceptor atoms) remaining in it. An analogous phenomenon leads to a depletion of electrons in the n-type material near the junction. The depletion zone is thus positive on the n- side and negative on the p-side; so there is an electric field resisting the further diffusion of majority carriers. In order to diffuse across the junction, a majority carrier would need to have enough kinetic energy to overcome the barrier potential Vo and according to Boltzmann, the probability of a given electron at temperature T having this energy is / . However, if an external voltage is applied across the device by means− of0 a battery, this barrier potential can be changed. If a voltage V is applied with the positive polarity connected to the p- type material, then the probability that an electron will have enough kinetic energy to diffuse across the barrier becomes ( )/ ; (1) the barrier is reduced, a current −can 0 flow,− and the diode is said to be forward biased. If instead the positive polarity were connected to the n-type material, the barrier would be increased, no current could flow, and the diode is said to be reverse biased. The diode is thus a one-way gate for current, allowing current to pass in only one direction. Figure 1. E = electric field. Bipolar junction transistor A bipolar junction transistor consists of three layers of doped semiconductor, either npn or pnp. In our experiment, we will use an npn transistor in the common-base mode, where the transistor functions essentially like an ideal diode described earlier. The three layers are called the emitter, base, and collector. With an external battery applying a forward-biasing voltage to the emitter-base junction, electrons from the battery enter the n-type emitter material and flow into the p-type base material. The base region is designed to be thin and weakly doped, so that most of the electrons diffuse through the thin base region, arriving at the base-collector junction where they are swept up the potential hill (since electrons are negatively charged) into the n-type collector. Thus the current of electrons entering the emitter is almost the same as that leaving the collector (a few electrons are lost by recombination with holes in the p-type base material), and this flow of electrons is controlled by the forward bias of the emitter-base junction. The transistor therefore is functioning as an ideal diode controlled by the voltage applied to the emitter-base junction. One might well wonder why we do not simply use a diode for our experiment rather than a transistor—the reason is a bit subtle. In a diode, in addition to the diffusion current of the majority carriers, there are significant contributions from a current of minority carriers and from surface current effects—these contributions are negligible in a transistor connected in the common base configuration, where the simple picture of the diffusion current described above is sufficient. Figure 2: VM = voltmeter, AM = ammeter, E = emitter, B = base, C = collector. Procedure 1. Record room temperature. 2. Connect the circuit as shown above. The potentiometer (pot) controls the voltage applied to the base-emitter junction which is measured by the voltmeter. The ammeter measures the collector current . Be sure to try the meters on the most sensitive scales for all measurements; start the ammeter on the 200 µA scale (the numbers read in µA on this scale, but in mA on the other mA scales). 3. Starting at zero volts, gradually increase until you read a current. At lower voltages, the current is less than 0.1 µA. When you can read a current, record and , and then increase Vbe until approximately doubles and record the new values. Continue increasing in steps that make approximately double and record values, until reaches around 4 mA. 4. When you are finished, be sure to disconnect the battery from the potentiometer and turn off the meters. Questions 1. Since the probability that an electron at temperature T will have sufficient kinetic energy to cross the potential barrier is given by the Boltzmann factor (Eq. 1), the current is proportional ( to the same factor: = exp , where is a constant with units of current, is the 0− electric potential barrier of the pn junction (emitter and base), and is the voltage applied to 0 �− � 0 0 the junction. Show that the above relation can be written in the form = exp and find . 0 � � 0 2. Show that if were plotted vs. ln , the result is expected to be a straight line. Find expressions for the slope and y-intercept of the line, in terms of the variables defined in the previous question. 3. Plot vs. ln . Using the numerical value of the slope, determine the value of Boltzmann's constant . Compare your answer with the accepted value (i.e. find the percent difference). 4. Using your plot, determine the value of . Can you determine the value of , the junction potential at room temperature? If so, find ; if not, explain why not. 0 0 0.
Recommended publications
  • Useful Constants
    Appendix A Useful Constants A.1 Physical Constants Table A.1 Physical constants in SI units Symbol Constant Value c Speed of light 2.997925 × 108 m/s −19 e Elementary charge 1.602191 × 10 C −12 2 2 3 ε0 Permittivity 8.854 × 10 C s / kgm −7 2 μ0 Permeability 4π × 10 kgm/C −27 mH Atomic mass unit 1.660531 × 10 kg −31 me Electron mass 9.109558 × 10 kg −27 mp Proton mass 1.672614 × 10 kg −27 mn Neutron mass 1.674920 × 10 kg h Planck constant 6.626196 × 10−34 Js h¯ Planck constant 1.054591 × 10−34 Js R Gas constant 8.314510 × 103 J/(kgK) −23 k Boltzmann constant 1.380622 × 10 J/K −8 2 4 σ Stefan–Boltzmann constant 5.66961 × 10 W/ m K G Gravitational constant 6.6732 × 10−11 m3/ kgs2 M. Benacquista, An Introduction to the Evolution of Single and Binary Stars, 223 Undergraduate Lecture Notes in Physics, DOI 10.1007/978-1-4419-9991-7, © Springer Science+Business Media New York 2013 224 A Useful Constants Table A.2 Useful combinations and alternate units Symbol Constant Value 2 mHc Atomic mass unit 931.50MeV 2 mec Electron rest mass energy 511.00keV 2 mpc Proton rest mass energy 938.28MeV 2 mnc Neutron rest mass energy 939.57MeV h Planck constant 4.136 × 10−15 eVs h¯ Planck constant 6.582 × 10−16 eVs k Boltzmann constant 8.617 × 10−5 eV/K hc 1,240eVnm hc¯ 197.3eVnm 2 e /(4πε0) 1.440eVnm A.2 Astronomical Constants Table A.3 Astronomical units Symbol Constant Value AU Astronomical unit 1.4959787066 × 1011 m ly Light year 9.460730472 × 1015 m pc Parsec 2.0624806 × 105 AU 3.2615638ly 3.0856776 × 1016 m d Sidereal day 23h 56m 04.0905309s 8.61640905309
    [Show full text]
  • Thermodynamic Temperature
    Thermodynamic temperature Thermodynamic temperature is the absolute measure 1 Overview of temperature and is one of the principal parameters of thermodynamics. Temperature is a measure of the random submicroscopic Thermodynamic temperature is defined by the third law motions and vibrations of the particle constituents of of thermodynamics in which the theoretically lowest tem- matter. These motions comprise the internal energy of perature is the null or zero point. At this point, absolute a substance. More specifically, the thermodynamic tem- zero, the particle constituents of matter have minimal perature of any bulk quantity of matter is the measure motion and can become no colder.[1][2] In the quantum- of the average kinetic energy per classical (i.e., non- mechanical description, matter at absolute zero is in its quantum) degree of freedom of its constituent particles. ground state, which is its state of lowest energy. Thermo- “Translational motions” are almost always in the classical dynamic temperature is often also called absolute tem- regime. Translational motions are ordinary, whole-body perature, for two reasons: one, proposed by Kelvin, that movements in three-dimensional space in which particles it does not depend on the properties of a particular mate- move about and exchange energy in collisions. Figure 1 rial; two that it refers to an absolute zero according to the below shows translational motion in gases; Figure 4 be- properties of the ideal gas. low shows translational motion in solids. Thermodynamic temperature’s null point, absolute zero, is the temperature The International System of Units specifies a particular at which the particle constituents of matter are as close as scale for thermodynamic temperature.
    [Show full text]
  • Chemical Engineering Thermodynamics
    CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY | 1 TABLE OF CONTENTS Symbol Dictionary ........................................................................................................................ 3 1. Measured Thermodynamic Properties and Other Basic Concepts .................................. 5 1.1 Preliminary Concepts – The Language of Thermodynamics ........................................................ 5 1.2 Measured Thermodynamic Properties .......................................................................................... 5 1.2.1 Volume .................................................................................................................................................... 5 1.2.2 Temperature ............................................................................................................................................. 5 1.2.3 Pressure .................................................................................................................................................... 6 1.3 Equilibrium ................................................................................................................................... 7 1.3.1 Fundamental Definitions .......................................................................................................................... 7 1.3.2 Independent and Dependent Thermodynamic Properties ........................................................................ 7 1.3.3 Phases .....................................................................................................................................................
    [Show full text]
  • Ideal Gas Law
    ATMO 551a Fall 2010 Ideal gas law The ideal gas law is one of the great achievements of Thermodynamics. It relates the pressure, temperature and density of gases. It is VERY close to true for typical atmospheric conditions. It assumes the molecules interact like billiard balls. For water vapor with its large permanent electric dipole moment, it does not quite behave as an ideal gas but even it is close. The microscopic version of the ideal gas law is P = n kB T where P is pressure in pascals, n is the number density of the gas in molecules per cubic meter -23 and T is the temperature in Kelvin and kB is Boltzmann’s constant = 1.38x10 J/K. For typical atmospheric conditions, n is huge and kB is always tiny. So there is a different “macroscopic” version of the ideal gas law with numbers that are easier to work with. Avogadro’s number is the number of molecules in a “mole” where a mole is defined such that 1 mole of a molecules has a mass in grams equal to the mass of an individual molecule in atomic mass units (amu). For example, 1 mole of hydrogen atoms has a mass of ~1 gram. The number 23 -1 of molecules in a mole is given by Avogadro’s number, NA = 6.02214179(30)×10 mol . We multiply and divide the first equation by NA to get P = n kB T = n/NA kBNA T = N R* T where N is the number of moles per unit volume = n/NA and R* is the ideal gas constant = kB NA.
    [Show full text]
  • Lecture 25 - Kinetic Theory of Gases; Pressure
    PHYS 172: Modern Mechanics Fall 2010 Lecture 25 - Kinetic theory of gases; pressure Chapter 12.8, bits of Chapter 13 CLICKER QUESTION #1 Reading Question (Sections 12.7–12.8) There is only a trace amount of helium in the air we breathe. Why? A. There never was much helium on Earth to begin with. B. At ordinary temperatures, most helium atoms have speeds greater than the escape velocity. C. Most of the helium can be found at very high altitudes, not at the surface. D. The low mass helium atoms are more likely to gradually escape from the Earth. E. Since helium does not bond to other elements, it is less likely to be trapped on Earth. CLICKER QUESTION #1 Reading Question (Sections 12.7–12.8) There is only a trace amount of helium in the air we breathe. Why? B. At ordinary temperatures, most helium atoms have speeds greater than the escape velocity. NO!! But A FEW do. D. The low mass helium atoms are more likely to gradually escape from the Earth. The rare tail of the Maxwell Boltzmann distribution. Summary of Statistical Mechanics (Chapter 12 - Entropy) (q + N − 1)! Ω= Counting states q!(N − 1)1 S = kB lnΩ Entropy 1 ∂S ≡ T ∂Eint Temperature ΔE ΔEatom 1 system C = = Heat capacity ΔT N ΔT ΔE − P(ΔE) ∝ e kT Boltzmann distribution Rhetorical Question How do we know that the definition of temperature that we got from statistics & entropy agrees with standard definitions? 1 ∂S ≡ T ∂Eint The most common definition of temperature comes from the ideal gas law: PV=(#ofMoles)RT, or P = nkT.
    [Show full text]
  • Physics Formulas List
    Physics Formulas List Home Physics 95 Physics Formulas 23 Listen Physics Formulas List Learning physics is all about applying concepts to solve problems. This article provides a comprehensive physics formulas list, that will act as a ready reference, when you are solving physics problems. You can even use this list, for a quick revision before an exam. Physics is the most fundamental of all sciences. It is also one of the toughest sciences to master. Learning physics is basically studying the fundamental laws that govern our universe. I would say that there is a lot more to ascertain than just remember and mug up the physics formulas. Try to understand what a formula says and means, and what physical relation it expounds. If you understand the physical concepts underlying those formulas, deriving them or remembering them is easy. This Buzzle article lists some physics formulas that you would need in solving basic physics problems. Physics Formulas Mechanics Friction Moment of Inertia Newtonian Gravity Projectile Motion Simple Pendulum Electricity Thermodynamics Electromagnetism Optics Quantum Physics Derive all these formulas once, before you start using them. Study physics and look at it as an opportunity to appreciate the underlying beauty of nature, expressed through natural laws. Physics help is provided here in the form of ready to use formulas. Physics has a reputation for being difficult and to some extent that's http://www.buzzle.com/articles/physics-formulas-list.html[1/10/2014 10:58:12 AM] Physics Formulas List true, due to the mathematics involved. If you don't wish to think on your own and apply basic physics principles, solving physics problems is always going to be tough.
    [Show full text]
  • Derivation of the Boltzmann Principle ͒ Michele Campisia Institute of Physics, University of Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany ͒ Donald H
    Derivation of the Boltzmann principle ͒ Michele Campisia Institute of Physics, University of Augsburg, Universitätsstrasse 1, D-86135 Augsburg, Germany ͒ Donald H. Kobeb Department of Physics, University of North Texas, P.O. Box 311427, Denton, Texas 76203-1427 ͑Received 22 September 2009; accepted 4 January 2010͒ W We derive the Boltzmann principle SB =kB ln based on classical mechanical models of thermodynamics. The argument is based on the heat theorem and can be traced back to the second half of the 19th century in the works of Helmholtz and Boltzmann. Despite its simplicity, this argument has remained almost unknown. We present it in a contemporary, self-contained, and accessible form. The approach constitutes an important link between classical mechanics and statistical mechanics. © 2010 American Association of Physics Teachers. ͓DOI: 10.1119/1.3298372͔ I. INTRODUCTION struct a one-dimensional mechanical model of thermody- namics in Sec. III according to the work of Helmholtz.3 The One of the most intriguing equations of contemporary concepts of ergodicity and microcanonical probability distri- physics is Boltzmann’s celebrated principle bution emerge naturally in this model and are introduced in S = k ln W, ͑1͒ Sec. IV. In Sec. V we generalize the one-dimensional model B B to more realistic Hamiltonian systems of N-particles in three where kB is Boltzmann’s constant. Despite its unquestionable dimensions. At this stage the ergodic hypothesis is assumed success in providing a means to compute the thermodynamic and Eq. ͑2͒ is derived. In Sec. VI we point out that the entropy of isolated systems based on counting the number W mechanical entropy of Eq.
    [Show full text]
  • Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, a N College, Patna)
    Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, A N College, Patna) Historical Background 1843: The equipartition of kinetic energy was proposed by John James Waterston. 1845: more correctly proposed by John James Waterston. 1859: James Clerk Maxwell argued that the kinetic heat energy of a gas is equally divided between linear and rotational energy. ∑ Experimental observations of the specific heat capacities of gases also raised concerns about the validity of the equipartition theorem. ∑ Several explanations of equipartition's failure to account for molar heat capacities were proposed. 1876: Ludwig Boltzmann expanded this principle by showing that the average energy was divided equally among all the independent components of motion in a system. ∑ Boltzmann applied the equipartition theorem to provide a theoretical explanation of the Dulong-Petit Law for the specific heat capacities of solids. 1900: Lord Rayleigh instead put forward a more radical view that the equipartition theorem and the experimental assumption of thermal equilibrium were both correct; to reconcile them, he noted the need for a new principle that would provide an "escape from the destructive simplicity" of the equipartition theorem. 1906: Albert Einstein provided that escape, by showing that these anomalies in the specific heat were due to quantum effects, specifically the quantization of energy in the elastic modes of the solid. 1910: W H Nernst’s measurements of specific heats at low temperatures supported Einstein's theory, and led to the widespread acceptance of quantum theory among physicists. Under the head we deal with the contributions of translational and vibrational motions to the energy and heat capacity of a molecule.
    [Show full text]
  • Entropy According to Boltzmann Kim Sharp, Department of Biochemistry and Biophysics, University of Pennsylvania, 2016
    Entropy according to Boltzmann Kim Sharp, Department of Biochemistry and Biophysics, University of Pennsylvania, 2016 "The initial state in most cases is bound to be highly improbable and from it the system will always rapidly approach a more probable state until it finally reaches the most probable state, i.e. that of the heat equilibrium. If we apply this to the second basic theorem we will be able to identify that quantity which is usually called entropy with the probability of the particular state." (Boltzmann, 1877) (1) Heat flows from a hot object to a cold one. Two gases placed into the same container will spontaneously mix. Stirring mixes two liquids; it does not un-mix them. Mechanical motion is irreversibly dissipated as heat due to friction. Scientists’ attempts to explain these commonplace observations spurred the development of thermodynamics and statistical mechanics and led to profound insights about the properties of matter, heat and time’s arrow. Central to this is the thermodynamic concept of entropy. 150 years ago (in 1865), Clausius famously said (2) "The energy of the universe remains constant. The entropy of the universe tends to a maximum." This is one formulation of the 2nd Law of Thermodynamics. In 1877 Boltzmann for the first time explained what entropy is and why, according to the 2nd Law of Thermodynamics, entropy increases (3). Boltzmann also showed that there were three contributions to entropy: from the motion of atoms (heat), from the distribution of atoms in space (position) (3), and from radiation (photon entropy)(4). These were the only known forms of entropy until the discovery of black hole entropy by Hawking and Bekenstein in the 1970's.
    [Show full text]
  • E = H Ν C = Λν E = Energy Υ = Velocity H Λ = P = Mν Ν = Frequency N = Principal Quantum Number Mυ Λ= Wavelength M = Mass 2.178 X 10 -18 P = Momentum E = - Joule N 2
    ADVANCED PLACEMENT CHEMISTRY EQUATIONS AND CONSTANTS ATOMIC STRUCTURE ∆E = h ν c = λν E = energy υ = velocity h λ = p = mν ν = frequency n = principal quantum number mυ λ= wavelength m = mass 2.178 x 10 -18 p = momentum E = - joule n 2 Speed of light, c = 3.00 x 10 8 ms -1 EQUILIBRIUM -34 + - Planck’s constant, h = 6.63 x 10 Js H A K = -23 -1 a []HA Boltzmann’s constant, k = 1.38 x 10 JK 23 -1 Avagadro’s number = 6.022 x 10 molecules mol - + -19 OH HB Electron charge, e = -1.602 x 10 coulomb Kb = []B 1 electron volt/atom = 96.5 kJmol -1 - + -14 Kw =[OH ] [H ] = 10 @ 25 °C = K a x K b Equilibrium constants pH = -log[H +], pOH = -log[OH -] 14 = pH + pOH Ka (weak acid) K (weak base) - b A pH = pK + log Kw (water) a []HA K (gas pressure) + p HB pOH = pK + log Kc (molar concentration) b []B S0 = standard entropy 0 pK a = - logK a, pK b = -logK b H = standard enthalpy 0 ∆n G = standard free energy Kp = K c(RT) where ∆n = moles of product gas - moles reactant gas E0 = standard reduction potential T = temperature THERMOCHEMISTRY/KINETICS n = moles ∆S0 = ΣS0 products - ΣS0 reactants m = mass q = heat 0 0 0 ∆H = ΣH f products - ΣH f reactants c = specific heat capacity 0 0 0 ∆G = ΣG f products - ΣG f reactants Cp = molar heat capacity at constant pressure 0 0 0 ∆G = ∆H - T ∆S Ea = activation energy = - RT ln K = -2.303 RT log K k = rate constant = - n ℑ E 0 ∆G = ∆G0 + RT ln Q = ∆G0 + 2.303 RT log Q A = frequency factor ∆ q = mc T ∆ = H Cp Faraday’s constant, ℑ = 96,500 coulombs per mole ∆T ln[A]t – ln[A] 0 = -kt of electrons 1 1 − = kt A
    [Show full text]
  • On the Radiative and Thermodynamic Properties of the Cosmic Microwave Background Radiation Using Cobe Firas Instrument Data
    ON THE RADIATIVE AND THERMODYNAMIC PROPERTIES OF THE COSMIC MICROWAVE BACKGROUND RADIATION USING COBE FIRAS INSTRUMENT DATA Anatoliy I Fisenko, Vladimir Lemberg ONCFEC Inc., 250 Lake Street, Suite 909, St. Catharines, Ontario L2R 5Z4, Canada ABSTRACT Use formulas to describe the monopole and dipole spectra of the Cosmic Microwave Background (CMB) radiation, the exact expressions for the temperature dependences of the radiative and thermodynamic functions, such as the total radiation power per unit area, total energy density, number density of photons, Helmholtz free energy density, entropy density, heat capacity at constant volume, pressure, enthalpy density, and internal energy density in the finite range of frequencies v1 ≤ v ≤ v2 are obtained. Since the dependence of temperature upon the redshift z is known, the obtained expressions can be simply presented in z representation. Utilizing experimental data for the monopole and dipole spectra measured by the COBE FIRAS instrument in the 60 - 600 GHz frequency interval at the temperature T = 2.728 K, the values of the radiative and thermodynamic functions, as well as the radiation density constant a and the Stefan-Boltzmann constant σ are calculated. In the case of the dipole spectrum, the constants a and σ, and the radiative and thermodynamic properties of the CMB radiation are obtained using the mean amplitude Tamp =3.369m K. It is shown that the Doppler shift leads to a renormalization of the radiation density constant a, the Stefan-Boltzmann constant σ, and the corresponding constants for the thermodynamic functions. The radiative and thermodynamic properties of the Cosmic Microwave Background radiation for the monopole and dipole spectra at the redshift z ≈ 1089 are calculated.
    [Show full text]
  • CONSTANTS Description Value Ideal Gas Constant (R) 0.0821 L•Atm/Mol
    CONSTANTS Description Value Ideal gas constant (R) 0.0821 L•atm/mol•K = 8.31 J/mol•K Faraday constant (F) 9.65 × 104 C/mol e – = 9.65 × 104 J/V•mol e – Planck's constant (h) 6.63 × 10–34 J•s Boltzmann constant (k) 1.38 × 10–23 J/K Molal freezing point depression constant for 1.86°C/m water (Kf) Molal boiling point elevation constant for 0.51°C/m water (Kb) Heat of fusion of water (ΔHfus) 334 J/g = 80 cal/g = 6.01 kJ/mol Heat of vaporization of water (ΔHvap) 2260 J/g = 540 cal/g = 40.7 kJ/mol Specific heat (cp) of water (liquid) 4.184 J/g•K = 4.184 J/g•°C = 1.0 cal/g•°C –14 Dissociation constant of water (Kw)1.0 × 10 at 25°C Standard atmospheric pressure 1 atm = 760 mm Hg = 760 torr = 101.325 kPa Speed of light in a vacuum (c) 3.00 × 108 m/s 1 calorie (cal) 4.184 J 1 watt (W) 1 J/s 23 Avogadro's number (NA) 6.02 × 10 Molar volume of a gas at STP 22.4 L FORMULAS Description Formula Ideal gas law PV = nRT Combined gas law P V P V 1 1 = 2 2 T1 T2 Gibbs free energy equation ΔG = ΔH – TΔS Nernst equation RT E = E ° – ln Q n F ⎛0.0257 V⎞ E = E ° – ⎜ ⎟ ln Q at 298 K ⎝ n ⎠ ⎛0.0592 V⎞ E = E ° – ⎜ ⎟ log Q at 298 K ⎝ n ⎠ Relationship between emf and free energy ΔG ° = –nFE ° change for reactants and products in their standard states ⎛ [conjugate base] ⎞ Henderson-Hasselbalch equation pH = pKa + log ⎜ ⎟ ⎝ [acid] ⎠ Photon energy E = h ν Speed of light c = λν Nuclear binding energy ΔE = c 2Δm Amount of heat (q) q = mcp ΔT Root-mean-square speed 3RT u = rms M Graham's law of diffusion r M 1 = 2 r2 M1 Relationship between the standard free- ΔG ° = – RT lnK energy change and the equilibrium constant ΔG ° = –2.303 RT logK Relationship between the standard free- Δ Δ ° G ° = Grxn + RT lnQ energy change and the free-energy change under nonstandard conditions NOTES FOR CHEMISTRY TEST Not all constants and formulas necessary are listed, nor are all constants and formulas listed used on this test.
    [Show full text]