Quick viewing(Text Mode)

Road and Maritime Transport Environmental Performance: Short Sea Shipping Vs Road Transport

Road and Maritime Transport Environmental Performance: Short Sea Shipping Vs Road Transport

7JMR diciembre 2012 20/01/2014 13:36 Página 45

journal of maritime research

Vol. IX. No. 3 (2012), pp. 45 - 54 ISSN: 1697-4840 www.jmr.unican.es

RoadandMaritimeEnvironmentalPerformance: ShortSeaShippingVsRoadTransport

M.Castells 1,* ,J.J.Usabiaga 2 andF.Martínez 3

ARTICLEINFO ABSTRACT

Article history: MotorwaysoftheSea(MoS)arepartoftheEuropeantransportstrategytowardsanefficient,safeanden - Received08June2012; vironmentallyfriendlytransportsystem.Thispaperdevelopsamodelforshortseashipping(SSS)androad inrevisedform10June2012; transportenvironmentalperformancecomparison,estimatingdirectemissionsandquantifyingtheirim - accepted30July2012 pactsduetoairpollutantandgreenhouse(GHG)gasemissions.Ultimatelyacasestudyispresentedto analyseandvaluateeachtransportalternativetodesignanactionplandetermininginterveningactions Keywords: favouringtherebalanceofthecurrenttransportsystem. MaritimeTransport,ShortSeaShipping, RoadTransport,Environmentalperformance

© SEECMAR / All rights reserved

1. Introduction withregardstoairborneemissions(airpollutantsand greenhousegases)itisnotthatadvantageous(CEDelft, Eventhoughtheactualeconomiccrisishaspartiallyre - 2008). leasedtheEuropeantransportsystemfromasustainedin - Asforroad,inmaritimetransportationthemainair creaseintransportdemand,thecurrentsystemsuffers pollutantsarethosegeneratedfrominternalcombustion fromcapacityandflexibilityproblems.Anacuteimbalance engines.TheseareCO,VOC,NOxandPM:derivedfrom intransportsharesisthemainreasonoftheinefficiencies shootandrelatedtotheenginetechnologybeingused;and

ofthecurrentsystem.Almosthalfoftheintraeuropean ontheotherhandCO 2,SOx,heavymetalsandfurtherPM: transportvolumesareabsorbedbyroadtransport,followed sulphate-derivedandhencedependantonfueltype.The bymaritimetransportandrailtransportrespectivelyas contributionofwaterbornetransportationmeanstoair - mainmeansoftransport(EurostatStatistics,2012). bornepollutantemissionsissignificantforSO 2,NOx,CO 2, Inordertoimprovethecurrentscenario,theEuropean CO,VOCsandPM.Insomecases,asforSO 2,theshareof Union(EU)pursuesarebalancingofthetransportsystem maritimeairbornepollutantcanbeuptothe80%oftotal basedonamodalshiftfromroadtomaritimemeansand nationalemissions(EMEP/EEA,2009). torailonalesserextent(EuropeanCommissionWhite Thisleadstotheobjectiveofthisresearchthatistode - paper,2001).Maritimetransporthasalwaysbeenpointed velopanenvironmentalperformancemodelforshortsea asanenvironmentallyfriendlymeanoftransport.However shippingandroadtransport,estimatingdirectemissions thereisacommonmisconceptioninthisappreciation,al - andquantifyingtheirimpacts.Indirectemissionsoccurring thoughmaritimetransportoverallexternalitiesarebelieved upstream,fromwelltotank,aresetaside(Schrooten,De tobesmallerthanthoseofroad(EuropeanCommission Vlicgcr,IntPanis,Chiffi,Pastori,2009). WhitePaper,2001),maritimeenvironmentalperformance Provedairborneemissionsastheweakpointofmar - itimetransport,itwilldefinitelycontributetoadiscussion 1 Lecturer,UniversitatPolitècnicadeCatalunya,Email:[email protected],Tel. onanEUlevelonfutureemissionlegislationandthepo - +0034934017939,PladePalau,18.08320Barcelona,Spain. 2 PhDstudent,UniversitatPolitècnicadeCatalunya,Email:[email protected],Tel. tentialimpactofincreasedco-modality. +0034934017920,PladePalau,18.08320Barcelona,Spain.3HeadofDepartment,Uni - Followingtheintroduction,thispaperpresentsindetail versitatPolitècnicadeCatalunya,Email:[email protected],Tel.+00344017920, explanationsoftheproposedmethodology,abreakdown PladePalau,18.08320Barcelona,Spain. * CorrespondingAuthor. ofthedevelopedemissionestimationandimpactmodel, 7JMR diciembre 2012 20/01/2014 13:36 Página 46

46 Journal of Maritime Research, Vol. IX. No. 3 (2012)

anscenarioanalysismadebythemodelconsideringcurrent model,assessesandquantifiestheimpactoftheestimated andfuturescenariosbasedinalreadyinplaceandsched - emissions.Withregardstoemissionimpactassessment uledfutureregulations,acomparativeresultsassessment twoaretheprojectsusedinthemodelasreference,the wereallscenarioresultsforeachoftheconsideredtrans - “BenefitsTableDatabase:EstimatesoftheMarginalExter - portationmodescometogetherandfinallytheconclusion nalCostsofAirin(BETA)”projectforair tosummarizethepaperandidentifyfutureresearchand pollutantlocalimpact(HollandandWatkiss,2002)and improvementareas. “CleanAirForEuropeProgram(CAFE)”forruralortrans- boundaryimpact(EuropeanCommission,2001). Onceairbornepollutantemissionshavebeenestimated 2. Methodology andtheirimpacthasbeenquantifiedforeachofthecon - sideredalternativesandscenarios;acomparativeanalysis Theenvironmentalperformancemodel,whichisableto iscarriedouttryingtoidentifythebestofthealternatives, conductanalysesforsixdifferentscenariosformaritime andthestrengthsandweaknessesofeach. transportandayearbyyearscenarioanalysisforroadtrans - Finallyconclusionsfromtheconductedresearchare ,isbrokedownintothefollowingfourmajorsections: drawnpointingouttherelevantfindingsandidentifying areasforfurtherresearchand improvementofthemodel.

3. Model breakdown

Inordertounderstandmar - Source:Own Figure 1. Generalizedmodelbreakdown. itimeandroadtransportenvi - ronmentalperformancewith regardstoairpollution,itisim - Inthefirstsection,activitydata,parametersdescribing portanttoidentifyanddescribeemissiondriversgivingrise thetransportlegtobecarriedoutareintroduced,e.g.:ori - toairpollutantemissions,aswellascostdriversdetermining gin;destination;lengthoftheroutetobefollowed;turn - thesensitivityoftheemissionareaandhencetheextentof aroundtimefor;routebreakdownwithregardsto theproducedimpact.Itisintheactivitydataandfleetchar - urban,ruralandhighwaylegsforroadtransport;average acterizationsectionswherethesefactorsareintroduced. speedineachoftheconsideredroadlegs;truckload. Ontheotherhandinthesecondsectionandregarding 3.1. Maritime transport model maritimetransport,thetypeofbetweenthoseusually engagedinshortseashippingactivities(container,RoRo, Themaritimetransportmodelisbuiltupbasedonship RoPaxandConRo)isselected.Withregardstoroadtrans - typesandaverageshipsizesderivedfromtheanalysisof portaconfigurationofaroadtractorcoupledtoasemi- theSSSshipscallingatSpanishharboursduringthesecond trailerisused,withamaximumpermissibleweight halfof2011.Theuserwillhavetointroducerelevantpa - between40to50tonnes.Foremissionestimationpurposes rameterswithregardstoshipactivity.Moreoverforairpol - theenginetypeneedstobeselected(EuroI-V).Incasethis lutantemissionestimationthetier3methodology, isunknownthefleetaverageoptioncanbechosen,which describedinthe EMEP/EEA emission inventory guidebook dependingonthepresenceofthedifferentenginetech - 2009, forisused.FinallyCAFEandBETAproj - nologies(EuroI-V)intheEuropeantruckfleet,adjustsand ectsareusedfortheemissionimpactassessment. calculatesemissionfactors. Thethirdsectionleadsustoanemissionindexforeach 3.2. Activity data ofthealternatives,roadormaritimetransport,andscenar - iosselected.Oncemainemissiondriversareknown,intro - Parametersdescribingtheroutebeingconsideredaswell ducedinsections1and2,thetier3methodologydescribed astheshiptypebeingusedneedtobeselectedbythemodel intheEMEP/EEAemissioninventoryguidebook2009is userinordertobeabletoperformconsequentcalculations usedforbothalternatives(EuropeanEnvironmentAgency, withregardstotheenvironmentalperformanceofmar - 2009).Emissionfactorsareupdatedforeachoftheconsid - itimetransportinthatparticularroute,shiptypeandsail - eredscenarios,followingthemethodologypresentedby ingscenario. Entecinits2002,2005and2007emissionstudies.Emis -

sionsforNOx,SO 2, CO 2, VOCsandPMarecalculated,as Ship movement data theseareconsideredasthemostsignificantairbornepol - Inthissectiontheuserdescribestheroutebeingconsid -

lutants.InthecaseofroadtransportNH 3 emissionsare ered,establishingtheoriginanddestinationand alsoestimated. henceconsideringtheinhabitantsaroundtheports;which Finallythefourthsection,usingmainemissionandim - indeedresult’scriticalforthelocalimpactassessment.At pactdriversintroducedinthefirsttwosectionsofthe thisfirststagetheseaareainwhichthesailingiscarried 7JMR diciembre 2012 20/01/2014 13:36 Página 47

M. Castells, J.J. Usabiaga and F. Martínez 47

outisalsoconsidered,astheareawherethepollutantsare besidestheenginetype,theaveragepowerforthedifferent emittedisrelevantfortheemissionsruralimpact.Finally typicalSSSshiptypesisalsoidentified. thedistanceoftheconsideredrouteisalsointroducedas thiswilldeterminethesailingtimeandhencetheemissions Auxiliary engine type and power atthephase. Auxiliaryengines,usedtoprovidepowerandservices withinthevessels,alsocontributetoshipemissions.There - 3.3. Fleet characterization forethesealsoneedtobecharacterized. Theauxiliaryengine(AE)tabisdefinedbythetype, Forthemaritimealternativethefleetcharacterizationis powerandnumberofAEsinstalledon-board.Howeverthis veryimportant,asdependingontheconsideredshiptypes informationisnotusuallyavailableforallships,eveninthe andtheirmaincharacteristicstheemissionvaluesdiffer mostcompleteshipdatabases. significantly.Abottomupapproachhasbeenconductedto FollowingassumptionsdoneintheEntecstudyforthe providetheresearchwiththeconsistencygivenbythecon - DepartmentforEnvironment,andRuralAffairs siderationofdifferentanddetailedinputvariables.Forthis (DEFRA)oftheBritishgovernment(Entec,2010)withre - purposetheLineportdatabase(FundaciónValenciaPort, gardstoAEenginetypes,MSDandHSDenginesarecon - 2012),whichrecordsallshipsengagedinSSSservicescom - sideredtobeevenlydistributedamongthefleet.Asthe petitivewithroadtransport,isused.Oncealltheseships numberandpowerofAEsarealsounknown,themodel areidentified,usingtheFairplaySeawebdatabaseallrele - alsofollowsEntec2010assumptionswithregardstothe vantfactorsthatgiverisetoairborneemissionsfromships AE/MEpowerratiopervesseltype. arefoundandintroducedintothemodel´sdatabase. Service speed and engine load factor Table 1. AverageshipsengagedinSSSservices. Theshipservicespeedandtheengineloadfactorsateach Container Ro-Ro Ro-Pax oftheconsideredphases(sailing,manoeuvringandatberth) ships ships ships Con-Ro arealsorelevantforemissionestimation.Theservicespeed LengthOverAll 178 184,1 197 168 foreachoftheconsideredshiptypesistheaveragevalueob - Breadth 25 25 27 24 tainedfromtheSSSfleetsurveycarriedout.Itisasignifi - 10 777cantparametersinceitdeterminesthetimespentatsea. GT 20205 27486 34052 17330 DWT 24592 9393 6933 10537 Ontheotherhandengineloadfactorsaredirectlyob - MEtype MSD MSD MSD MSD tainedfromthestudycarriedoutbytheEntecfortheEu - MEpower 16837 17775 29352 11427 ropeanCommissionregardingemissionsfromships EAtype MSD/HSD MSD/HSD MSD/HSD MSD/HSD associatedwithshipmovementsbetweenportsintheEu - EApower 3704 5333 10273 3428 Averageservicespeed 20 21 24 18 ropeanCommunity,in2002(Entec,2002).Aswellasthe Capacity(TEU-s) 1820 na na 658 servicespeedtheengineloadfactorisalsoanimportant Capacity(linemeters) na 3196 2319 2131 parametersinceemissionsareproportionaltoit. Capacity(trailerorCEU-s) na 213 155 142 CapacityperTEU(tm) 21,5 na na 21,5 Capacitypertrailer(tm) na 24 24 24 Sailing, manoeuvring and at berth times Totalcapacity(tm) 24592 5114 3710 10537 Thetier3methodologyestimatesemissionsforthreewell

Source:Own,basedinSeawebandLineportdatabase differentiatedphasesinthemaritimetransportleg:sailing, manoeuvringandatberth. 3.4. Main engine type and power Thereforeitisneededtoknowthetimethatthevessel undergoesineachofthephasesastheemissionswillbepro - Underthemainengine(ME)tab,theenginetypeandits portionaltothetimespent.Inthecaseofthesailingphase poweraredescribed.Inthemarineindustrydieselengines thisiscalculateddividingthedistancebetweenportsbythe arethepredominantformofpowerforbothmainandaux - servicespeed.Ontheotherhandthemanoeuvringandat iliaryengines(Trozzi,2010).Emissionsareenginetypede - berthtimesaretakeneitherfromexistingprojects(Entec pendent;thereforeitisimportanttoidentifytheengine 2002,2010)orfromsurveyscarriedouttocertainSSSlines typesfortheconsideredtypicalshiptypesinSSSservices. inpreviousresearchstudies(Usabiagaetal.,2011). Dieselenginesarecategorisedintoslow(upto300rpm), medium(300-900rpm)andhigh(morethan900rpm) Capacity speeddieselengines(SSD,MSD,HSD)dependingontheir Thecapacitytabtogetherwiththecovereddistancewillen - ratedspeed. ablethemodeltoshowresults(emissionsorimpacts)in AsaresultofthecarriedoutSSSshipssurvey,thede - transportworkunits(pertonnekilometre).Thecapacityfor velopedmodelconsidersMSDenginesaspredominantin eachoftheconsideredshiptypesistheresultoftheaverage theSSSfleet,andhenceusesemissionfactorsforthistype valueobtainedfromtheshipsurveycarriedout.Depending ofenginesintheemissionestimationphase. ontheshiptypethecapacityisgiveninunitssuchustwenty Moreoverairbornepollutantemissionsarepropor - feetequivalentunitcontainer(TEU)forcontainershipsand tionaltothefuelconsumptionorenginepower;therefore linemetersforRoRoandRoPaxships.Howeverfollowing 7JMR diciembre 2012 20/01/2014 13:36 Página 48

48 Journal of Maritime Research, Vol. IX. No. 3 (2012)

theassumptionsillustratedinTable1,capacitiesintonnes estimationsneedofgreatemissionsitedetail;therefore,a arecalculatedfortheconsideredshiptypes. bottom-upapproachhasbeenchosenforemissions’geo - graphicalcharacterization(Miolaetal,2010).Ontheother 3.5. Emission estimation handtheruralimpactiscountryorseaspecific,andforim - pactquantificationpurposesthatmuchinformationisnot ThemethodologyquotedasTier3intheEMEP/EEAair needed. pollutantemissioninventoryguidebook2009isusedfor Forlocalimpactquantificationpurposesthemethod - theestimationofairborneemissionsfromships.This ologyprovidedin“BenefitsTableDatabase:Estimatesof methodologyrequiresdetailedshipmovementdatabesides theMarginalExternalCostsofAirPollutioninEurope technicalinformationonshipsbeingconsidered. (BETA)”studyisused. Furtherfocusingontheemissionsestimationmethodol - Theruralimpactquantificationineachofthenaviga - ogyuncoversthatthisworkfollowstheprocedureusingdata tionphasesisanstraightforwardprocessastheCleanAir oninstalledmainandauxiliaryenginepower,engineload ForEuropeProgram(CAFE)2005,containsemissionscosts factorsandtotaltimespentoneachnavigationphase.The fortheconsideredairbornepollutants,andtheEU27coun - Tier3methodalsoemploysspecificemissionfactorsde - triesandsurroundingseas. pendingontheenginetype,fuelusedandnavigationalphase. MoreovertheBETAprojectprovidesastraightforward estimationofairpollution’soverallexternalcosts,putting togetherbothurbanandruralexternalities.Thereforethis (1) isthemethodologybeingusedformanoeuvringandat berthphases. ThispapermaintainsthemethodologygivenbyBETA (2) tolisturbanandruralexternalcosts,buttakesupdated ruralexternalcostsprovidedbytheCAFEprogram.The costestimationdoneundertheCAFEprogramconsiders Etrip emissionspertrip(tons) humanexposuretoPM 2.5 ,humanexposureto,and EF emissionsfactor(tons/kWh) exposureofcropstoozone.Althoughmoreimpactsare LF engineloadfactor(%) known,thereisnotsufficientinformationtoevaluatethem P nominalenginepower(kW) withguarantee. T time(hours) Moreover,inanattempttoachievecomprehensivere - e engine(main,auxiliary) sults,thevaluationdonebytheCAFEprogramconsiders i pollutant(PM 2,5 ,SO 2,NOx,VOC,CO 2) fourdifferentsensitivityscenariosthatleadtofourdifferent s shiptype(Container,RoRo,RoPax,ConRo) resultsforeachgeographicalareasandscenariosbeingcon - m fueltype(BunkerFuelOil,MarineDieselOil, sidered. MarineGasOil) Theresultingmaritimeenvironmentalperformanceas - p tripphase(sailing,manoeuvring,atberth) sessmentmodeliscomposedofatop-downapproachwith regardstofleetcharacterizationandabottom-upapproach Moreoveremissionfactorsaredifferentineachofthe regardinggeographicalcharacterization.Inthismanner, consideredscenarios:asfuelproperties,regardingsulphur themodelachievesacomprehensiveassessment,taking content,andenginetechnology,withregardstoNOxemis - intoaccountthespecificsofeachemissionpointaswellas sions,varyfromonetotheother. thedetailsoftheemittingvesseltype. Theemissionfactorupdateismadefollowingthe methodologyandassumptionsdescribedinEntec2010, studydevelopedfortheDEFRA.Fiveairpollutantsemis - (3) sionsareestimatedformaritimetransport:NOx,VOCs,

PM 2,5 ,SO 2 andCO 2. (4)

4. Impact valuation (5) Onceemissionsforeachofthenavigationphasesare known,theimpactofthesemustbequantified.Twotypes Itrip impactpertrip(€) ofimpactsaredistinguishedformarineairbornepollutants Irt totalruralimpactpercountryorseaarea(€/tm) emissions:asite,seaport,specificlocalimpactandaseaor Ilt totallocalimpactperport(€/tm) countryspecificruralimpact.Bothlocalandruralimpacts Ir ruralimpactpercountryorseaarea(€/tm) arequantifiedformanoeuvringandatberthphases.How - Il localimpactperport(€/tm) everinthesailingphaseonlyruralimpactispresent. E airbornepollutantemissions(tm) Thelocalimpactisproducedjustafterthepollutants, Is standardlocalimpactfor100.000inhabitants’ PMandSOxprimarily,havebeenreleased.Localimpact city(€/tm) 7JMR diciembre 2012 20/01/2014 13:36 Página 49

M. Castells, J.J. Usabiaga and F. Martínez 49

Pf populationfactorforlocalimpactprojection 6.4. Average speed purposes

i pollutant(PM 2,5 ,SO 2,NOx,VOC,) Tofinishwiththeactivitydatasection,thelastrelevantpa - s shiptype(Container,RoRo,RoPax,ConRo) rameterwhenitcomestoairborneemissionestimation,is m fueltype(BunkerFuelOil,MarineDieselOil, averagespeed.Thisparameterwillbenecessarytodeter - MarineGasOil) mineboththetimespentandthequantityofemittedpol - p tripphase(sailing,manoeuvring,atberth) lutantsineachoftheroadleg’sstages(urban,rural, port consideredport highway).

(6) 7. Fleet characterization

GW globalwarmingimpactpertrip(€) UnderthissectiontheEuropeantruckfleetengagedin E greenhousegas(CO 2)emissions(tm) freightservicesischaracterized.Moreindetail,thevehicle Ig GlobalimpactperCO 2 tonneemitted(€/tm) parkengagedininternationalfreightservicesandcompet - ingwithSSSservices.Thetypicaltruckclassengagedinin - ternationalhaulage,thefleet’senginetechnology(EuroI-V) 5. model andcapacityarereviewed(AEA,2011).

Theroadtransportmodelhasbeenbuiltupfollowingthe 7.1. Truck class samemethodasforthemaritimemodel.Themethodolo - giesusedforairborneemissionsestimation(EMEP/EEA Underthistabthetruckclassconsideredbythemodelto tier3)andtheirimpactassessment(BETAandCAFEproj - simulatetheroadtransportenvironmentalperformanceis ects)arethesameforbothmaritimeandroadmodels, described.TheEuropeantruckfleetisformedbyrigid thereforethedifferencesbetweenmodelslieinspecificac - trucks,articulatedtrucksandroadtrains.Forcalculation tivitydataandfleetcharacterizationparametersbasically. purposesthearticulatedtruck,i.e.aroadtractorcoupled toasemi-trailer,isconsideredrepresentativeofthetruck fleetEurostatstatisticsfor2008,apportionthe73,9%ofthe 6. Activity data totalintraeuropeanroadfreighttransportintm.kmtoar - ticulatedtrucks. Inthissectiontheinputsaretheparametersdescribingthe consideredroadtransportleg.Theseparametersaresome 7.2. Engine type ofthedriversneededtocalculateemissionsandimpact. Underthistabtheenginetechnologyoftheconsidered 6.1.Truck movement data truckfleetsegmentischaracterized.Forthispurposedata givenbytheEurostatdatabase(2012),withregardstolor - Underthistabtwoarethemaininputs:distancecovered riesandroadtractorsagecategories,fortheyear2008is undereachoftheconsideredstagesforroadtransport used.Oncethetruckfleetischaracterisedinpercentages (urban,rural,highway)andtheaveragepeopleaffected accordingtoagecategories,enginetechnologiespresentin undertheurbanstage. thecurrentfleetareextrapolated. Theseinputsaresignificantandtheywillpermittoes - timate,togetherwiththeaveragespeed,theamountof 7.3. Capacity emissionsineachofthestagesandtheimpactproduced onthem. TheEMEP/EEAtier3emissionestimationmethodology, besidesthetruckclass,needstheidentificationoftruckca - 6.2. Load factor pacityparameterinordertobeabletoestimateairborne pollutantsemissions.Inordertoachievearealisticfleet Roadtransportemissionsareproportionaltothefuelcon - characterizationareviewofallowedgrossvehicleweights sumption,andasthelatterincreasestogetherwiththeload intheEU27isconducted,identifyingarticulatedtrucks factor(Madreetal.,2010),thisparameterisimportant withmaximumgrossweightsbetween40to50tonnesas withintheroadtransportmodel. themostrepresentativecategoryamongtheonesconsid - eredbythetier3methodology(AEA,2011). 6.3. Route type

Underthistabroadsverticalgeometryisdescribed,en - 8. Emission estimation ablingustodistinguishbetweenflat,averageandhighland profiles.Onceagainthefuelconsumptionissignificantly Intheroadtransportmodeltheemissionestimationisalso affectedbythisparameter. carriedoutaccordingtotheEMEP/EEAemissioninven - 7JMR diciembre 2012 20/01/2014 13:36 Página 50

50 Journal of Maritime Research, Vol. IX. No. 3 (2012)

toryguidebook2009,althoughthistimethetier3method - (10) ologydescribedintheroadchapterisfollowed. Onceallrelevantemissiondrivershavebeenintroduced intothemodel,thelatterwillcalculateemissionresultsfor GW globalwarmingimpactpertrip(€)

eachoftheconsideredroadtransportstagesandairpollu - E greenhousegas(CO 2)emissions(tm) tants.IntheroadtransportmodelNH 3 emissionsarealso Ig GlobalimpactperCO 2 tonneemitted(€/tm) estimatedbesidesthosealreadyestimatedformaritime transport.

SO 2 andCO 2 emissionsareproportionaltothefuelcon - 10. Scenario analysis sumption;howeveremissionsfortherestofthepollutants arecalculatedaccordingtoempiricalformulaspresented Oncethegeneralenvironmentalperformancemodelhave ontheEMEP/EEAstudyfortheconsideredtruckclassand beendeveloped,scenariossimulatingtherealperformance capacity. ofbothtrucksandshipscurrentlyandinthefuturearebuilt up.Thesescenarioswillenablethemodeltoconductcom - parativeperformanceanalysisnotonlyforcurrentscenar - 9. Impact valuation ios,butforfutureones;providingthemodelwith forecastingandinadvancepolicymeasuretestingabilities. Theimpactassessmentforroadtransportisconductedjust Thissectiondescribeseachofthebuiltupscenarios, asformaritimetransportfollowingsameprojectsand whicharebasedonenvironmentalpoliciesapplicableto methodologies.Onlyafewdifferentconsiderationsaretak - tradesandtransportationmodesconsideredinthepaper. ingintoaccount:inthiscasethelocalimpactisonly Withregardstomaritimeairborneemissionstheregu - consideredfortheurbanstage,takingintoaccountthe latoryframeworkapplicabletoSSSisbasicallyformedby averageinhabitantslivinginthecrossedurbanareas;on theMARPOL1973/1978conventionandtheso-calledEU theotherhandtheruralimpactwillbequantifiedinthe sulphurdirectives(Directive2005/33/EC,Directive threeoftheroadlegstages,dependingonwhicharethe 1999/32/EC,Directive1993/12/EEC). crossedcountries. Baselinescenariosarebasedintheregulatoryframe - Asforthemaritimemodel,theimpactquantificationis workcurrentlyinplaceandfuturescenariosarebuiltup achievedfollowingBETAandCAFEprojects.TheBETA takingintoaccountthescheduleddevelopmentofthereg - projectisrelevantforlocalimpactquantificationandfor ulatoryframeworkwhichisincreasinglystringent. thejoiningofbothruralandlocalimpactsintheurban stage;andontheotherhand,theCAFEprojectisrelevant Table 2. Maritimeregulatoryframeworktogetherwithkeyimplementationyears. asitprovidescostsperemittedpollutantforeachofthe EU27countries. NOx Max fuel Construction emissions Area Period sulphur year limits content (7) Pre1990 None Port PostJenuary1,2010 0,10% 1990-1999 Tier0 July1,2010-2015 1,00% SECA-s 2000-2010 TierI PostJanuary1,2015 0,10% (8) 2011-2015 TierII PreJanuary1,2012 4,50% Post2016 TierIII Global January1,2012-2020 3,50%

Source:Own PostJanuary1,2020 0,50% (9)

Itrip impactpertrip(€) Moreoverdependingontheconcernedseaareaandship Irt totalruralimpactforcrossedcountries(€/tm) typesomeadditionalscenarioscomeup,astheregulatory Ilt totallocalimpactforcrossedurbanareas frameworkvariesforcertainshiptypesandespeciallysen - (€/tm) sitiveseaareasknownasemissioncontrolareas(ECAs). Ir ruralimpactpercountry(€/tm) FinallyNOxemissionfactorswillalsovaryfromcurrent Il localimpactperurbanarea(€/tm) tofuturescenariosastheenginetechnologyon-board E airbornepollutantemissions(tm) variestogetherwiththeshiprecyclingcycle.Years2000 Is standardlocalimpactfor100.000inhabitants’ (TierI),2011(TierII)and2016(TierIII)areconsideredkey city(€/tm) yearsinthisrespect,ascorrespondtonewregulationim - Pf populationfactorforlocalimpactprojection plementingyearswithregardstoNOxemissions(MAR - purposes POL,AnnexVI,regulation13).Thesenewregulations

i pollutant(PM 2,5 ,SO 2,NOx,VOC,NH 3) forcedshipstobebuiltwithnewenginetechnologiesfur - t trucktype(Container,RoRo,RoPax,ConRo) therreducingNOxemissions.Forthepurposeofproject - s roadlegstage(urban,rural,highway) ingforward2012,a25yearshiplifecycleisassumed,which urban crossedurbanareas isequivalenttoa4%annualfleetrenewalrate. 7JMR diciembre 2012 20/01/2014 13:36 Página 51

M. Castells, J.J. Usabiaga and F. Martínez 51

ScenariosconsideredinMaritimetransportmodelare: Table 3. Casestudymainparameters. Baseline 2012. Amongalltheconsideredscenariosthe Route lessstringentandthereforetheonechosenasbaseline,is Barcelona(Spain)-Civitavecchia (Italy) thatrepresentingthe2012scenario;withnospecialchar - Maritime Distance (nm) 450(833km) acteristicswithregardstosensitiveareasorspeciallyregu - Road Distance (km) 1282 latedshiptypes. Ship Types All(Containership,RoRo,RoPax 2012 SECA. Thedifferenceofthisscenariocomparing andConRo) itwiththebaselinescenarioisthesulphuremissionsal - Engine type ship Fleetaverage lowedduringthesailingphase.Theshipissupposedtosail Scenario Baseline(2012),Baseline(Ro-Pax) inaSOxECAandthereforemustcomplywithspecialreg - andBaseline(2020) ulations.Underthisscenariotheemissionfactorsforthe Sensitivity scenario 1 sailingphasearecalculatedconsideringtheshiptouse Urban (Road) Averagespeed40km/h MDOwith1%sulphurcontent. Highway (Road) Averagespeed80km/h 2012 Ro-Pax services. EUsulphurdirectivesbesides Load factor 100% limitingthesulphurcontentofprincipalfuelsusedatports, Route type Medium alsolimitthiscontentforshipsduringthesailing Engine type truck Fleetaverage

leg;andestablishitin1,5%. Source:Own 2015 SECA. Comparingitwiththealreadydescribed 2012scenario,theprojectionofthe2015scenarioismade Table 4. Shipactivityandfleetcharacterizationdatainputsheet. basedonthefollowingassumptions.Regardingsulphur Ship type RoRo contentderivedemissions,forthesailingphaseamaximum Engine type Fleetaverage sulphurcontentof0,1%inthemarinefuelusedisconsid - Route distance (nm) 450 ered,consideringasprincipalfuelMGO.Ontheother, Scenario Baseline(2012) whenitcomestoNOxemissionfactorstheaveragefleet Sea Mediterraneansea emissionfactorsarecalculatedassuminga4%yearlyfleet Port of origin Barcelona renewal,representingasignificantNOxemissionreduction Country Spain asoldtier0enginesarereplacedbyfarmoreeco-friendly Inhabitants in the port city 1.600.000 tier2engines. Port of destination Civitavecchia 2016 SECA + NECA .Theuniqueandmainchangefor Country Italy thisscenariocomparinginitwiththepreviousone,isgiven Inhabitants in the port city 50.000 bytheconditionofsailinginaNOxECA,whichmeansthat Source:Own allshipsenginesmustcomplywithTier3emissionstandards. Baseline 2020. Finallyunderthe2020scenariothe Table 5. Truckactivityandfleetcharacterizationdatainputsheet. changeintheglobalsulphurcapscheduledbytheMARPOL Urban Highway conventionisthemainfeaturewhencomparingitwiththe Routetype Routetype Medium Medium restofthescenarios.Thiscapisplannedtobeplacedata (Gradient): (Gradient): maximumsulphurcontentof0,5%.Themodelsimulatesit Loadfactor: 100% Loadfactor: 100% using0,5%sulphurMDOduringthesailingphase. Enginetype: Fleetaverage Enginetype: Fleetaverage Samescenariosareconsideredforroadtransportfor AverageSpeed Average 40 80 comparisonpurposes.Howevertheseareonlycharacter - (km/h): Speed: izedbytheenginetechnologyinplacewithinthefleet,as Length(km): 100 Length: 1200 Average fuelcompositionissimilarinallcountriesanditisnotthe 1000000 Country1: Spain 10% drivingfactorforemissionfactorcompliance. inhabitants Country1: Spain 60% Country2: France 30% Country2: Italy 40% Country3: Italy 60%

11. Results comparison and discussion Source:Own

InthissectiontheBarcelona–Civitavecchiacasestudyis Fourshiptypes(Containership,RoRo,RoPaxand presented.Bothroad´sandMaritime’senvironmentalper - ConRo)andthreescenarios(Baseline(2012),Baseline(Ro- formanceshavebeencalculatedapplyingtheintroduced Pax)andBaseline(2020))havebeenconsideredformar - model.Thefollowingtableshowstheconsideredvariables: itimetransport.Thisenablestoconductcomparative Parametersdescribingtheroutebeingconsideredas analysisbetweencurrentandfuturescenarios.Thusper - wellastheshipandtrucktypebeingusedneedtobese - mittingtoanticipatetoprospectiveproblemsandtryto lectedbythemodeluserinordertobeabletoperformcon - overcomethembeforetheyarise.Moreover,havingcon - sequentcalculationswithregardstotheenvironmental sideredfourdifferentshiptypes,enablesthemodeltorank performanceofmaritimeandroadtransport.Table4and themwithregardstotheirenvironmentallyfriendlyper - Table5showdatainputsheetsofshipandtruckactivity formanceandtocomparetheminanindividualbasis andfleetcharacterization. againstroadtransport. 7JMR diciembre 2012 20/01/2014 13:36 Página 52

52 Journal of Maritime Research, Vol. IX. No. 3 (2012)

Figure 2. Totalenvironmentalexternalcostsin€/Tm·kmofshiptypesand transport(0.0015€/Tm·km)regardingairpollutionand roadtransportconsideringcurrentscenarioBaseline(2012). globalwarming.However,RoRoandRo-Paxshipscontinue withworseresults,0.0027€/Tm·kmand0.0058€/Tm·km respectively.

11.1. Conclusions and areas for further research

OncethemodelhasbeendevelopedtheBarcelona-Civi - tavecchiarouteistakenascasestudyforapracticalappli - cation.Thusemissionsandderivedimpactsforeachofthe transportalternativesandapplicablescenariosatthisroute areestimated.Finallyacomparativeanalysisiscarriedout Source:Own tryingtoidentifythebestactualandfuturealternatives. Althoughmaritimetransportisknownasthemosten - Figure 3. Totalenvironmentalexternalcostsin€/Tm·kmofRoPaxshipand vironmentallyfriendlymodeoftransport;itisprovedthat RoadtransportconsideringcurrentscenarioBaseline(RoPax). thisisnottrueinallcases.Results,whichemergefromthe developedmodel,proveairborneemissionstobeaweak pointofmaritimetransport:especiallyforRoRoandRoPax ships.Thenecessitytofurtherimprovethemaritimeenvi - ronmentalperformancewithregardstoairpollutionand GHGemissionsisdemonstrated.Thereforeshipowners, portauthoritiesandpolicymakersbearinginmindthesere - sultsshouldconsidernewgreeningformulasforthesector. Todayalreadyareconcernsaboutthecapabilityofthe sectortocomplywithalreadyapproved,scheduledandin - creasinglytighterregulations.Henceitisnotfeasibletotry tofurtherimprovetheenvironmentalperformancewithan evenmorestringentregulatoryframework.Howeverthe successpotentialofintroducingintothemarketnewlyde - Source:Own velopedandgreenertechnologiesseemshigher. RoRoandRoPaxshipsweakperformanceisrelatedto Resultsinfigures2and3showthecurrentscenario inherentcharacteristicssuchassmallercapacity, consideringtwodifferentscenariosformaritimetransport higherenginepowertoshipsizeratioandhigherservice (Baseline(2012)andBaseline(RoPax)).Thiscomparative speed;resultingthesecharacteristicsinhigherconsump - analysisidentifiesthatthebestalternativeconsideringtotal tionandhencehigheremissionfactorspertonneofcargo. environmentalexternalcostsisthecontainershipandthe ConRoship.RoRoandRoPaxshipspresenthighervalues Table 6. Environmentalperformancesummarytable. thanroadtransport(0.0029€/Tm·km),0.0046€/Tm·km and0.0073€/Tm·kmrespectively. Road Maritime transport Transpor Container ConRo RoRo RoPax Figure4showstheenvironmentalperformanceofeach (€/tm.km) (€/tm.km) (€/tm.km) (€/tm.km) (€/tm.km) oftheconsideredalternativesin2020.Obtainedresults Baseline2012 0.0029 0.0008 0.0015 0.0016 — confirmthatcontainerandConRoshipscontinuepresent - RoPax2012 0.0029 ———0.0073 ingamoreenvironmentallyfriendlyperformancethanroad Baseline2020 0.0015 0.00052 0.0009 0.0027 0.0058

Figure 4. Totalenvironmentalexternalcostsin€/Tm·kmofmodeof Source:Own transportconsideringfuturescenarioBaseline(2020). Lookinginto2020resultsandcomparingthemwith thoseobtainedfor2012,itiseasytodetectthatthegreen - ingprocessofroadtransporttakesplacefasterthanthatof maritimetransport.Thisisduetoashorterfleetrecycling periodofroadtransport,11yearsonaverage(AEA2011) against25yearsformaritimetransport,whichenablesthe fasterintroductionofnewandgreenertechnologiesinto thefleet. Themodelpresentedinthispaperisthefirstversion andthebaseforfurtherdevelopments.Togetherwiththe firstimplementationsofthemodelafewimprovement

Source:Own areashavebeenidentified,whichhaveresultedinfurther 7JMR diciembre 2012 20/01/2014 13:36 Página 53

M. Castells, J.J. Usabiaga and F. Martínez 53

researchareas.Thepurposeofimprovingthemodelisto Entec(2002), European Commission Quantification of emissions from ships as - reproducetransportchainsmorecomprehensivelyand sociated with ship movements between ports in the European Community. FinalReport,UK. hencemorerealistically.Theintroductionoflogisticalpa - Entec(2010).Defra. UK Ship emissions inventory. FinalReport. rameterssuchasdifferentintermodaltransportunits EuropeanCommission(2001) The Clean Air for Europe (CAFE) Programme: (ITU),loadfactorandutilisationfactorwillwithnodoubt Towards a Thematic Strategy for Air Quality. COM(2001)245. improvethemodel.Moreoverabiggershipdatabaseincor - EuropeanCommission(2006) Directive 2005/33/EC of the European Parlia - ment and of the Council of 06 July 2006 amending Directive 1999/32/EC, poratingcompletedataofyears2010and2011elevenwill relating to a reduction in the sulphur content of certain liquid fuels. permittofurthercharacterisethefleetengagedinSSSserv - EuropeanCommission(2011) EU transport in figures. Statistical pocketbook ices,enablingtospliteachshiptypegroupbysizeanden - 2011. ginetype.Thethirdandfinaldetectedpossible EuropeanCommissionWhitePaper(2001) European Transport Policy for 2010: Time to Decide. COM(2001)370,Brussels. improvementistoconsiderpreandposthaulage,which EurostatStatistics(2012)fromhttp://epp.eurostat.ec.europa.eu[Accessed15 willenabletoincorporatemultimodaltransportchainsinto March2012] themodel. FundaciónValenciaPort(2012) Lineportdatabase. Finallyandwithregardstothestrengthsofthemodel, Holland,M.R.andWatkiss,P.(2002) Benefits Table database: Estimates of the marginal external costs of in Europe. saythatthismodel’sstrengthslieonthebroadarrayofair IMO(2009) Revised MARPOL Annex VI – Regulations for the prevention of air pollutantsconsideredtogetherwiththegoodgeographical pollution from ships and NOx Technical Code. London. characterizationforemissionsitesensitivenessandhence IMO(2009) Second IMO GHG Study. producedimpactassessment.Moreovertheabilityofas - MadreJ.L.etal.(2010) Importance of the loading factor in transport CO 2 emis - sions. sessingbothlocalandruralimpactscannotbecontemned. Miolaetal.(2010) Regulating Air Emissions From Ships. TheStateofArtOn Methodologies,TechnologiesandPolicyOptions.JRCReferenceReports, EuropeanUnion. References Schrooten,L.; DeVlicgcr,I.;IntPanis,L.;Chiffi,C.;Pastori,E.(2009)Emissions ofmaritimetransport:Areferencesystem. Journal of Maritime Research. AEA(2011) Reduction and Testing of Greenhouse Gas (GHG) Emissions from Volume6,Issue1,Pages43-52. Heavy Duty Vehicles. Lot1:Strategy. Trozzi,C.etal.(2010) Update of Emission Estimate Methodology for Maritime CEDelft(2008) Handbook on estimation of external costs in the transport sector Navigation. Report. Usabiaga,J.J.etal. (2011)Port-cityclosenessandturnaroundtimecriticalfor EMEP/EEA(2009)Airpollutantemissioninventoryguidebook2009 Technical ShortSeaShippingsustainableperformance, Proceedings of the REACT report No9. conference ,16-17May,Belgrade,Serbia. 7JMR diciembre 2012 20/01/2014 13:36 Página 54