Inside TCP/IP, Third Edition -- Ch 3 -- Network Support for TCP/IP Page 1 of 47

Total Page:16

File Type:pdf, Size:1020Kb

Inside TCP/IP, Third Edition -- Ch 3 -- Network Support for TCP/IP Page 1 of 47 Inside TCP/IP, Third Edition -- Ch 3 -- Network Support for TCP/IP Page 1 of 47 Inside TCP/IP, Third Edition - 3 - Network Support for TCP/IP One of the reasons for the popularity of TCP/IP networks is that TCP/IP can run on a variety of networks and computing devices. The TCP/IP protocol suite can run on computers such as main frames, mini computers, workstations, personal computers, hand-held computers and organizers, and even cellular phones! The actual network hardware and software is usually transparent to the user of the network. In fact, most users are not even aware that they are using the TCP/IP protocol let alone the type of network hardware. However, this book is written for you, the network professional, who wants to learn about TCP/IP, the "glue" that ties together the different network components. The networking hardware and how TCP/IP runs on top of it is therefore of concern to you and is discussed in this chapter. Overview of Networking Hardware that Run TCP/IP By networking hardware, what is meant is layers two and one of the OSI model. Recall from the discussion in Chapter 2, "TCP/IP Protocol Layering Concepts," that layer two of the OSI model is the Data Link layer and layer one of the OSI model is the Physical layer. The Data Link layer transmits and receives data units called frames and interacts with the Physical layer that is responsible for sending and receiving the frame over a physical media. Network interface cards are the pieces of network hardware that go inside a computer and connect the computer to the physical network. Network interface cards typically implement the functionality of the Data Link and Physical layers of the OSI model. Before describing the variety of networking hardware available for running TCP/IP applications and protocols, you might ask a very fundamental question: Why do I need so many different types of network hardware to run TCP/IP? The motivation for having so many different types of hardware is that it is difficult for a single type of hardware to satisfy all the requirements of a real-life network. Most organizations use a Local Area Network (LAN) at a given location, because LANs provide high speeds at relatively low implementation costs. However, LANs are restricted to limited distances and cannot span the distances needed by widely separated sites that need to be connected by a network. For spanning long distances, Wide Area Networks (WANs) that connect remote sites are used. Most WANs use a fundamentally different technology fromLANs. As their name implies, they are designed for connecting networks over long distances. While WANs can span longer distances than LANs, they typically have limited speeds and are slower than LANs. So we see that a single LAN or WAN may not meet the needs of an organization. What is needed in this case is a LAN/WAN combination (see fig. 3.1). file://I:\chapters\z\zc648.html 3/21/01 Inside TCP/IP, Third Edition -- Ch 3 -- Network Support for TCP/IP Page 2 of 47 Such a network consists of one or more LAN and WAN networks. The LANs and WANs differ from each other in the distances they can span, the speeds they provide, and the fundamentally different network hardware technologies they use. Networks that use such different network hardware technologies need to be tied together by special "glue" devices. These devices are called bridges, routers, or gateways. (This chapter will discuss the roles of bridges and routers to connect different network hardware technologies. You will learn more about routers, gateways, and Internet routing protocols in later sections of this book.) One of the goals of connecting different types of networks is to provide users access to resources on the network regardless of the location of the user. This access should be provided in a manner that is transparent to the user. In other words, the complexity of the network and its underlying technologies, protocols, hardware devices, and cabling should be hidden from the user. While the network details are hidden from the user, they cannot be hidden from the network designer/implementer. From a network designer/implementer perspective, the network components and resources must interoperate and be easy to manage and maintain. The network designer or implementer needs to be knowledgeable about the network hardware and protocol components to determine which kinds of devices can be connected to each other and how they interoperate. FIGURE 3.1 LAN/WAN combination network. Figure 3.1 shows a network that consists of LANs and WANs. In each of these categories (LANs, WANs), there are several different types of hardware that are available. The network designer or implementer must make this choice based on the business needs of the organization. The following are some of the more common types of LAN technologies: l IEEE LANs l Ethernet l Token Ring l Switched networks l FDDI The following are some of the more common types of technologies: l X.25 l Frame Relay l SMDS l MAN l SLIP/PPP/CSLIP file://I:\chapters\z\zc648.html 3/21/01 Inside TCP/IP, Third Edition -- Ch 3 -- Network Support for TCP/IP Page 3 of 47 l ATM TCP/IP on IEEE Local Area Networks As you work with TCP/IP network hardware, you will encounter references to the Institute of Electrical and Electronic Engineers (IEEE) 802 standards. These are ubiquitous standards for LANs and are closely connected with the first two OSI layers: the Data Link layer and the Physical layer. The IEEE standard defines Ethernet LANs by the name of IEEE 802.3 standard, and Token Ring LANs by the name of IEEE 802.5 standard. These standards constitute a large number of LAN networks that run TCP/IP. A brief background on the evolution of IEEE LAN standards will be helpful here, and this section offers just that. The IEEE undertook Project 802 in February of 1980 to identify and formalize LAN standards for data rates not exceeding 20 megabits per second (Mbps). Standardization efforts resulted in the IEEE 802 LAN standards. The number 802 was chosen to mark the calendar date when IEEE undertook the LAN standardization efforts (80 for 1980, 2 for February). Figure 3.2 shows the IEEE LAN standards in relationship to the OSI model discussed in Chapter 2. You can see that the primary emphasis of the IEEE committee was to standardize the hardware technologies used at the Physical and Data Link layers. This is not surprising considering that networking hardware such as network interface cards and LAN wiring can be modeled completely by the two lower OSI layers. The IEEE standards divide the OSI data link layer into two sublayers: l Media Access Control (MAC) l Logical Link Control (LLC) FIGURE 3.2 Relationship of the IEEE 802 Standard to the OSI model. (Courtesy IEEE Standard 802-1990) Media Access Control (MAC) The MAC layer deals with media access techniques utilized to control access to a shared physical medium. Token Ring and Ethernet have different implementations of the MAC layer because they use different methods to share the physical media. This also means that if your TCP/IP network needs to link Ethernet and Token Ring networks, you must use one of the "glue" devices such as a bridge or router between the Ethernet and Token Ring networks. Logical Link Control (LLC) All IEEE LANs have the same LLC layer as defined by standard 802.2. The advantage of a common sublayer such as the LLC is that upper-layer mechanisms can be the same regardless of what kind of networking hardware you use. Figure 3.2 shows the interface between Upper Layer Protocols and the LLC layer defined by Link file://I:\chapters\z\zc648.html 3/21/01 Inside TCP/IP, Third Edition -- Ch 3 -- Network Support for TCP/IP Page 4 of 47 Service Access Points (LSAPs). LSAPs are logical data link addresses. A single MAC address, such as an Ethernet address, can have multiple LSAP addresses. These multiple addresses allow multiple end-point connections between two nodes on a LAN. The LLC layer is the upper sublayer within the Data Link layer. Recall from the previous chapter that the Data Link layer is responsible for transmission of data between two adjacent nodes on a network. These adjacent nodes have LSAP addresses that are called the Destination Service Access Point (DSAP) and Source Service Access Point (SSAP) within the LLC layer. The LLC layer also provides the options of virtual circuit (connections-oriented) or datagram (connectionless) services or a combination of these two. Datagram Services Datagram services are modeled after postal services. In the datagram approach, every packet contains complete addressing information such as destination and source addresses. No special effort is made to ensure that packets arrive intact or in the correct order. Datagram services are connectionless; there is no attempt to create a connection before transmitting the data. Datagram services may or may not use acknowledgments. Acknowledgments are special frames sent by the receiver that announce to the sender the frames that have been received correctly. They are used to retransmit frames that were not received correctly. This could happen if there are errors in transmission because of physical hardware or interference on the line. Chapter 2 contains a discussion on how the CRC mechanism is used to detect errors in frames. Unacknowledged datagram services means that datagrams are sent but no attempt is made at the Data Link layer to retransmit frames that were incorrectly received.
Recommended publications
  • 1) What Is the Name of an Ethernet Cable That Contains Two
    1) What is the name of an Ethernet cable that contains two electrical conductors ? A coaxial cable 2) What are the names of the two common conditions that degrade the signals on c opper-based cables? Crosstal and attenuation 3) Which topology requires the use of terminators? Bus 4) Which of the following topologies is implemented only logically, not physical ly? Ring 5) How many wire pairs are actually used on a typical UTP Ethernet network? Two 6) What is the name of the process of building a frame around network layer info rmation? Data encapsulation 7) Which of the connectors on a network interface adapter transmits data in para llel? The System bus connector 8) Which two of the following hardware resources do network interface adapters a lways require? I/O port address and IRQ 9) What is the name of the process by which a network interface adapter determin es when it should transmit its data over the network? Media Access Control 10) Which bus type is preferred for a NIC that will be connected to a Fast Ether net network? PCI 11) A passive hub does not do which of the following? Transmit management information using SNMP 12) To connect two Ethernet hubs together, you must do which of the following? Connect the uplink port in one hub to a standard port on the other 13) Which term describes a port in a Token Ring MAU that is not part of the ring ? Intelligent 14) A hub that functions as a repeater inhibits the effect of____________? Attenuation 15) You can use which of the following to connect two Ethernet computers togethe r using UTP
    [Show full text]
  • Ethernet Alliance Hosts Third IEEE 802.1 Data Center Bridging
    MEDIA ALERT Ethernet Alliance® Hosts Third IEEE 802.1 Data Center Bridging Interoperability Test Event Participation is Open to Both Ethernet Alliance Members and Non‐Members WHAT: The Ethernet Alliance Ethernet in the Data Center Subcommittee has announced it will host an IEEE 802.1 Data Center Bridging (DCB) interoperability test event the week of May 23 in Durham, NH at the University of New Hampshire Interoperability Lab. The Ethernet Alliance invites both members and non‐members to participate in this third DCB test event that will include both protocol and applications testing. The event targets interoperability testing of Ethernet standards being developed by IEEE 802.1 DCB task force to address network convergence issues. Testing of protocols will include projects such as IEEE P802.1Qbb Priority Flow Control (PFC), IEEE P802.1Qaz Enhanced Transmission Selection (ETS) and DCB Capability Exchange Protocol (DCBX). The test event will include testing across a broad vendor community and will exercise DCB features across multiple platforms as well as exercise higher layer protocols such as Fibre Channel over Ethernet (FCoE), iSCSI over DCB, RDMA over Converged Ethernet (RoCE) and other latency sensitive applications. WHY: These test events help vendors create interoperable, market‐ready products that interoperate to the IEEE 802.1 DCB standards. WHEN: Conference Call for Interested Participants: Friday, March 4 at 10 AM PST Event Registration Open Until: March 4, 2011 Event Dates (tentative): May 23‐27, 2011 WHERE: University of New Hampshire Interoperability Lab (UNH‐IOL) Durham, NH WHO: The DCB Interoperability Event is hosted by the Ethernet Alliance. REGISTER: To get more information, learn about participation fees and/or register for the DCB plugfest, please visit Ethernet Alliance DCB Interoperability Test Event page or contact [email protected].
    [Show full text]
  • Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern
    Switched, Fast, and Gigabit Ethernet - CH 3 - Ethernet, Fast Ethernet, and Gigabit Ethern.. Page 1 of 36 [Figures are not included in this sample chapter] Switched, Fast, and Gigabit Ethernet - 3 - Ethernet, Fast Ethernet, and Gigabit Ethernet Standards This chapter discusses the theory and standards of the three versions of Ethernet around today: regular 10Mbps Ethernet, 100Mbps Fast Ethernet, and 1000Mbps Gigabit Ethernet. The goal of this chapter is to educate you as a LAN manager or IT professional about essential differences between shared 10Mbps Ethernet and these newer technologies. This chapter focuses on aspects of Fast Ethernet and Gigabit Ethernet that are relevant to you and doesn’t get into too much technical detail. Read this chapter and the following two (Chapter 4, "Layer 2 Ethernet Switching," and Chapter 5, "VLANs and Layer 3 Switching") together. This chapter focuses on the different Ethernet MAC and PHY standards, as well as repeaters, also known as hubs. Chapter 4 examines Ethernet bridging, also known as Layer 2 switching. Chapter 5 discusses VLANs, some basics of routing, and Layer 3 switching. These three chapters serve as a precursor to the second half of this book, namely the hands-on implementation in Chapters 8 through 12. After you understand the key differences between yesterday’s shared Ethernet and today’s Switched, Fast, and Gigabit Ethernet, evaluating products and building a network with these products should be relatively straightforward. The chapter is split into seven sections: l "Ethernet and the OSI Reference Model" discusses the OSI Reference Model and how Ethernet relates to the physical (PHY) and Media Access Control (MAC) layers of the OSI model.
    [Show full text]
  • Upcoming Standards in Wireless Local Area Networks
    Preprint: http://arxiv.org/abs/1307.7633 Original Publication: UPCOMING STANDARDS IN WIRELESS LOCAL AREA NETWORKS Sourangsu Banerji Department of Electronics & Communication Engineering, RCC-Institute of Information Technology, India Email: [email protected] ABSTRACT: Network technologies are However out of every one of these standards, traditionally centered on wireline solutions. WLAN and recent developments in WLAN Wireless broadband technologies nowadays technology will be our main subject of study in this particular paper. The IEEE 802.11 is the most provide unlimited broadband usage to users widely deployed WLAN technology as of today. that have been previously offered simply to Another renowned counterpart is the HiperLAN wireline users. In this paper, we discuss some of standard by ETSI. These two technologies are the upcoming standards of one of the emerging united underneath the Wireless Fidelity (Wi-fi) wireless broadband technology i.e. IEEE alliance. In literature though, IEEE802.11 and Wi- 802.11. The newest and the emerging standards fi is used interchangeably and we will also continue with the same convention in this fix technology issues or add functionality that particular paper. A regular WLAN network is will be expected to overcome many of the associated with an Access Point (AP) in the current standing problems with IEEE 802.11. middle/centre and numerous stations (STAs) are connected to this central Access Point (AP).Now, Keywords: Wireless Communications, IEEE there are just two modes in which communication 802.11, WLAN, Wi-fi. normally takes place. 1. Introduction Within the centralized mode of communication, The wireless broadband technologies were communication to/from a STA is actually carried developed with the objective of providing services across by the APs.
    [Show full text]
  • An Analysis of IEEE 802.16 and Wimax Multicast Delivery
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Calhoun, Institutional Archive of the Naval Postgraduate School Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis Collection 2007-09 An analysis of IEEE 802.16 and WiMAX multicast delivery Staub, Patrick A. Monterey, California. Naval Postgraduate School http://hdl.handle.net/10945/3203 NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS AN ANALYSIS OF IEEE 802.16 AND WIMAX MULTICAST DELIVERY by Patrick A. Staub September, 2007 Thesis Advisor: Bert Lundy Second Reader: George Dinolt Approved for public release; distribution is unlimited THIS PAGE INTENTIONALLY LEFT BLANK REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED September 2007 Master’s Thesis 4. TITLE AND SUBTITLE An Analysis of IEEE 802.16 and WiMAX 5. FUNDING NUMBERS Multicast Delivery 6. AUTHOR(S) Patrick A. Staub 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8.
    [Show full text]
  • OFC 2017 the Fracturing and Burgeoning Ethernet Market
    OFC 2017 The Fracturing and Burgeoning Ethernet Market March 21, 2017 www.ethernetalliance.org© 2017 Ethernet Alliance Disclaimer Opinions expressed during this presentation are the views of the presenters, and should not be considered the views or positions of the Ethernet Alliance. 2 © 2017 Ethernet Alliance Introductions • Moderator –John D’Ambrosia, Futurewei • Panelists –Chris Cole, Finisar –Paul Brooks, Viavi –Mark Nowell, Cisco 3 © 2017 Ethernet Alliance Ethernet Switch – Data Center Shipments © 2017 Ethernet Alliance Ethernet Optical Module Market Value 2016 $2.5 billion total market © 2017 Ethernet Alliance Ethernet Optical Module Market Value 2021 $4.4 billion Total Market © 2017 Ethernet Alliance Optical Modules IEEE 802.3 defined chip-to-module (C2M) interfaces enabled non-IEEE 802.3 optical specifications for 40GbE / 100GbE © 2017 Ethernet Alliance 100GbE QSFP28 Consumption in 2016 • SMF modules have majority share • SR4 modules largest individual share 8 © 2017 Ethernet Alliance 400 GbE Optical Solutions 9 © 2017 Ethernet Alliance Standard vs Proprietary Ethernet Optics Standard • 10G-SR • 40G-SR4 • 100G-SR10 • 10G-LR • 40G-FR • 100G-SR4 • 10G-LRM • 40G-LR4 • 100G-LR4 • 10G-ER • 100G-ER4 • 100G-SR2 • 100G-DR Proprietary Reduced • 10G-SR (Sub) • 40G-LR4(Sub) • 100G-LR4 (Lite) Standard • 10G-LR (Sub) • 100G-ER4 (Lite) Extended • 40G-eSR4 • 100G-eLR4 Standard Other • 40G-Bidi/SWDM • 100G-PSM4 • 40G-PSM4 • 100G-CWDM4 / CLR4 / Lite www.ethernetalliance.org 10 © 2017 Ethernet Alliance Standard vs Proprietary Ethernet Optics Volume Shipped Volume www.ethernetalliance.org 11 © 2017 Ethernet Alliance ETHERNET OPTICS WHAT’S THE SAME WHAT’S DIFFERENT Chris Cole, Finisar www.ethernetalliance.org© 2017 Ethernet Alliance Optics History: 10G Data Rate Attribute First Tech.
    [Show full text]
  • 10G EPON- Unleashing the Bandwidth Potential White Papers
    www.zte.com.cn 10G EPON- Unleashing the Bandwidth Potential White Papers Product Type Technical Description Version Date Author Approved By Remarks Sameer V1.00 00-0-4 Ashfaq Not open to the Third Party Malik © 00 ZTE Corporation. All rights reserved. ZTE CONFIDENTIAL: This document contains proprietary information of ZTE and is not to be disclosed or used without the prior written permission of ZTE. Due to update and improvement of ZTE products and technologies, information in this document is subjected to change without notice. White Papers Content TABLE OF CONTENTS 1 Abstract………………………………………………………………………………………1 2 Introduction…………………………………………………………………………………1 3 IEEE 802.3av 10Gbit/s Ethernet-based PON (10G EPON) ……………………………2 4 Standardization Timeline…………………………………………………………………3 4.1 10 G EPON Co-existence with 1G EPON…………………………………………………4 5 Power Budget………………………………………………………………………………5 6 10G EPON Optical Spectrum Allocation…………………………………………………6 7 Forward Error Correction (FEC)…………………………………………………………6 8 Dynamic Bandwidth Allocation (DBA)…………………………………………………6 9 10G Convergence……………………………………………………………………………7 10 10G EPON Industrial Chain………………………………………………………………7 11 Conclusion……………………………………………………………………………………8 FIGURES Figure 1 10G EPON protocol stack…………………………………………………………… Figure 2 shows the 10G EPON protocol schedule.…………………………………………… Figure 3 10G and 1G EPON co-existence……………………………………………………4 Figure 4 10G EPON Wavelength Allocation Chart……………………………………………6 Figure 5 Convergences at 10G…………………………………………………………………7 TABLES Table 1 Major Milestones in 10G EPON Study Group……………………………………… Table 2 Power Budget Explanation………………………………………………………………5 White Papers 1 Abstract For the first time in history, we can now aim to live in “ One World” , because the 1st century has ushered in a new era in man’ s ongoing quest for a better life and a better world. Telco industry is passing through a phase of multiservice revolution, with a shift from legacy to next generation networks and the introduction of new and advanced services (e.g.
    [Show full text]
  • System Performance of Wireless Sensor Network Using Lora…
    Computers, Materials & Continua Tech Science Press DOI:10.32604/cmc.2021.016922 Article System Performance of Wireless Sensor Network Using LoRa–Zigbee Hybrid Communication Van-Truong Truong1, Anand Nayyar2,* and Showkat Ahmad Lone3 1Faculty of Electrical and Electronic Engineering, Duy Tan University, Da Nang, 550000, Vietnam; Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam 2Graduate School, Duy Tan University, Da Nang 550000, Vietnam; Faculty of Information Technology, Duy Tan University, Da Nang, Vietnam 3Department of Basic Science, College of Science and Theoretical Studies, Saudi Electronic University, Jeddah Campus, KSA *Corresponding Author: Anand Nayyar. Email: [email protected] Received: 15 January 2021; Accepted: 17 February 2021 Abstract: Wireless sensor network (WSN) is considered as the fastest growing technology pattern in recent years because of its applicability in var- ied domains. Many sensor nodes with different sensing functionalities are deployed in the monitoring area to collect suitable data and transmit it to the gateway. Ensuring communications in heterogeneous WSNs, is a critical issue that needs to be studied. In this research paper, we study the system performance of a heterogeneous WSN using LoRa–Zigbee hybrid communi- cation. Specifically, two Zigbee sensor clusters and two LoRa sensor clusters are used and combined with two Zigbee-to-LoRa converters to communicate in a network managed by a LoRa gateway. The overall system integrates many different sensors in terms of types, communication protocols, and accuracy, which can be used in many applications in realistic environments such as on land, under water, or in the air. In addition to this, a synchronous man- agement software on ThingSpeak Web server and Blynk app is designed.
    [Show full text]
  • 13 Embedded Communication Protocols
    13 Embedded Communication Protocols Distributed Embedded Systems Philip Koopman October 12, 2015 © Copyright 2000-2015, Philip Koopman Where Are We Now? Where we’ve been: •Design • Distributed system intro • Reviews & process • Testing Where we’re going today: • Intro to embedded networking – If you want to be distributed, you need to have a network! Where we’re going next: • CAN (a representative current network protocol) • Scheduling •… 2 Preview “Serial Bus” = “Embedded Network” = “Multiplexed Wire” ~= “Muxing” = “Bus” Getting Bits onto the wire • Physical interface • Bit encoding Classes of protocols • General operation • Tradeoffs (there is no one “best” protocol) • Wired vs. wireless “High Speed Bus” 3 Linear Network Topology BUS • Good fit to long skinny systems – elevators, assembly lines, etc... • Flexible - many protocol options • Break in the cable splits the bus • May be a poor choice for fiber optics due to problems with splitting/merging • Was prevalent for early desktop systems • Is used for most embedded control networks 4 Star Network Topologies Star • Can emulate bus functions – Easy to detect and isolate failures – Broken wire only affects one node – Good for fiber optics – Requires more wiring; common for Star current desktop systems • Broken hub is catastrophic • Gives a centralized location if needed – Can be good for isolating nodes that generate too much traffic Star topologies increasing in popularity • Bus topology has startup problems in some fault scenarios • Safety critical control networks moving
    [Show full text]
  • IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008)
    IEEE Standard for Ethernet IEEE Computer Society Sponsored by the LAN/MAN Standards Committee IEEE 3 Park Avenue IEEE Std 802.3™-2012 New York, NY 10016-5997 (Revision of USA IEEE Std 802.3-2008) 28 December 2012 IEEE Std 802.3™-2012 (Revision of IEEE Std 802.3-2008) IEEE Standard for Ethernet Sponsor LAN/MAN Standards Committee of the IEEE Computer Society Approved 30 August 2012 IEEE-SA Standard Board Abstract: Ethernet local area network operation is specified for selected speeds of operation from 1 Mb/s to 100 Gb/s using a common media access control (MAC) specification and management information base (MIB). The Carrier Sense Multiple Access with Collision Detection (CSMA/CD) MAC protocol specifies shared medium (half duplex) operation, as well as full duplex operation. Speed specific Media Independent Interfaces (MIIs) allow use of selected Physical Layer devices (PHY) for operation over coaxial, twisted-pair or fiber optic cables. System considerations for multisegment shared access networks describe the use of Repeaters that are defined for operational speeds up to 1000 Mb/s. Local Area Network (LAN) operation is supported at all speeds. Other specified capabilities include various PHY types for access networks, PHYs suitable for metropolitan area network applications, and the provision of power over selected twisted-pair PHY types. Keywords: 10BASE; 100BASE; 1000BASE; 10GBASE; 40GBASE; 100GBASE; 10 Gigabit Ethernet; 40 Gigabit Ethernet; 100 Gigabit Ethernet; attachment unit interface; AUI; Auto Negotiation; Backplane Ethernet; data processing; DTE Power via the MDI; EPON; Ethernet; Ethernet in the First Mile; Ethernet passive optical network; Fast Ethernet; Gigabit Ethernet; GMII; information exchange; IEEE 802.3; local area network; management; medium dependent interface; media independent interface; MDI; MIB; MII; PHY; physical coding sublayer; Physical Layer; physical medium attachment; PMA; Power over Ethernet; repeater; type field; VLAN TAG; XGMII The Institute of Electrical and Electronics Engineers, Inc.
    [Show full text]
  • Automotive Ethernet Kirsten Matheus , Thomas Königseder Frontmatter More Information
    Cambridge University Press 978-1-108-84195-5 — Automotive Ethernet Kirsten Matheus , Thomas Königseder Frontmatter More Information Automotive Ethernet Third Edition Learn about the latest developments in Automotive Ethernet technology and imple- mentation with this fully revised third edition. Including 20% new material and greater technical depth, coverage is expanded to include Detailed explanations of the new PHY technologies 10BASE-T1S (including multi- drop) and 2.5, 5, and 10GBASE-T1 Discussion of EMC interference models Descriptions of the new TSN standards for automotive use More on security concepts An overview of power saving possibilities with Automotive Ethernet Explanation of functional safety in the context of Automotive Ethernet An overview of test strategies The main lessons learned Industry pioneers share the technical and non-technical decisions that have led to the success of Automotive Ethernet, covering everything from electromagnetic require- ments and physical layer technologies, QoS, and the use of VLANs, IP, and service discovery, to network architecture and testing. The guide for engineers, technical managers, and researchers designing components for in-car electronics, and those interested in the strategy of introducing a new technology. Kirsten Matheus is a communications engineer who is responsible for the in-vehicle networking strategy at BMW and who has established Ethernet-based communication as a standard technology within the automotive industry. She has previously worked for Volkswagen, NXP, and Ericsson. In 2019 she was awarded the IEEE-SA Standards Medallion “For vision, leadership, and contributions to developing auto- motive Ethernet networking.” Thomas Königseder is CTO at Technica Engineering, supporting the smooth introduc- tion of Ethernet-based systems for automotive customers.
    [Show full text]
  • C:\Andrzej\PDF\ABC Nagrywania P³yt CD\1 Strona.Cdr
    IDZ DO PRZYK£ADOWY ROZDZIA£ SPIS TREFCI Wielka encyklopedia komputerów KATALOG KSI¥¯EK Autor: Alan Freedman KATALOG ONLINE T³umaczenie: Micha³ Dadan, Pawe³ Gonera, Pawe³ Koronkiewicz, Rados³aw Meryk, Piotr Pilch ZAMÓW DRUKOWANY KATALOG ISBN: 83-7361-136-3 Tytu³ orygina³u: ComputerDesktop Encyclopedia Format: B5, stron: 1118 TWÓJ KOSZYK DODAJ DO KOSZYKA Wspó³czesna informatyka to nie tylko komputery i oprogramowanie. To setki technologii, narzêdzi i urz¹dzeñ umo¿liwiaj¹cych wykorzystywanie komputerów CENNIK I INFORMACJE w ró¿nych dziedzinach ¿ycia, jak: poligrafia, projektowanie, tworzenie aplikacji, sieci komputerowe, gry, kinowe efekty specjalne i wiele innych. Rozwój technologii ZAMÓW INFORMACJE komputerowych, trwaj¹cy stosunkowo krótko, wniós³ do naszego ¿ycia wiele nowych O NOWOFCIACH mo¿liwoYci. „Wielka encyklopedia komputerów” to kompletne kompendium wiedzy na temat ZAMÓW CENNIK wspó³czesnej informatyki. Jest lektur¹ obowi¹zkow¹ dla ka¿dego, kto chce rozumieæ dynamiczny rozwój elektroniki i technologii informatycznych. Opisuje wszystkie zagadnienia zwi¹zane ze wspó³czesn¹ informatyk¹; przedstawia zarówno jej historiê, CZYTELNIA jak i trendy rozwoju. Zawiera informacje o firmach, których produkty zrewolucjonizowa³y FRAGMENTY KSI¥¯EK ONLINE wspó³czesny Ywiat, oraz opisy technologii, sprzêtu i oprogramowania. Ka¿dy, niezale¿nie od stopnia zaawansowania swojej wiedzy, znajdzie w niej wyczerpuj¹ce wyjaYnienia interesuj¹cych go terminów z ró¿nych bran¿ dzisiejszej informatyki. • Komunikacja pomiêdzy systemami informatycznymi i sieci komputerowe • Grafika komputerowa i technologie multimedialne • Internet, WWW, poczta elektroniczna, grupy dyskusyjne • Komputery osobiste — PC i Macintosh • Komputery typu mainframe i stacje robocze • Tworzenie oprogramowania i systemów komputerowych • Poligrafia i reklama • Komputerowe wspomaganie projektowania • Wirusy komputerowe Wydawnictwo Helion JeYli szukasz ]ród³a informacji o technologiach informatycznych, chcesz poznaæ ul.
    [Show full text]