Membrane Proteomics Characterization of Brush Border Membrane Proteins of Mice Intestinal Mucosa

Total Page:16

File Type:pdf, Size:1020Kb

Membrane Proteomics Characterization of Brush Border Membrane Proteins of Mice Intestinal Mucosa Membrane Proteomics Characterization of Brush Border membrane proteins of mice intestinal mucosa. Case study: cholesterol absorption Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften vorgelegt beim Fachbereich Biochemie, Chemie und Pharmazie der Johann Wolfgang Goethe-Universität in Frankfurt am Main von Eirini Tsirogianni aus Athen (Griechenland) Frankfurt (2008) 2 Vom Fachbereich Biochemie, Chemie und Pharmazie der Johann Wolfgang Goethe-Universität als Dissertation angenommen. Dekan: Prof. Dr. D. Steinhilber Gutachter: Prof. Dr. M. Karas PD Dr. H. Langen Datum der Disputation: 18.05.2009 3 4 To Axel and Nephelie (Where there is a will, there is a way) 5 6 Table of content SUMMARY........................................................................................................11 ZUSAMMENFASSUNG ..................................................................................17 1.1 Brush Border Membrane BBM .................................................................23 1.1.1 Physiology of the small intestine .............................................................................. 23 1.1.2 Brush Border Membrane: Location and Function ................................................ 24 1.1.3 Brush Border Membrane and Lipid Rafts microdomains.................................... 25 1.2 Cholesterol homeostasis..............................................................................26 1.2.1 Cholesterol absorption in the Small Intestine......................................................... 27 1.3 Membrane proteomics ................................................................................29 1.3.1 Proteomics – Definition and workflow.................................................................... 29 1.3.2 Membrane Proteins - Importance and Characteristics ......................................... 31 1.3.3 Proteomic approaches for Membrane Proteins...................................................... 32 1.4 Mass spectrometry ......................................................................................34 1.4.1 A brief history of MS in biology............................................................................... 34 1.4.2 Ionization technique.................................................................................................. 35 1.4.2.1 Matrix-assisted laser desorption/ionization (MALDI) ............................................................... 35 1.4.2.2 Electrospray ionization (ESI) ....................................................................................................... 37 1.4.3 The Mass Analyzer.................................................................................................... 38 1.4.3.1 The Linear Ion Trap-Orbitrap Mass Spectrometer ................................................................... 41 1.5 Data analysis and Bioinformatics tools .....................................................44 1.5.1 Protein Identification ................................................................................................ 44 1.5.1.1 Peptide Mass Fingerprint (PMF method).................................................................................... 45 1.5.1.2 Fragmentation Mass Fingerprinting (FMF) ............................................................................... 46 1.5.2 Validation of peptide and protein identification .................................................... 49 1.6 Quantification in Proteomics .....................................................................50 1.6.1 Semi-quantitative analysis based on Spectral Counting........................................ 51 1.6.2 Relative Quantification based on Differential Stable Isotope labeling................. 52 1.6.3 Label free quantitation of LC-MS data................................................................... 56 2. OBJECTIVES................................................................................................59 3. MATERIALS AND METHODS .................................................................61 3.1 Materials / Chemicals..................................................................................61 3.2 Methods ........................................................................................................62 3.2.1 BBM Preparation ...................................................................................................... 62 3.2.2 Protein concentration estimation by the BCA method .......................................... 62 3.2.3 Protein Deglycosylation ............................................................................................ 63 3.2.4 1D SDS-PAGE electrophoresis ................................................................................ 64 7 3.2.4.1 Sample preparation and electrophoresis ..................................................................................... 64 3.2.4.2 Protein staining.............................................................................................................................. 65 3.2.5 Western Blotting........................................................................................................ 65 3.2.6 In-gel protein digestion ............................................................................................. 66 3.2.7 Mass spectrometry .................................................................................................... 67 3.2.7.1 Packing of NanoLC columns ........................................................................................................ 67 3.2.7.2 Method development for NanoLC ESI-MS/MS.......................................................................... 67 3.2.7.3 Data Processing Method and Protein Identification................................................................... 68 3.2.7.4 Sequence and topology analysis.................................................................................................... 69 3.2.8 RNA extraction from the small Intestine ................................................................ 70 3.2.9 RNA Electrophoresis................................................................................................. 71 4. RESULTS AND DISCUSSION ...................................................................73 4.1 An improved protocol for the specific isolation of BBM from small intenstine ............................................................................................................73 4.1.1 1D-SDS-PAGE analysis of BBM fractions.............................................................. 79 4.1.2 BBM preparation and protein degradation............................................................ 81 4.1.2.1 Protein deglycosylation ................................................................................................................. 81 4.1.2.2 Western Blot analysis of Aminopeptidase N ............................................................................... 82 4.1.2.3 Inhibition of protein degradation................................................................................................. 83 4.2 Protein identification of BBM mice intestinal mucosa ............................87 4.3 Examples of protein localization................................................................95 4.4 Cholesterol absorption................................................................................97 4.4.1 Identified proteins related to Cholesterol absorption............................................ 97 4.4.2 Comparison of protein expression in the BBM of wild type mice and ApoE knockout mice................................................................................................................... 100 4.5 Assessing the reproducibility of the improved BBM preparation .......104 4.5.1 BBM preparation procedure.................................................................................. 105 4.5.2 Comparing the variability of the technical steps: design of experiment............ 106 4.5.3 Estimation of experimental reproducibility.......................................................... 108 4.5.3.1 Estimation of experimental reproducibility based on Protein identification ......................... 108 4.5.3.1.1 Venn diagrams representation............................................................................................... 108 4.5.3.2 Estimation of experimental reproducibility based on LC-MS signals .................................... 115 4.5.3.2.1 Comparative analysis of a standard peptide mixture............................................................. 115 4.5.3.2.2 Comparative analysis of the BBM SDS gel bands 2, 9 and 11. ............................................. 121 4.5.3.2.3 LC-MS reproducibility........................................................................................................... 129 4.5.3.3 Findings and discussion............................................................................................................... 131 4.6 Peptide identification by LC-MS/MS......................................................134 4.6.1 Characteristics of identified peptides .................................................................... 135 4.6.2 Comparison of identified peptides with predicted tryptic transmembrane peptides.............................................................................................................................. 137 4.6.3 Discussion................................................................................................................
Recommended publications
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Suppl 1.1 All Data Dimethyl Labled
    Fasta headers Protein names Gene names Uniprot Ratio H/L normalized exp01 Ratio H/L normalized exp02 Ratio H/L normalized exp03 Ratio H/L normalized exp04 Ratio H/L normalized exp05 Ratio H/L normalized exp06 Ratio H/L normalized exp07 Ratio H/L normalized exp08 Ratio H/L normalized exp09 Ratio H/L normalized exp10 Ratio H/L normalized exp11b Ratio H/L normalized exp12b Peptides exp01 Peptides exp02 Peptides exp03 Peptides exp04 Peptides exp05 Peptides exp06 Peptides exp07 Peptides exp08 Peptides exp09 Peptides exp10 Peptides exp11b Peptides exp12b Unique peptides exp01 Unique peptides exp02 Unique peptides exp03 Unique peptides exp04 Unique peptides exp05 Unique peptides exp06 Unique peptides exp07 Unique peptides exp08 >sp|P01876|IGHA1_HUMAN Ig alpha-1 chain C region OS=Homo sapiens GN=IGHA1 PE=1 SV=2Ig alpha-1 chain C region IGHA1 P01876 1,90 0,62 2,03 12,53 11,35 0,80 1,87 0,60 0,88 1,60 1,33 1,34 7 6 11 8 10 6 8 8 4 3 7 7 3 3 5 4 5 3 4 3 >sp|P02647|APOA1_HUMAN Apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1;>tr|F8W696|F8W696_HUMAN Truncated apolipoprotein A-I OS=Homo sapiens GN=APOA1 PE=1 SV=1Apolipoprotein A-I;Truncated apolipoprotein A-I APOA1 P02647 1,71 1,13 0,77 1,73 0,89 1,12 0,61 0,84 1,53 1,46 1,16 0,86 17 16 17 18 16 14 13 16 17 13 14 17 17 16 17 18 16 14 13 16 >sp|P01024|CO3_HUMAN Complement C3 OS=Homo sapiens GN=C3 PE=1 SV=2Complement C3;Complement C3 beta chain;Complement C3 alpha chain;C3a anaphylatoxin;Acylation stimulating protein;Complement C3b alpha chain;Complement C3c alpha chain fragment 1;Complement C3dg
    [Show full text]
  • Diplomarbeit
    DIPLOMARBEIT Titel der Diplomarbeit „The influence of free fatty acids on the development of liver inflammation“ Verfasser Mario Kuttke, B.Sc. angestrebter akademischer Grad Magister der Naturwissenschaften (Mag.rer.nat.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 490 Studienrichtung lt. Studienblatt: Diplomstudium Molekulare Biologie Betreuerin / Betreuer: A.o.Univ.-Prof.Dipl.-Ing.Dr. Marcela Hermann Danksagung Zuerst möchte ich mich bei a.o.Univ.-Prof. Dipl.-Ing. Dr. Marcela Hermann für die Betreuung meiner Diplomarbeit bedanken. Besonderer Dank gilt a.o.Univ-Prof. Dr. Bettina Grasl-Kraupp für die fachliche Unterstützung und Betreuung während der praktischen Durchführung der Arbeit. Weiters bedanke ich mich bei Sandra Sagmeister, Therese Böhm, Nora Bintner, Waltraud Schrottmaier, Melanie Pichlbauer, Marzieh Nejabat, Teresa Riegler, Bettina Wingelhofer und Christiane Maier für die ausgezeichnete Zusammenarbeit im Labor und die Unterstützung in allen Lebenslagen. Birgit Mir-Karner, Helga Koudelka und Krystyna Bukowska danke ich für ihre Hilfsbereitschaft und für die kollegiale Zusammenarbeit. Mein größter Dank gilt meinen Eltern, Ursula und Heinz, und meiner Großmutter, Theresia, die mir mein Studium ermöglicht und mich immer unterstützt haben, sowie meinem Bruder, Alex, der in allen Lebenslagen für mich da ist. Table of Contents TABLE OF CONTENTS INTRODUCTION ............................................................................................................................................. 4 HEPATOCELLULAR CARCINOMA (HCC)
    [Show full text]
  • Learning from Cadherin Structures and Sequences: Affinity Determinants and Protein Architecture
    Learning from cadherin structures and sequences: affinity determinants and protein architecture Klára Fels ıvályi Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences COLUMBIA UNIVERSITY 2014 © 2014 Klara Felsovalyi All rights reserved ABSTRACT Learning from cadherin structures and sequences: affinity determinants and protein architecture Klara Felsovalyi Cadherins are a family of cell-surface proteins mediating adhesion that are important in development and maintenance of tissues. The family is defined by the repeating cadherin domain (EC) in their extracellular region, but they are diverse in terms of protein size, architecture and cellular function. The best-understood subfamily is the type I classical cadherins, which are found in vertebrates and have five EC domains. Among the five different type I classical cadherins, the binding interactions are highly specific in their homo- and heterophilic binding affinities, though their sequences are very similar. As previously shown, E- and N-cadherins, two prototypic members of the subfamily, differ in their homophilic K D by about an order of magnitude, while their heterophilic affinity is intermediate. To examine the source of the binding affinity differences among type I cadherins, we used crystal structures, analytical ultracentrifugation (AUC), surface plasmon resonance (SPR), and electron paramagnetic resonance (EPR) studies. Phylogenetic analysis and binding affinity behavior show that the type I cadherins can be further divided into two subgroups, with E- and N-cadherin representing each. In addition to the affinity differences in their wild-type binding through the strand-swapped interface, a second interface also shows an affinity difference between E- and N-cadherin.
    [Show full text]
  • Structural and Biochemical Changes Underlying a Keratoderma-Like Phenotype in Mice Lacking Suprabasal AP1 Transcription Factor Function
    Citation: Cell Death and Disease (2015) 6, e1647; doi:10.1038/cddis.2015.21 OPEN & 2015 Macmillan Publishers Limited All rights reserved 2041-4889/15 www.nature.com/cddis Structural and biochemical changes underlying a keratoderma-like phenotype in mice lacking suprabasal AP1 transcription factor function EA Rorke*,1, G Adhikary2, CA Young2, RH Rice3, PM Elias4, D Crumrine4, J Meyer4, M Blumenberg5 and RL Eckert2,6,7,8 Epidermal keratinocyte differentiation on the body surface is a carefully choreographed process that leads to assembly of a barrier that is essential for life. Perturbation of keratinocyte differentiation leads to disease. Activator protein 1 (AP1) transcription factors are key controllers of this process. We have shown that inhibiting AP1 transcription factor activity in the suprabasal murine epidermis, by expression of dominant-negative c-jun (TAM67), produces a phenotype type that resembles human keratoderma. However, little is understood regarding the structural and molecular changes that drive this phenotype. In the present study we show that TAM67-positive epidermis displays altered cornified envelope, filaggrin-type keratohyalin granule, keratin filament, desmosome formation and lamellar body secretion leading to reduced barrier integrity. To understand the molecular changes underlying this process, we performed proteomic and RNA array analysis. Proteomic study of the corneocyte cross-linked proteome reveals a reduction in incorporation of cutaneous keratins, filaggrin, filaggrin2, late cornified envelope precursor proteins, hair keratins and hair keratin-associated proteins. This is coupled with increased incorporation of desmosome linker, small proline-rich, S100, transglutaminase and inflammation-associated proteins. Incorporation of most cutaneous keratins (Krt1, Krt5 and Krt10) is reduced, but incorporation of hyperproliferation-associated epidermal keratins (Krt6a, Krt6b and Krt16) is increased.
    [Show full text]
  • Table S1. the Clinicopathological Data of the Laryngeal Cancer Cases Involved in the Primary Tissue Culture
    Table S1. The clinicopathological data of the laryngeal cancer cases involved in the primary tissue culture Case Gender Age at Smoking Alcohol Histological type TNM Tumor coding* diagnosis status status staging† differentiation LC01 male 63 Yes Yes Supraglottic squamous cell carcinoma T4N2M0 Moderate LC14 male 73 Yes Yes Supraglottic squamous cell carcinoma T3N2M0 Moderate LC53 male 54 Yes No Supraglottic squamous cell carcinoma T3N2M0 Moderate LC95 male 50 Yes Yes Glottic squmamous cell carcinoma T3N1M0 Poor *LC represents laryngeal cancer. † staged according to Sixth Edition (2002) of the AJCC-UICC TNM Staging System. Table S2. The clinical characteristics of the 149 patients with laryngeal SCC used for ELISA Variable N (%) Variable N(%) Age (years) Disease stage ≤55 58 (38.9) I 33 (22.1) >55 91 (61.1) II 32 (21.5) Median (range) 58 (35-82) III 41 (27.5) IV 41 (27.5) Missing 2 (1.3) Gender T stage* Male 140 (94.0) T1 33 (21.5) Female 9 (6.0) T2 36 (24.2) T3 52 (34.9) T4 26 (17.4) Missing 2 (1.3) Smoking status Lymph node status Ever 124 (83.2) pN0 110 (73.8) Never 11 (7.4) pN+ 37 (24.8) Missing 14 (9.4) Missing 2 (1.3) Alcohol status Tumor differentiation Yes 84 (56.4) well 34 (22.8) No 51(34.2) moderate 78 (52.3) Missing 14 (9.4) poor 24 (16.1) Missing 13 (8.7) Anatomical region Glottis 82 (55.0) Supraglottis 60 (40.3) Subglottis 1 (0.7) Missing 6 (4.0) *staged according to Sixth Edition (2002) of the AJCC-UICC TNM Staging System.
    [Show full text]
  • Supporting Table S3 for PDF Maker
    Supplemental Table S3. Annotation of identified proteins. Number of Sequence Accession Number of Theoretical Subcellular Number Locus ID Gene Name Protein Name Identified Coverage Theoretical pI Protein Family NSAF Number Amino Acid MW (Da) Location of TMD Peptides (%) (O08539) Myc box-dependent-interacting protein 1 O08539 BIN1_MOUSE BIN1 (Bridging integrator 1) (Amphiphysin-like protein) 3 10.5 588 64470 5 Nucleus other NONE 5.73E-05 (Amphiphysin II) (SH3-domain-containing protein 9) (O08547) Vesicle-trafficking protein SEC22b (SEC22 O08547 SC22B_MOUSE SEC22B 5 30.4 214 24609 8.5 Cytoplasm other 2 0.000262 vesicle-trafficking protein-like 1) (O08553) Dihydropyrimidinase-related protein 2 (DRP-2) O08553 DPYL2_MOUSE DPYSL2 5 19.4 572 62278 6.4 Cytoplasm enzyme NONE 7.85E-05 (ULIP 2 protein) O08579 EMD_MOUSE EMD (O08579) Emerin 1 5.8 259 29436 5 Nucleus other 1 8.67E-05 (O08583) THO complex subunit 4 (Tho4) (RNA and transcription O08583 THOC4_MOUSE THOC4 export factor-binding protein 1) (REF1-I) (Ally of AML-1 1 9.8 254 26809 11.2 Nucleus NONE 2.21E-05 regulator and LEF-1) (Aly/REF) O08585 CLCA_MOUSE CLTA (O08585) Clathrin light chain A (Lca) 2 4.7 235 25557 4.5 Plasma Membrane other NONE 0.000287 (O08600) Endonuclease G, mitochondrial precursor (EC O08600 NUCG_MOUSE ENDOG 4 23.1 294 32191 9.5 Cytoplasm enzyme NONE 0.000134 3.1.30.-) (Endo G) (O08638) Myosin-11 (Myosin heavy chain, smooth O08638 MYH11_MOUSE MYH11 8 6.6 1972 227026 5.5 Cytoplasm other NONE 3.13E-05 muscle isoform) (SMMHC) (O08648) Mitogen-activated protein kinase kinase
    [Show full text]
  • Aneuploidy: Using Genetic Instability to Preserve a Haploid Genome?
    Health Science Campus FINAL APPROVAL OF DISSERTATION Doctor of Philosophy in Biomedical Science (Cancer Biology) Aneuploidy: Using genetic instability to preserve a haploid genome? Submitted by: Ramona Ramdath In partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biomedical Science Examination Committee Signature/Date Major Advisor: David Allison, M.D., Ph.D. Academic James Trempe, Ph.D. Advisory Committee: David Giovanucci, Ph.D. Randall Ruch, Ph.D. Ronald Mellgren, Ph.D. Senior Associate Dean College of Graduate Studies Michael S. Bisesi, Ph.D. Date of Defense: April 10, 2009 Aneuploidy: Using genetic instability to preserve a haploid genome? Ramona Ramdath University of Toledo, Health Science Campus 2009 Dedication I dedicate this dissertation to my grandfather who died of lung cancer two years ago, but who always instilled in us the value and importance of education. And to my mom and sister, both of whom have been pillars of support and stimulating conversations. To my sister, Rehanna, especially- I hope this inspires you to achieve all that you want to in life, academically and otherwise. ii Acknowledgements As we go through these academic journeys, there are so many along the way that make an impact not only on our work, but on our lives as well, and I would like to say a heartfelt thank you to all of those people: My Committee members- Dr. James Trempe, Dr. David Giovanucchi, Dr. Ronald Mellgren and Dr. Randall Ruch for their guidance, suggestions, support and confidence in me. My major advisor- Dr. David Allison, for his constructive criticism and positive reinforcement.
    [Show full text]
  • Genome-Wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M
    CANCER GENOMICS & PROTEOMICS 11 : 1-12 (2014) Genome-wide Transcriptional Sequencing Identifies Novel Mutations in Metabolic Genes in Human Hepatocellular Carcinoma DAOUD M. MEERZAMAN 1,2 , CHUNHUA YAN 1, QING-RONG CHEN 1, MICHAEL N. EDMONSON 1, CARL F. SCHAEFER 1, ROBERT J. CLIFFORD 2, BARBARA K. DUNN 3, LI DONG 2, RICHARD P. FINNEY 1, CONSTANCE M. CULTRARO 2, YING HU1, ZHIHUI YANG 2, CU V. NGUYEN 1, JENNY M. KELLEY 2, SHUANG CAI 2, HONGEN ZHANG 2, JINGHUI ZHANG 1,4 , REBECCA WILSON 2, LAUREN MESSMER 2, YOUNG-HWA CHUNG 5, JEONG A. KIM 5, NEUNG HWA PARK 6, MYUNG-SOO LYU 6, IL HAN SONG 7, GEORGE KOMATSOULIS 1 and KENNETH H. BUETOW 1,2 1Center for Bioinformatics and Information Technology, National Cancer Institute, Rockville, MD, U.S.A.; 2Laboratory of Population Genetics, National Cancer Institute, National Cancer Institute, Bethesda, MD, U.S.A.; 3Basic Prevention Science Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, U.S.A; 4Department of Biotechnology/Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, U.S.A.; 5Department of Internal Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Korea; 6Department of Internal Medicine, University of Ulsan College of Medicine, Ulsan University Hospital, Ulsan, Korea; 7Department of Internal Medicine, College of Medicine, Dankook University, Cheon-An, Korea Abstract . We report on next-generation transcriptome Worldwide, liver cancer is the fifth most common cancer and sequencing results of three human hepatocellular carcinoma the third most common cause of cancer-related mortality (1). tumor/tumor-adjacent pairs.
    [Show full text]
  • KT33A Antibody Cat
    KT33A Antibody Cat. No.: 55-790 KT33A Antibody Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Mouse HOMOLOGY: Predicted species reactivity based on immunogen sequence: Human This KT33A antibody is generated from rabbits immunized with a KLH conjugated IMMUNOGEN: synthetic peptide between 56-85 amino acids from the N-terminal region of human KT33A. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 46 kDa WEIGHT: Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig October 1, 2021 1 https://www.prosci-inc.com/kt33a-antibody-55-790.html CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: KRT33A Keratin, type I cuticular Ha3-I, Hair keratin, type I Ha3-I, Keratin-33A, K33A, KRT33A, HHA3- ALTERNATE NAMES: I, HKA3A, KRTHA3A ACCESSION NO.: O76009 GENE ID: 3883 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References The protein encoded by this gene is a member of the keratin gene family. It is one of the type I hair keratin genes which are clustered in a region of chromosome 17q12-q21 and have the same direction of transcription. As a type I hair keratin, it is an acidic protein BACKGROUND: which heterodimerizes with type II keratins to form hair and nails.
    [Show full text]
  • The Correlation of Keratin Expression with In-Vitro Epithelial Cell Line Differentiation
    The correlation of keratin expression with in-vitro epithelial cell line differentiation Deeqo Aden Thesis submitted to the University of London for Degree of Master of Philosophy (MPhil) Supervisors: Professor Ian. C. Mackenzie Professor Farida Fortune Centre for Clinical and Diagnostic Oral Science Barts and The London School of Medicine and Dentistry Queen Mary, University of London 2009 Contents Content pages ……………………………………………………………………......2 Abstract………………………………………………………………………….........6 Acknowledgements and Declaration……………………………………………...…7 List of Figures…………………………………………………………………………8 List of Tables………………………………………………………………………...12 Abbreviations….………………………………………………………………..…...14 Chapter 1: Literature review 16 1.1 Structure and function of the Oral Mucosa……………..…………….…..............17 1.2 Maintenance of the oral cavity...……………………………………….................20 1.2.1 Environmental Factors which damage the Oral Mucosa………. ….…………..21 1.3 Structure and function of the Oral Mucosa ………………...….……….………...21 1.3.1 Skin Barrier Formation………………………………………………….……...22 1.4 Comparison of Oral Mucosa and Skin…………………………………….……...24 1.5 Developmental and Experimental Models used in Oral mucosa and Skin...……..28 1.6 Keratinocytes…………………………………………………….….....................29 1.6.1 Desmosomes…………………………………………….…...............................29 1.6.2 Hemidesmosomes……………………………………….…...............................30 1.6.3 Tight Junctions………………………….……………….…...............................32 1.6.4 Gap Junctions………………………….……………….….................................32
    [Show full text]
  • Coa Protects Against the Deleterious Effects of Caloric Overload in Drosophila Laura Palanker Musselman Washington University School of Medicine in St
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2016 CoA protects against the deleterious effects of caloric overload in Drosophila Laura Palanker Musselman Washington University School of Medicine in St. Louis Jill L. Fink Washington University School of Medicine in St. Louis Thomas J. Baranski Washington University School of Medicine in St. Louis Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Recommended Citation Musselman, Laura Palanker; Fink, Jill L.; and Baranski, Thomas J., ,"CoA protects against the deleterious effects of caloric overload in Drosophila." Journal of Lipid Research.57,3. 380-387. (2016). https://digitalcommons.wustl.edu/open_access_pubs/5521 This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact [email protected]. CoA protects against the deleterious effects of caloric overload in Drosophila 1 Laura Palanker Musselman , 2 Jill L. Fink , and Thomas J. Baranski 3 Division of Endocrinology, Metabolism, and Lipid Research, Department of Medicine, Washington University School of Medicine , St. Louis, MO 63110 Abstract We developed a Drosophila model of T2D in in various tissues ( 5–9 ). These lipid mediators induce cel- which high sugar (HS) feeding leads to insulin resistance. In lular stress known as lipid toxicity or “lipotoxicity” ( 4, 10, this model, adipose TG storage is protective against fatty 11 ). Therefore, it is of interest to learn the mechanisms Downloaded from acid toxicity and diabetes. Initial biochemical and gene ex- that enable animals to store excess carbons safely as TG in pression studies suggested that defi ciency in CoA might un- the face of caloric overload.
    [Show full text]