Recurrent Chromosome 22 Deletions in Osteoblastoma Affect Inhibitors of the Wnt/Beta-Catenin Signaling Pathway

Total Page:16

File Type:pdf, Size:1020Kb

Recurrent Chromosome 22 Deletions in Osteoblastoma Affect Inhibitors of the Wnt/Beta-Catenin Signaling Pathway Recurrent Chromosome 22 Deletions in Osteoblastoma Affect Inhibitors of the Wnt/Beta-Catenin Signaling Pathway Karolin H. Nord1*, Jenny Nilsson1, Elsa Arbajian1, Fredrik Vult von Steyern2, Otte Brosjö3, Anne-Marie Cleton-Jansen4, Karoly Szuhai5, Pancras C. W. Hogendoorn4 1 Department of Clinical Genetics, University and Regional Laboratories, Skåne University Hospital, Lund University, Lund, Sweden, 2 Department of Orthopedics, Skåne University Hospital, Lund, Sweden, 3 Department of Orthopedics, Karolinska Hospital, Stockholm, Sweden, 4 Department of Pathology, Leiden University Medical Center, Leiden, The Netherlands, 5 Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, The Netherlands Abstract Osteoblastoma is a bone forming tumor with histological features highly similar to osteoid osteoma; the discrimination between the tumor types is based on size and growth pattern. The vast majority of osteoblastomas are benign but there is a group of so-called aggressive osteoblastomas that can be diagnostically challenging at the histopathological level. The genetic aberrations required for osteoblastoma development are not known and no genetic difference between conventional and aggressive osteoblastoma has been reported. In order to identify recurrent genomic aberrations of importance for tumor development we applied cytogenetic and/or SNP array analyses on nine conventional and two aggressive osteoblastomas. The conventional osteoblastomas showed few or no acquired genetic aberrations while the aggressive tumors displayed heavily rearranged genomes. In one of the aggressive osteoblastomas, three neighboring regions in chromosome band 22q12 were homozygously deleted. Hemizygous deletions of these regions were found in two additional cases, one aggressive and one conventional. In total, 10 genes were recurrently and homozygously lost in osteoblastoma. Four of them are functionally involved in regulating osteogenesis and/or tumorigenesis. MN1 and NF2 have previously been implicated in the development of leukemia and solid tumors, and ZNRF3 and KREMEN1 are inhibitors of the Wnt/beta-catenin signaling pathway. In line with deletions of the latter two genes, high beta-catenin protein expression has previously been reported in osteoblastoma and aberrations affecting the Wnt/beta-catenin pathway have been found in other bone lesions, including osteoma and osteosarcoma. Citation: Nord KH, Nilsson J, Arbajian E, Vult von Steyern F, Brosjö O, et al. (2013) Recurrent Chromosome 22 Deletions in Osteoblastoma Affect Inhibitors of the Wnt/Beta-Catenin Signaling Pathway. PLoS ONE 8(11): e80725. doi:10.1371/journal.pone.0080725 Editor: Masaru Katoh, National Cancer Center, Japan Received August 1, 2013; Accepted October 16, 2013; Published November 13, 2013 Copyright: © 2013 Nord et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Funding: This work was supported by the Magnus Bergvall Foundation, the Royal Physiographic Society (Lund, Sweden) and the Swedish Cancer Society. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. Competing interests: The authors have declared that no competing interests exist. * E-mail: [email protected] Introduction osteomas). Osteoblastoma typically shows a non-infiltrative growth pattern and when resected with free margins Osteoblastoma is a bone forming tumor that is usually recurrences are uncommon. The treatment is therefore based located in the medullary cavity of the bone [1]. The disease can on surgery alone and the prognosis is excellent [1]. However, affect patients at any age but has a predilection for males in there is a group of intra-osseous osteoblastic tumors that can their teens and young adulthood. At the cellular level, the tumor be diagnostically challenging at the histopathological level [3]. is identical to osteoid osteoma; both tumor types show rich These tumors have been referred to as aggressive, epithelioid vascularization, irregular osteoid with osteoblasts and often or malignant osteoblastoma. Currently, they are considered osteoclast-type multinucleated giant cells. Differentiation within the morphological spectrum of osteoblastoma [1], and between the two tumor types is based on size [2]. Osteoid have the same clinical behavior. A very rare subtype of osteoma has a limited growth potential and seldom exceeds 1 osteosarcoma exists, so-called osteoblastoma-like cm in largest diameter. In contrast, lesions larger than 2 cm are osteosarcoma, which shares some morphological features with not considered to have a restricted growth potential and are osteoblastoma, but clinically behaves like conventional high- referred to as osteoblastomas (also known as giant osteoid grade osteosarcoma [4]. Osteosarcomas, including these rare PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e80725 Recurrent Chromosome 22 Deletions in Osteoblastoma Table 1. Clinical and cytogenetic features of eleven osteoblastomas. SNP array a b c Case Age/Sex Location Follow-up Karyotype analysis 43,X,-Y,der(1)t(1;?22)(p3?;q?),add(2)(q3?),-6,del(8)(p12),der(9)t(9;17) d 1 35/M Skull R 21, 53, NED 60 (p12;q11),-12,der(14)t(?1;14) Aberrant (?;q3?),-17,der(19)t(19;22)t(1;22)t(12;22)t(12;17),der(22)t(1;22)(?;q1?)[23]/46,XY[7] 44,X,-Y,add(1)(p34),del(1)(q21),del(2)(p21p23),+3,del(3)(p21)x2,del(6) e (q15),der(6)t(6;13)(q27;q12),+10,der(10)t(8;10)(q11;q26)x2,del(12) 2 13848:85 23/M Proximal humerus NED 168 Aberrant (p11),-13,+der(15)t(1;15)(q21;p13)ins(1;?)(q32;?),+16,-17,add(17)(q11),-18,-22,-22[16]/ 43,idem,-15[3] 3 14/M Vertebra NED 48 44-45,XY,-22[cp 43]/46,XY[25] No 4 17/F Proximal femur NED 25 48,XX,+2mar[9]/46,XX[17] No 5 20/M Proximal humerus R 18, NED 21 46,XY,add(18)(q2?3)[7]/46,XY[17] No 6 16/M Proximal femur NED 43 46,XY[25] Normal 7 10/F Sacrum R 9, NED 18 46,XX[25] Normal 8 37/M Os ilium NED 253 46,XY[25] Normal 9 44/M Vertebra NED 156 No Normal 10 42/M Vertebra NED 36 46,XY[18] Normal 11 30/M Aceta-bulum NED156 No Normal a. Previously published karyotypes are indicated by their reference and case numbers in the Mitelman Database of Chromosome Aberrations and Gene Fusions in Cancer (http://cgap.nci.nih.gov/Chromosomes/Mitelman). b. Follow-up time given in months. R = recurrence; NED = no evidence of disease. c. Karyotypes in cases 1 and 10 are based on data from COBRA FISH analysis. d. Epithelioid osteoblastoma. e. Aggressive osteoblastoma. doi: 10.1371/journal.pone.0080725.t001 variants, generally present highly complex karyotypes with Leiden, The Netherlands, the Skåne University Hospital, Lund, multiple aberrations [5]. Low-grade central osteosarcomas do Sweden and the Karolinska Hospital, Stockholm, Sweden. The not pose a histological differential diagnosis and are age of the patients ranged from 10-44 years and the majority (9 characterized at the genetic level by frequent gains of MDM2. of 11) of patients were male. Two of the tumors were classified In osteoblastoma the genetic findings are heterogeneous as epithelioid or aggressive and the remaining cases were ranging from single balanced structural rearrangements to conventional osteoblastomas. Three of the tumors recurred multiple and complex changes. No recurrent, tumor-associated and in the remaining patients there was no evidence of disease aberration has been described. 25-253 months after diagnosis. Detailed patient information can In the present study, we have applied cytogenetic and single be found in Table 1. nucleotide polymorphism (SNP) array analyses on osteoblastomas in order to identify recurrent genomic Cytogenetic analyses aberrations of importance for tumor development. We have Chromosome banding and COBRA fluorescence in situ also re-analyzed previously published global gene expression hybridization analyses were performed at the Departments of data on osteoblastoma [6], in order to evaluate the possible Clinical Genetics, Lund and Molecular Cell Biology, Leiden, impact of genomic alterations. and karyotypes were described according to the recommendations in ISCN 2009 [7]. Chromosome preparations Materials and Methods were prepared as described [8]. Ethics statement Genomic copy number and loss of heterozygosity All samples were obtained after informed written consent analyses from patients or from patient’s parents. The study was SNP array analysis was used for combined DNA copy approved by the Regional Ethics Committee of Lund University. number and loss of heterozygosity investigation. In eight of the cases (cases 1, 2 and 6-11), fresh frozen tumor biopsies were Patient information and tumor material available. DNA was extracted according to standard Tumor material was available from 11 osteoblastoma procedures [9], and hybridized onto Illumina Human Omni- patients, treated at the Leiden University Medical Center, Quad BeadChips, containing more than 1 million reporters, PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e80725 Recurrent Chromosome 22 Deletions in Osteoblastoma following protocols supplied by the manufacturer (Illumina, San hemizygous deletion affecting major parts of chromosome 22 Diego, CA). Data analysis was performed using the was found by SNP arrays (Figure 1, Table 2). This deletion was GenomeStudio software (Illumina), detecting imbalances by overlapping with hemi- and homozygous
Recommended publications
  • Genome-Wide Analysis of Host-Chromosome Binding Sites For
    Lu et al. Virology Journal 2010, 7:262 http://www.virologyj.com/content/7/1/262 RESEARCH Open Access Genome-wide analysis of host-chromosome binding sites for Epstein-Barr Virus Nuclear Antigen 1 (EBNA1) Fang Lu1, Priyankara Wikramasinghe1, Julie Norseen1,2, Kevin Tsai1, Pu Wang1, Louise Showe1, Ramana V Davuluri1, Paul M Lieberman1* Abstract The Epstein-Barr Virus (EBV) Nuclear Antigen 1 (EBNA1) protein is required for the establishment of EBV latent infection in proliferating B-lymphocytes. EBNA1 is a multifunctional DNA-binding protein that stimulates DNA replication at the viral origin of plasmid replication (OriP), regulates transcription of viral and cellular genes, and tethers the viral episome to the cellular chromosome. EBNA1 also provides a survival function to B-lymphocytes, potentially through its ability to alter cellular gene expression. To better understand these various functions of EBNA1, we performed a genome-wide analysis of the viral and cellular DNA sites associated with EBNA1 protein in a latently infected Burkitt lymphoma B-cell line. Chromatin-immunoprecipitation (ChIP) combined with massively parallel deep-sequencing (ChIP-Seq) was used to identify cellular sites bound by EBNA1. Sites identified by ChIP- Seq were validated by conventional real-time PCR, and ChIP-Seq provided quantitative, high-resolution detection of the known EBNA1 binding sites on the EBV genome at OriP and Qp. We identified at least one cluster of unusually high-affinity EBNA1 binding sites on chromosome 11, between the divergent FAM55 D and FAM55B genes. A con- sensus for all cellular EBNA1 binding sites is distinct from those derived from the known viral binding sites, sug- gesting that some of these sites are indirectly bound by EBNA1.
    [Show full text]
  • Diseasespecific and Inflammationindependent Stromal
    Full Length Arthritis & Rheumatism DOI 10.1002/art.37704 Disease-specific and inflammation-independent stromal alterations in spondyloarthritis synovitis Nataliya Yeremenko1,2, Troy Noordenbos1,2, Tineke Cantaert1,3, Melissa van Tok1,2, Marleen van de Sande1, Juan D. Cañete4, Paul P. Tak1,5*, Dominique Baeten1,2 1Department of Clinical Immunology and Rheumatology and 2Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, the Netherlands. 3Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA. 4Department of Rheumatology, Hospital Clinic de Barcelona and IDIBAPS, Spain. 5Arthrogen B.V., Amsterdam, the Netherlands. *Currently also: GlaxoSmithKline, Stevenage, U.K. Corresponding author: Dominique Baeten, MD, PhD, Department of Clinical Immunology and Rheumatology, F4-105, Academic Medical Center/University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands. E-mail: [email protected] This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as an ‘Accepted Article’, doi: 10.1002/art.37704 © 2012 American College of Rheumatology Received: Apr 11, 2012; Revised: Jul 25, 2012; Accepted: Sep 06, 2012 Arthritis & Rheumatism Page 2 of 36 Abstract Objective: The molecular processes driving the distinct patterns of synovial inflammation and tissue remodelling in spondyloarthritis (SpA) versus rheumatoid arthritis (RA) remain largely unknown. Therefore, we aimed to identify novel and unsuspected disease- specific pathways in SpA by a systematic and unbiased synovial gene expression analysis. Methods: Differentially expressed genes were identified by pan-genomic microarray and confirmed by quantitative PCR and immunohistochemistry using synovial tissue biopsies of SpA (n=63), RA (n=28) and gout (n=9) patients.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 0.5) in Stat3∆/∆ Compared with Stat3flox/Flox
    Supplemental Table 2 Genes down-regulated (<0.5) in Stat3∆/∆ compared with Stat3flox/flox Probe ID Gene Symbol Gene Description Entrez gene ID 1460599_at Ermp1 endoplasmic reticulum metallopeptidase 1 226090 1460463_at H60c histocompatibility 60c 670558 1460431_at Gcnt1 glucosaminyl (N-acetyl) transferase 1, core 2 14537 1459979_x_at Zfp68 zinc finger protein 68 24135 1459747_at --- --- --- 1459608_at --- --- --- 1459168_at --- --- --- 1458718_at --- --- --- 1458618_at --- --- --- 1458466_at Ctsa cathepsin A 19025 1458345_s_at Colec11 collectin sub-family member 11 71693 1458046_at --- --- --- 1457769_at H60a histocompatibility 60a 15101 1457680_a_at Tmem69 transmembrane protein 69 230657 1457644_s_at Cxcl1 chemokine (C-X-C motif) ligand 1 14825 1457639_at Atp6v1h ATPase, H+ transporting, lysosomal V1 subunit H 108664 1457260_at 5730409E04Rik RIKEN cDNA 5730409E04Rik gene 230757 1457070_at --- --- --- 1456893_at --- --- --- 1456823_at Gm70 predicted gene 70 210762 1456671_at Tbrg3 transforming growth factor beta regulated gene 3 21378 1456211_at Nlrp10 NLR family, pyrin domain containing 10 244202 1455881_at Ier5l immediate early response 5-like 72500 1455576_at Rinl Ras and Rab interactor-like 320435 1455304_at Unc13c unc-13 homolog C (C. elegans) 208898 1455241_at BC037703 cDNA sequence BC037703 242125 1454866_s_at Clic6 chloride intracellular channel 6 209195 1453906_at Med13l mediator complex subunit 13-like 76199 1453522_at 6530401N04Rik RIKEN cDNA 6530401N04 gene 328092 1453354_at Gm11602 predicted gene 11602 100380944 1453234_at
    [Show full text]
  • Long, Noncoding RNA Dysregulation in Glioblastoma
    cancers Review Long, Noncoding RNA Dysregulation in Glioblastoma Patrick A. DeSouza 1,2 , Xuan Qu 1, Hao Chen 1,3, Bhuvic Patel 1 , Christopher A. Maher 2,4,5,6 and Albert H. Kim 1,6,* 1 Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; [email protected] (P.A.D.); [email protected] (X.Q.); [email protected] (H.C.); [email protected] (B.P.) 2 Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA; [email protected] 3 Department of Neuroscience, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA 4 Department of Biomedical Engineering, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA 5 McDonnell Genome Institute, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA 6 Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA * Correspondence: [email protected] Simple Summary: Developing effective therapies for glioblastoma (GBM), the most common primary brain cancer, remains challenging due to the heterogeneity within tumors and therapeutic resistance that drives recurrence. Noncoding RNAs are transcribed from a large proportion of the genome and remain largely unexplored in their contribution to the evolution of GBM tumors. Here, we will review the general mechanisms of long, noncoding RNAs and the current knowledge of how these impact heterogeneity and therapeutic resistance in GBM. A better understanding of the molecular drivers required for these aggressive tumors is necessary to improve the management and outcomes Citation: DeSouza, P.A.; Qu, X.; of this challenging disease.
    [Show full text]
  • Chromatin Remodeling in Epstein-Barr Virus After Induction of the Lytic Phase: Molecular Characterization of the Role of Bzlf1 and Its Interactions
    DISSERTATION ZUR ERLANGUNG DES DOKTORGRADES DER FAKULTÄT FÜR BIOLOGIE DER LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN CHROMATIN REMODELING IN EPSTEIN-BARR VIRUS AFTER INDUCTION OF THE LYTIC PHASE: MOLECULAR CHARACTERIZATION OF THE ROLE OF BZLF1 AND ITS INTERACTIONS MARISA SCHÄFFNER Dissertation eingereicht am 30. April 2015 Erstgutachter: Prof. Dr. Dirk Eick Zweitgutachter: Prof. Dr. Heinrich Leonhardt Tag der mündlichen Prüfung: 26.11.2015 ERKLÄRUNG Hiermit erkläre ich, dass die vorliegende Arbeit mit dem Titel „CHROMATIN REMODELING IN EPSTEIN-BARR VIRUS AFTER INDUCTION OF THE LYTIC PHASE: MOLECULAR CHARACTERIZATION OF THE ROLE OF BZLF1 AND ITS INTERACTIONS“ von mir selbstständig und ohne unerlaubte Hilfsmittel angefertigt wurde, und ich mich dabei nur der ausdrücklich bezeichneten Quellen und Hilfsmittel bedient habe. Die Arbeit wurde weder in der jetzigen noch in einer abgewandelten Form einer anderen Prüfungskommission vorgelegt. München, 30. April 2015 Marisa Schäffner CONTENT 1. Introduction....................................................................................................................... 7 1.1 The architecture of chromatin.......................................................................................... 7 1.1.1 Nucleosomes are histone octamers ........................................................................ 7 1.1.1.1 Nucleosome components.................................................................................. 7 1.1.1.2 Histone modifications and histone variants.....................................................
    [Show full text]
  • Product Description SALSA MLPA Probemix P476-A1 ZNRF3
    MRC-Holland ® Product Description version A1-02; Issued 25 September 2018 MLPA Product Description SALSA ® MLPA ® Probemix P476-A1 ZNRF3 To be used with the MLPA General Protocol. Version A1. New Product. Catalogue numbers: • P476-025R: SALSA MLPA Probemix P476 ZNRF3, 25 reactions. • P476-050R: SALSA MLPA Probemix P476 ZNRF3, 50 reactions. • P476-100R: SALSA MLPA Probemix P476 ZNRF3, 100 reactions. To be used in combination with a SALSA MLPA reagent kit, available for various number of reactions. MLPA reagent kits are either provided with FAM or Cy5.0 dye-labelled PCR primer, suitable for Applied Biosystems and Beckman capillary sequencers, respectively (see www.mlpa.com ). Certificate of Analysis: Information regarding storage conditions, quality tests, and a sample electropherogram from the current sales lot is available at www.mlpa.com . Precautions and warnings: For professional use only. Always consult the most recent product description AND the MLPA General Protocol before use: www.mlpa.com . It is the responsibility of the user to be aware of the latest scientific knowledge of the application before drawing any conclusions from findings generated with this product. General information: The SALSA MLPA Probemix P476 ZNRF3 is a research use only (RUO) assay for the detection of deletions and duplications in the ZNRF3 gene. ZNRF3 is an E3 ubiquitin-protein ligase that acts as a negative feedback regulator of Wnt signalling (Hao et al. 2012). Three independent studies show homozygous deletions of the ZNRF3 gene in 10 to 16% of adrenocortical carcinoma cases (Assié et al. 2014; Juhlin et al. 2015; Zheng et al. 2016). Moreover, in 51% of microsatellite stable colorectal cancers deletion events at the ZNRF3 locus are detected (Bond et al.
    [Show full text]
  • Noelia Díaz Blanco
    Effects of environmental factors on the gonadal transcriptome of European sea bass (Dicentrarchus labrax), juvenile growth and sex ratios Noelia Díaz Blanco Ph.D. thesis 2014 Submitted in partial fulfillment of the requirements for the Ph.D. degree from the Universitat Pompeu Fabra (UPF). This work has been carried out at the Group of Biology of Reproduction (GBR), at the Department of Renewable Marine Resources of the Institute of Marine Sciences (ICM-CSIC). Thesis supervisor: Dr. Francesc Piferrer Professor d’Investigació Institut de Ciències del Mar (ICM-CSIC) i ii A mis padres A Xavi iii iv Acknowledgements This thesis has been made possible by the support of many people who in one way or another, many times unknowingly, gave me the strength to overcome this "long and winding road". First of all, I would like to thank my supervisor, Dr. Francesc Piferrer, for his patience, guidance and wise advice throughout all this Ph.D. experience. But above all, for the trust he placed on me almost seven years ago when he offered me the opportunity to be part of his team. Thanks also for teaching me how to question always everything, for sharing with me your enthusiasm for science and for giving me the opportunity of learning from you by participating in many projects, collaborations and scientific meetings. I am also thankful to my colleagues (former and present Group of Biology of Reproduction members) for your support and encouragement throughout this journey. To the “exGBRs”, thanks for helping me with my first steps into this world. Working as an undergrad with you Dr.
    [Show full text]
  • Identification of Active Signaling Pathways by Integrating Gene Expression and Protein Interaction Data Md Humayun Kabir1,2,3, Ralph Patrick2,4,5, Joshua W
    Kabir et al. BMC Systems Biology 2018, 12(Suppl 9):120 https://doi.org/10.1186/s12918-018-0655-x RESEARCH Open Access Identification of active signaling pathways by integrating gene expression and protein interaction data Md Humayun Kabir1,2,3, Ralph Patrick2,4,5, Joshua W. K. Ho2,4,6* and Michael D. O’Connor1,7* From 29th International Conference on Genome Informatics Yunnan, China. 3-5 December 2018 Abstract Background: Signaling pathways are the key biological mechanisms that transduce extracellular signals to affect transcription factor mediated gene regulation within cells. A number of computational methods have been developed to identify the topological structure of a specific signaling pathway using protein-protein interaction data, but they are not designed for identifying active signaling pathways in an unbiased manner. On the other hand, there are statistical methods based on gene sets or pathway data that can prioritize likely active signaling pathways, but they do not make full use of active pathway structure that link receptor, kinases and downstream transcription factors. Results: Here, we present a method to simultaneously predict the set of active signaling pathways, together with their pathway structure, by integrating protein-protein interaction network and gene expression data. We evaluated the capacity for our method to predict active signaling pathways for dental epithelial cells, ocular lens epithelial cells, human pluripotent stem cell-derived lens epithelial cells, and lens fiber cells. This analysis showed our approach could identify all the known active pathways that are associated with tooth formation and lens development. Conclusions: The results suggest that SPAGI can be a useful approach to identify the potential active signaling pathways given a gene expression profile.
    [Show full text]
  • Kremen Is Beyond a Subsidiary Co-Receptor of Wnt Signaling: an in Silico Validation
    Turkish Journal of Biology Turk J Biol (2015) 39: 501-510 http://journals.tubitak.gov.tr/biology/ © TÜBİTAK Research Article doi:10.3906/biy-1409-1 Kremen is beyond a subsidiary co-receptor of Wnt signaling: an in silico validation 1 2, 3 Hemn MOHAMMADPOUR , Saeed KHALILI *, Zahra Sadat HASHEMI 1 Department of Medical Immunology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran 2 Department of Medical Biotechnology, Faculty of Medical Science, Tarbiat Modares University, Tehran, Iran 3 Department of Medical Biotechnology, School of Advanced Medical Technologies, Tehran University of Medical Science, Tehran, Iran Received: 01.09.2014 Accepted/Published Online: 12.02.2015 Printed: 15.06.2015 Abstract: Kremen-1 is a co-receptor of Wnt signaling, interacting with the Dkk-3 protein, which is an antagonist of the Wnt/β catenin pathway. In the present study we attempted to shed some light on the possible orientations of Kremen/Dkk-3 interactions, explaining the mechanisms of Kremen and Dkk-3 functions. Employing state-of-the-art software, a Kremen model was built and subsequently refined. The quality of the final model was evaluated using RMSD calculations. Ultimately, we used the Kremen model for docking analysis between Kremen and Dkk-3 molecules. A model built by the Robetta server showed the best quality scores. Near native coordination of the final model was verified getting < 2 Å RMSD values between our model and an experimentally resolved structure. Docking analysis indicates that one low energy orientation for Kremen/Dkk-3 involves all extracellular domains of Kremen, while another only involves the CUB and WSC domains.
    [Show full text]
  • In This Table Protein Name, Uniprot Code, Gene Name P-Value
    Supplementary Table S1: In this table protein name, uniprot code, gene name p-value and Fold change (FC) for each comparison are shown, for 299 of the 301 significantly regulated proteins found in both comparisons (p-value<0.01, fold change (FC) >+/-0.37) ALS versus control and FTLD-U versus control. Two uncharacterized proteins have been excluded from this list Protein name Uniprot Gene name p value FC FTLD-U p value FC ALS FTLD-U ALS Cytochrome b-c1 complex P14927 UQCRB 1.534E-03 -1.591E+00 6.005E-04 -1.639E+00 subunit 7 NADH dehydrogenase O95182 NDUFA7 4.127E-04 -9.471E-01 3.467E-05 -1.643E+00 [ubiquinone] 1 alpha subcomplex subunit 7 NADH dehydrogenase O43678 NDUFA2 3.230E-04 -9.145E-01 2.113E-04 -1.450E+00 [ubiquinone] 1 alpha subcomplex subunit 2 NADH dehydrogenase O43920 NDUFS5 1.769E-04 -8.829E-01 3.235E-05 -1.007E+00 [ubiquinone] iron-sulfur protein 5 ARF GTPase-activating A0A0C4DGN6 GIT1 1.306E-03 -8.810E-01 1.115E-03 -7.228E-01 protein GIT1 Methylglutaconyl-CoA Q13825 AUH 6.097E-04 -7.666E-01 5.619E-06 -1.178E+00 hydratase, mitochondrial ADP/ATP translocase 1 P12235 SLC25A4 6.068E-03 -6.095E-01 3.595E-04 -1.011E+00 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 MIC J3QTA6 CHCHD6 1.090E-04 -5.913E-01 2.124E-03 -5.948E-01 Protein kinase C and casein Q9BY11 PACSIN1 3.837E-03 -5.863E-01 3.680E-06 -1.824E+00 kinase substrate in neurons protein 1 Tubulin polymerization- O94811 TPPP 6.466E-03 -5.755E-01 6.943E-06 -1.169E+00 promoting protein MIC C9JRZ6 CHCHD3 2.912E-02 -6.187E-01 2.195E-03 -9.781E-01 Mitochondrial 2-
    [Show full text]
  • Meta-Analysis Identifies 13 New Loci Associated with Waist-Hip Ratio And
    ARTICLES Meta-analysis identifies 13 new loci associated with ­ waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution Waist-hip ratio (WHR) is a measure of body fat distribution and a predictor of metabolic consequences independent of overall adiposity. WHR is heritable, but few genetic variants influencing this trait have been identified. We conducted a meta-analysis of 32 genome-wide association studies for WHR adjusted for body mass index (comprising up to 77,167 participants), following up 16 loci in an additional 29 studies (comprising up to 113,636 subjects). We identified 13 new loci in or near RSPO3, VEGFA, TBX15-WARS2, NFE2L3, GRB14, DNM3-PIGC, ITPR2-SSPN, LY86, HOXC13, ADAMTS9, ZNRF3-KREMEN1, NISCH-STAB1 and CPEB4 (P = 1.9 × 10−9 to P = 1.8 × 10−40) and the known signal at LYPLAL1. Seven of these loci exhibited marked sexual dimorphism, all with a stronger effect on WHR in women than men (P for sex difference = 1.9 × 10−3 to P = 1.2 × 10−13). These findings provide evidence for multiple loci that modulate body fat distribution independent of overall adiposity and reveal strong gene-by-sex interactions. Central obesity and body fat distribution, as measured by waist ­discovery stage, up to 2,850,269 imputed and genotyped SNPs ­circumference and WHR, are associated with individual risk of type were examined in 32 GWAS comprising up to 77,167 participants 2 diabetes (T2D)1,2 and coronary heart disease3 and with mortality informative for anthropometric measures of body fat distribution. from all causes4.
    [Show full text]