TESIS CORRAL ARROYO JOSE CARMELO.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

TESIS CORRAL ARROYO JOSE CARMELO.Pdf Upper Cretaceous neoselachians from the Basque-Cantabrian Region (Northern Spain) “Shark teeth are the most commonly collected vertebrata fossil. They appear on beaches, prairies, mountaintops, and deserts, as well as in riverbeds. They have also been found in the Antarctic and the deepest part of the ocean. In the living shark, teeth are constantly produced and shed; a typical carcharhinid, such as the lemon shark Negaprion brevirostris, may produce 20,000 teeth in its first 25 years, and may live as long as 50 years.” Gordon Hubbell, 1996 DOCTORAL RESEARCH THESIS UPPER CRETACEOUS NEOSELACHIANS from the Basque-Cantabrian Region (Northern Spain) Thesis submitted by José Carmelo Corral Arroyo for the degree of Doctor in Geology within the Department of Stratigraphy and Palaeontology Universidad del País Vasco / Euskal Herriko Unibertsitatea / University of the Basque Country 2018 (c)2018JOSE CARMELO CORRAL ARROYO Thesis directors Dr Javier Murelaga Bereicua | Dr Xabier Pereda-Suberbiola iv ‘Ad Divisionem piscium priorem pertinent illi dentes Squalorum qui Glossopetrae vulgo appellantur, & qui in nostra quoque formatione cretacea, varii locis & in variis stratis dispersi jacent.’ Sven Nilsson, 1827 (Petrificata Suecana formationis cretaceae, descripta et iconibus illustrata. Pars prior, Vertebrata et Mollusca) This thesis is dedicated to my late father, Ernesto, who fostered mi interest in fossils at an early age, and to my always encouraging mother, Evangelina. Thanks for all your support CONTENTS Purpose of investigation and objectives xxi Outline of the thesis and Statement on the contribution of others xxiii Acknowledgements xxvii Abstract xxix Resumen extendido xxxi INTRODUCTION Chapter 1 Historical, geographic, and geological settings 1.1 Historical review of fossil neoselachian research in the Basque-Cantabrian Region 3 1.2 Geography of the study area 9 Southwestern region – Plateau of La Lora de la Pata del Cid (Burgos) 9 Central region – Quintanilla Ojada (Burgos) 12 Eastern region (Álava and Treviño County in Burgos) 12 1.3 A brief geological overview of the Basque-Cantabrian Basin 16 Boundaries and structural organization 16 Sedimentary basin fill with particular attention to the study area 18 Chapter 2 Material and methods 2.1 Introduction 33 2.2 General field techniques (specimen collection) 36 2.3 Screen washing 39 2.4 Sorting and picking 41 2.5 Preparation of palaeontological remains 43 Mechanical preparation 47 Chemical preparation techniques 50 Consolidation 54 2.6 Geochemistry methods 55 2.7 Analytical methods for palaeobiogeographical reconstruction 55 2.8 Photography and Illustrations 57 Whitening specimens 59 Infographics and drawings 60 2.9 Management of the elasmobranch collection 61 General considerations 61 xv Conservation of the specimens discussed in this thesis 61 2.10 Special case: the preparation of a mosasaurid vertebra from Jauregi (Álava) 62 Chapter 3 An overview of living and fossil elasmobranchs 3.1 Introduction – What is an elasmobranch? 67 Classification of living elasmobranchs 67 A general overview of the Elasmobranchii fossil record 72 3.2 Endoskeleton 75 Cartilaginous skeleton 77 3.3 Exoskeleton 78 Tooth morphogenesis 78 Tooth histology and composition 80 Dental characters 84 Tooth diversity and orientation 84 Other exoskeletal structures (placoid scales, thorns, tail spines) 89 3.4 Teeth patterns and specialised trophic adaptations 90 3.5 Nomenclature and systematics of elasmobranchs 92 Box 3.1 Most common dental terms (English–Spanish) used to describe shark teeth 96 GEOLOGY AND PALAEONTOLOGY OF THE STUDIED AREAS Chapter 4 Stratigraphy and palaeontology of the Barrio Panizares beds (Nidáguila Formation, Coniacian) from Northern Spain 4.1 Location and geological setting 101 4.2 Stratigraphy 101 Facies interpretation 103 Stratigraphical position 105 Chapter 5 Stratigraphy and palaeontology of the upper Campanian Gometxa beds (Vitoria- Gasteiz, Álava) 5.1 Introduction 111 5.2 Location and geological setting 112 5.3 Stratigraphy 116 Review of the Gomecha Member (GM) 116 5.4 Some general taphonomic features observed on the elasmobranch teeth 128 Chapter 6 Stratigraphy and palaeontology of the upper Campanian Vitoria Pass beds (Vitoria- Gasteiz, Álava) 6.1 Introduction 129 6.2 Location and geological setting 130 6.3 Stratigraphy 132 Stratigraphical description 132 Stratigraphical interpretation 138 6.4 Review of the Montes de Vitoria Formation (MVF) 142 xvi Eguileta Member (EM) 143 6.5 Biostratigraphy and age assigned to the Vitoria Pass site 145 The planktonic foraminiferal zones 145 Ammonite zonal scheme 147 Age assigned to the Vitoria Pass beds 151 Chapter 7 Geology and geochemistry of the Maastrichtian Quintanilla la Ojada beds (Valle de Losa, Burgos) 7.1 Introduction 153 7.2 Location and geological setting 153 7.3 Stratigraphy 156 Stratigraphical description 156 Stratigraphical interpretation 158 7.4 Geochemistry and Taphonomy 159 Rare Earth Elements analysis 159 Taphonomy 161 7.5 Age of the deposits 164 Chapter 8 Stratigraphy and palaeontology of the upper Maastrichtian Albaina beds (Treviño County, Burgos) 8.1 Introduction 167 8.2 Location and geological setting 168 8.3 Stratigraphy 171 Sobrepeña Formation (SPF) 171 Torme Formation (TF) 177 8.4 Taphonomic features of the selachian deposit 191 Chapter 9 Stratigraphy and palaeontology of the upper Maastrichtian Entzia beds (Urbasa, Álava) 9.1 Introduction 193 9.2 Location and geological setting 193 9.3 Stratigraphy 194 Puerto de Olazagutía Formation (POF) 194 9.4 Ammonite biostratigraphy 201 NEOSELACHIAN (SHARKS AND RAYS) SYSTEMATICS Chapter 10 A rostral spine of the sawfishOnchosaurus (Neoselachii, Sclerorhynchidae) from the Barrio Panizares beds (Northern Spain), with a revision of the genus 10.1 Introduction 207 10.2 Systematic palaeontology 207 10.3 Redescriptions of the type material of Onchosaurus 212 Onchosaurus radicalis Gervais, 1852 212 Onchosaurus pharao (Dames, 1887a) 212 xvii Chapter 11 Neoselachians from the Gometxa site (Gomecha Member, upper Campanian) 11.1 Introduction 215 11.2 Systematic palaeontology 215 Chapter 12 Neoselachians from the Vitoria Pass site (Eguileta Member, upper Campanian) 12.1 Introduction 257 12.2 Systematic palaeontology 257 Chapter 13 Neoselachians from the Quintanilla la Ojada site (Valdenoceda Formation, Maastrichtian) 13.1 Introduction 279 13.2 Systematic palaeontology 279 Chapter 14 Neoselachians from the Albaina site (Torme Formation, upper Maastrichtian) 14.1 Introduction 303 14.2 Systematic palaeontology 303 Chapter 15 Neoselachians from the Entzia sites (Puerto de Olazagutía Formation, upper Maastrichtian) 15.1 Introduction 339 15.2 Systematic palaeontology 339 RESEARCH ON THE NEOSELACHIAN PALAEOECOLOGY AND PALAEOBIOGEOGRAPHY Chapter 16 Stratigraphical and palaeobiogeographical distribution of the sawfishOnchosaurus (Neoselachii, Sclerorhynchidae) 16.1 Introduction 349 16.2 Distribution of Onchosaurus 349 Stratigraphical distribution 349 Palaeobiogeographical distribution 350 Chapter 17 Palaeoecology and palaeobiogeography of the Campanian selachians in the Gometxa and Vitoria Pass beds 17.1 Introduction 355 17.2 Species diversity and faunal affinities 356 The Gometxa site 356 The Vitoria Pass site 358 17.3 Palaeoecology and biogeographical faunal patterns 358 17.4 Global patterns in the biogeographical distribution of neoselachians during the Campanian time 366 Common multivariate ordinations and parsimony analysis 366 Discussion of the results 370 xviii Chapter 18 Bite marks attributed to a shark on a mosasaurid vertebra (Vitoria Sub-basin, Campanian) 18.1 Introduction 385 18.2 Location and geological setting 386 18.3 Description of the specimen 388 18.4 Discussion 392 Chapter 19 Marine vertebrate predators (Actinopterygii, Chondrichthyes, and Mosasauridae) in the Campanian of the Basque-Cantabrian Basin 19.1 Introduction 397 19.2 Marine vertebrate groups 398 Actinopterygii (Bony Fish) 398 Selachians (Chondrichthyes: Euselachii: Neoselachii) 398 Mosasaurids (Squamata: Mosasauridae) 398 19.3 Selachian ecomorphotypes 401 Chapter 20 Selachian palaeoecology, stratigraphical distribution, and palaeobiogeography of the Maastrichtian assemblages (Quintanilla la Ojada, Albaina, and Entzia) 20.1 Introduction 403 20.2 Palaeoecology 404 20.3 Species diversity, faunal affinities, and palaeobiogeographical implications 408 CONCLUSIONS Chapter 21 Conclusions 21.1 General conclusions 417 21.2 Conclusions on the Coniacian stratigraphy and associated faunal remains 418 21.3 Conclusions on the Campanian stratigraphy and associated faunal remains 418 21.4 Conclusions on the cut marks on a mosasaurid vertebra from the Campanian of the Vitoria Sub-basin 421 21.5 Conclusions on the marine vertebrate predators (Actinopterygii, Chondrichthyes, and Mosasauridae) in the Campanian of the Basque-Cantabrian Basin (B-CB) 422 21.6 Conclusions on the Maastrichtian stratigraphy and associated faunal remains 422 References 429 Systematic index 471 xix It all began with ... Some of my first findings of shark’s teeth discovered (circa 1983) in the Campanian marls of the Vitoria Ranges, near the city of Vitoria-Gasteiz. These specimens are now housed in the Ara- bako Natur Zientzien Museoa / Museo de Ciencias Naturales de Álava (Basque Country, Spain). Photography by geologist Agustín Pascual, ca. 1984. | Purpose of investigation and objectives Purpose of investigation and objectives My interest in fossil shark teeth began in 1983 when I stumbled upon several teeth in an abandoned quarry not far from my birth town,
Recommended publications
  • The First Record of Color and Area of Diplodus Vulgaris by Using Computer-Based Image Analysis
    MedDocs Publishers ISSN: 2640-1223 Journal of Veterinary Medicine and Animal Sciences Open Access | Research Article The First Record of Color and Area of Diplodus vulgaris by Using Computer-Based Image Analysis Zayde AYVAZ*; Hasan Huseyin ATAR 1Department of Marine Technology Engineering, Canakkale Onsekiz Mart University, Turkey. 2Ankara University Agriculture Faculty, Department of Fisheries and Aquaculture, Turkey. *Corresponding Author(s): Zayde AYVAZ Abstract Department of Marine Technology Engineering, Objective: Determination of the morphological charac- Canakkale Onsekiz Mart University, Turkey. teristics of fish species is essential for the correct identifica- Tel: +90-218-00-18-16002; tion. The most important of these morphological features is undoubtedly the color properties. The determination of col- Email: [email protected] or characteristics by Computer-Based Image Analysis (CBI) rather than individual identification gives more objective and consistent results. In this study, color and area analy- Received: Oct 30, 2020 sis of Diplodus vulgaris, which color and area characteristics have not previously determined by Computer-Based Imag- Accepted: Dec 27, 2020 ing Systems (CBI), was performed. Published Online: Dec 30, 2020 Methods: Twelve fresh samples were used for the study. Journal: Journal of Veterinary Medicine and Animal Sciences For color and area analysis CBI system was used. A color ref- Publisher: MedDocs Publishers LLC erence card was put to determine the color, and the L*, a*, Online edition: http://meddocsonline.org/ and b* values were 66.49, -0.57, and 0.18, respectively. A 16 cm2 reference square was utilized for area analysis. The Copyright: © AYVAZ Z (2020). This Article is two-image method was carried out with computer software distributed under the terms of Creative Commons (LensEye).
    [Show full text]
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Paleontological Resources at Grand Teton National Park, Northwestern Wyoming Vincent L
    University of Wyoming National Park Service Research Center Annual Report Volume 22 22nd Annual Report, 1998 Article 7 1-1-1998 Paleontological Resources at Grand Teton National Park, Northwestern Wyoming Vincent L. Santucci National Park Service William P. Wall Georgia College and State University Follow this and additional works at: http://repository.uwyo.edu/uwnpsrc_reports Recommended Citation Santucci, Vincent L. and Wall, William P. (1998) "Paleontological Resources at Grand Teton National Park, Northwestern Wyoming," University of Wyoming National Park Service Research Center Annual Report: Vol. 22 , Article 7. Available at: http://repository.uwyo.edu/uwnpsrc_reports/vol22/iss1/7 This Grand Teton National Park Report is brought to you for free and open access by Wyoming Scholars Repository. It has been accepted for inclusion in University of Wyoming National Park Service Research Center Annual Report by an authorized editor of Wyoming Scholars Repository. For more information, please contact [email protected]. Santucci and Wall: Paleontological Resources at Grand Teton National Park, Northwest PALEONTOLOGICAL RESOURCES AT GRAND TETON NATIONAL PARK, NORTHWESTERN WYOMING + VINCENT L. SANTUCCI+ NATIONAL PARK SERVICE KEMMERER + WY WILLIAM P. WALL+ DEPARTMENT OF BIOLOGY GEORGIA COLLEGE AND STATE UNIVERSITY MILLEDGEVILLE + GA + ABSTRACT landscape, and though the last great ice masses melted 15 ,000 years ago, some re-established small Paleontological resources occur throughout glaciers still exist. the formations exposed in Grand Teton National Park. A comprehensive paleontological survey has This report provides a preliminary not been attempted previously at Grand Teton assessment of paleontological resources identified at National Park. Preliminary paleontologic resource Grand Teton National Park. data is given in this report in order to establish baseline data.
    [Show full text]
  • FONDO SOCIAL EUROPEO Territorios Y Zonas Geográficas
    FONDO SOCIAL EUROPEO UNION EUROPEA ANEXO XII: Municipios Territorios y zonas geográficas desfavorecidas Abajas Bliecos Cilleruelo de San Mamés Grisaleña Montejo Pozalmuro San Vitero Valle de Tabladillo Abejar Boada Cipérez Guadramiro Montejo de la Vega de la Pozos de Hinojo Sancedo Valle de Tobalina Abia de las Torres Boadilla del Camino Ciria Guardo Serrezuela Pozuelo de Tábara Sanchón de la Ribera Valle de Valdebezana Acebedo Boca de Huérgano Cirujales del Río Guijo de Ávila Montejo de Tiermes Pozuelo del Páramo Sanchotello Valle de Valdelaguna Adalia Boceguillas Cistierna Guijuelo Montemayor del Río Pradales Sancti-Spíritus Valle de Valdelucio Adrada (La) Bodón (El) Ciudad Rodrigo Guisando Montenegro de Cameros Prádanos de Bureba Santa Cruz de Boedo Valle de Zamanzas Adradas Bogajo Cobos de Fuentidueña Gusendos de los Oteros Monterrubio de la Demanda Prádanos de Ojeda Santa Cruz de Pinares Vallecillo Agallas Bohoyo Cobreros Hacinas Montorio Prádena Santa Cruz de Yanguas Vallejera de Riofrío Ágreda Bonilla de la Sierra Collado del Mirón Herguijuela de Ciudad Moral de Hornuez Prado de la Guzpeña Santa Cruz del Valle Valleruela de Pedraza Aguas Cándidas Boñar Collado Hermoso Rodrigo Moral de Sayago Pradoluengo Santa Cruz del Valle Urbión Valleruela de Sepúlveda Aguilar de Bureba Borjabad Collazos de Boedo Herguijuela de la Sierra Moraleja de Sayago Priaranza del Bierzo Santa Eufemia del Barco Valluércanes Aguilar de Campoo Borobia Colmenar de Montemayor Herguijuela del Campo Moralina Prioro Santa Gadea del Cid Valmala Ahigal de los Aceiteros
    [Show full text]
  • Palaeogene Rocks, East Bahariya Concession, Western Desert, Egypt
    Geologia Croatica 65/2 109–138 33 Figs. 1 Tab. Zagreb 2012 109 Mahsoub et al.: Bio- and Sequence Stratigraphy of Upper Cretaceous – Palaeogene rocks, East Bahariya Concession, Western Desert, Egypt Bio- and Sequence Stratigraphy of Upper Cretaceous – Palaeogene rocks, East Bahariya Concession, Western Desert, Egypt Mohamed Mahsoub1, Radwan A.bul-Nasr1, Mohamed Boukhary2, Hamed Abd El Aal1 and Mahmoud Faris3 1 Faculty of Education, Ain Shams University, Cairo, Egypt; ([email protected]; rabulnasr@ yahoo.com; [email protected]) 2 Department of Geology Faculty of Science, Ain Shams University, Cairo, Egypt; ([email protected]) 3 Department of Geology Faculty of Science, Tanta University, Tanta, Egypt; ([email protected]) doi: 104154/gc.2012.09 GeologiaGeologia CroaticaCroatica AB STRA CT This work deals with the plankton stratigraphy of the subsurface Upper Cretaceous-Palaeogene succession of the East Bahariya Concession based on planktonic foraminifera and calcareous nannofossils. The examination of the cuttings from fi ve wells: AQSA-1X, KARMA-E-1X, KARMA-3X, KARMA-NW-1X and KARMA-NW-5X is bi- ostratigraphically evaluated. It is possible to identify the planktonic foraminifera as well as the calcareous nannofos- sil biozones. The analyses of calcareous nannofossils revealed the presence of several hiatuses. Information obtained from well data such as seismic facies analysis for the studied area has enabled classifi cation of the Upper Cretaceous- Palaeogene succession into fi ve major 2nd order depositional sequences, separated by four major depositional sequence boundaries (SB1, SB2, SB3 and SB4). The Upper Cretaceous-Palaeogene succession in the East Bahariya is divided into 17 systems tracts. These systems tracts are: 7 System tracts of probable Cenomanian age, (the sequence strati- graphic framework as well as the cycles and system tracts of the Cenomanian Bahariya Formation match well with those of CATUNEANU et al., 2006); 4 System tracts of Turonian age, 2 System tracts of Campanian-Maastrichtian age and 4 System tracts of Eocene age.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • First Record of Non-Mineralized Cephalopod Jaws and Arm Hooks
    Klug et al. Swiss J Palaeontol (2020) 139:9 https://doi.org/10.1186/s13358-020-00210-y Swiss Journal of Palaeontology RESEARCH ARTICLE Open Access First record of non-mineralized cephalopod jaws and arm hooks from the latest Cretaceous of Eurytania, Greece Christian Klug1* , Donald Davesne2,3, Dirk Fuchs4 and Thodoris Argyriou5 Abstract Due to the lower fossilization potential of chitin, non-mineralized cephalopod jaws and arm hooks are much more rarely preserved as fossils than the calcitic lower jaws of ammonites or the calcitized jaw apparatuses of nautilids. Here, we report such non-mineralized fossil jaws and arm hooks from pelagic marly limestones of continental Greece. Two of the specimens lie on the same slab and are assigned to the Ammonitina; they represent upper jaws of the aptychus type, which is corroborated by fnds of aptychi. Additionally, one intermediate type and one anaptychus type are documented here. The morphology of all ammonite jaws suggest a desmoceratoid afnity. The other jaws are identifed as coleoid jaws. They share the overall U-shape and proportions of the outer and inner lamellae with Jurassic lower jaws of Trachyteuthis (Teudopseina). We also document the frst belemnoid arm hooks from the Tethyan Maastrichtian. The fossils described here document the presence of a typical Mesozoic cephalopod assemblage until the end of the Cretaceous in the eastern Tethys. Keywords: Cephalopoda, Ammonoidea, Desmoceratoidea, Coleoidea, Maastrichtian, Taphonomy Introduction as jaws, arm hooks, and radulae are occasionally found Fossil cephalopods are mainly known from preserved (Matern 1931; Mapes 1987; Fuchs 2006a; Landman et al. mineralized parts such as aragonitic phragmocones 2010; Kruta et al.
    [Show full text]
  • Las Especies Del Orden Trigonioida En El Cretácico De Chile
    U N I V E R S I D A D D E C O N C E P C I Ó N DEPARTAMENTO DE CIENCIAS DE LA TIERRA 10° CONGRESO GEOLÓGICO CHILENO 2003 LAS ESPECIES DEL ORDEN TRIGONIOIDA EN EL CRETÁCICO DE CHILE PÉREZ D’A., E. 1 Y REYES, R. 2 1Servicio Nacional de Geología y Minería, Ada. Santa María 0104, Providencia, Santiago, Chile [email protected] 2Avda. Diego Portales 936, Departamento 6 (recreo) Viña del Mar, Chile CLASIFICACIÓN DEL ORDEN TRIGONIOIDA EN EL CRETÁCICO DE CHILE Orden Trigonioida Dall, 1899 Suborden Trigoniina Dall, 1899 Superfamilia Trigoniacea Lamarck, 1819 Familia Trigoniidae Lamarck, 1819 Subfamilia Trigoniinae Lamarck, 1819 Género Trigonia Bruguière, 1789 T. carinata Agassiz, 1840, Titoniano inferior-Barremiano (?), Zonas de Windhauseniceras internispinosum, Corongoceras alternans y Substeuroceras koeneni (Titoniano medio y superior), Cuyaniceras transgrediens y Spiticeras (Kilianiceras) damesi (Berriasiano superior), Holcoptychites neuquensis (Hauteriviano medio; Reyes y Pérez, 1978), [Titoniano superior, Zona de Substeueroceras koeneni, Hauteriviano inferior-medio, Zonas de Lyticoceras pseudoregale y Holcoptychites neuquensis; Leanza, 1993]; T. aliexpandita Leanza y Garate, 1983, [Hauteriviano inferior-medio, Zonas de Lyticoceras pseudoregale y Holcoptychites neuquensis; Leanza, 1993]. Familia Neotrigoniidae Kobayashi, 1954 Subfamilia Nototrigoniinae Skwarko, 1963 Género Pacitrigonia Marwick, 1932 P. hanetiana (d’Orbigny, 1842), Campaniano (Reyes y Pérez, 1979), Campaniano superior- Maastrichtiano inferior (Pérez y Reyes, 1978); P. ecplecta (Wilckens, 1905), Campaniano- Maastrichtiano; Pérez y Reyes, 1978), P. regina (Wilckens, 1910), Campaniano inferior (alto)- Maastrichtiano inferior (Pérez y Reyes, 1978). Suborden Myophorellina Cooper, 1991 Superfamilia Myophorellacea Kobayashi, 1954 Familia Myophorellidae, Kobayashi, 1954 Subfamilia Myophorellinae Kobayashi, 1954 Género Mediterraneotrigonia Nakano, 1974 Todas las contribuciones fueron proporcionados directamente por los autores y su contenido es de su exclusiva responsabilidad.
    [Show full text]
  • Provincia De BURGOS
    — 47 — Provincia de BURGOS Comprende esta provincia los siguientes ayuntamientos por partidos judiciales: Partido de Aranda de Duero . Aguilera (La) . Fresnillo de las Dueñas . Pardilla. Tubilla del Lago . Aranda de Duero . Fuentelcésped . Peñalba de Castro . Vadocondes. Arandilla . Fuentenebro . Peñaranda de Duero. Valdeande. Baños de Valdearados . Fuentespina . Quemada. Vid (La) . Brazacorta. Gumiel de Hizán . Quintana del Pidio. Villalba de Duero. Caleruega. Gumiel del Mercado . San Juan del Monte . Villalbilla de Gumiel . Campillo de Aranda. Hontoria de Valdearados . Santa Cruz de la Salceda. Castrillo de la Vega . Milagros. Sotillo de la Ribera . Villanueva de Gumiel . Coruña del Conde . Oquillas. Corregalindo . Zazuar. Partido de Belorado. Alcocero. Espinosa del Camino. Pradoluengo . Valmala. Arraya de Oca. Eterna . Puras de Villafranca . Viloria de Rioja . Baseuñana Fresneda de la Sierra Tirón . Quintanaloranco. Villaescusa la Sombría. Belorado. Fresneda . Rábanos . Villafranca-Montes de Oca . Carrias. Castil de Carrias. Fresno de Riotirón . Redecilla del Camino. Villagalijo . Castildelgado . Garganchón . Redecilla del Campo . Villalbos. Cerezo de Riotirón. Ibrillos . San Clemente del Valle . Villalómez . Cerratón de Juarros . Ocón de Villafranca . Santa Cruz del Valle Urbión . Villambistia . Cueva-Cardiel . Pineda de la Sierra . Tosantos. Villanasur-Río de Oca. Partido de Briviesca. Abajas . Castil de Lences. Oña Rublacedo de abajo. Aguas Cándidas. Castil de Peones. Padrones de Bureba. Rucandio. Aguilar de Bureba . Cillaperlata. Parte de Bureba (La), Salas de Bureba . Bañuelos de Bureba. Cornudilla. Pino de Bureba. Salinillas de Bureba. Barcina de los Montes . Santa María del Invierno. Cubo de Bureba. Poza de la Sal. Barrios de Bureba (Los). Santa Olalla de Bureba . Frías. Prádanos de Bureba. Bentretea . Solas de Bureba . Quintanaélez . Berzosa de Bureba .
    [Show full text]
  • Pterosaur Distribution in Time and Space: an Atlas 61
    Zitteliana An International Journal of Palaeontology and Geobiology Series B/Reihe B Abhandlungen der Bayerischen Staatssammlung für Pa lä on to lo gie und Geologie B28 DAVID W. E. HONE & ERIC BUFFETAUT (Eds) Flugsaurier: pterosaur papers in honour of Peter Wellnhofer CONTENTS/INHALT Dedication 3 PETER WELLNHOFER A short history of pterosaur research 7 KEVIN PADIAN Were pterosaur ancestors bipedal or quadrupedal?: Morphometric, functional, and phylogenetic considerations 21 DAVID W. E. HONE & MICHAEL J. BENTON Contrasting supertree and total-evidence methods: the origin of the pterosaurs 35 PAUL M. BARRETT, RICHARD J. BUTLER, NICHOLAS P. EDWARDS & ANDREW R. MILNER Pterosaur distribution in time and space: an atlas 61 LORNA STEEL The palaeohistology of pterosaur bone: an overview 109 S. CHRISTOPHER BENNETT Morphological evolution of the wing of pterosaurs: myology and function 127 MARK P. WITTON A new approach to determining pterosaur body mass and its implications for pterosaur fl ight 143 MICHAEL B. HABIB Comparative evidence for quadrupedal launch in pterosaurs 159 ROSS A. ELGIN, CARLOS A. GRAU, COLIN PALMER, DAVID W. E. HONE, DOUGLAS GREENWELL & MICHAEL J. BENTON Aerodynamic characters of the cranial crest in Pteranodon 167 DAVID M. MARTILL & MARK P. WITTON Catastrophic failure in a pterosaur skull from the Cretaceous Santana Formation of Brazil 175 MARTIN LOCKLEY, JERALD D. HARRIS & LAURA MITCHELL A global overview of pterosaur ichnology: tracksite distribution in space and time 185 DAVID M. UNWIN & D. CHARLES DEEMING Pterosaur eggshell structure and its implications for pterosaur reproductive biology 199 DAVID M. MARTILL, MARK P. WITTON & ANDREW GALE Possible azhdarchoid pterosaur remains from the Coniacian (Late Cretaceous) of England 209 TAISSA RODRIGUES & ALEXANDER W.
    [Show full text]
  • Lower Jaws of Two Species of Menuites (Pachydiscidae, Ammonoidea) from the Middle Campanian (Upper Cretaceous) in the Soya Area, Northern Hokkaido, Japan
    Bull. Natl. Mus. Nat. Sci., Ser. C, 45, pp. 19–27, December 27, 2019 Lower jaws of two species of Menuites (Pachydiscidae, Ammonoidea) from the middle Campanian (Upper Cretaceous) in the Soya area, northern Hokkaido, Japan Kazushige Tanabe1* and Yasunari Shigeta2 1 University Museum, The University of Tokyo, Hongo 7–3–1, Bunkyo Ward, Tokyo 113–0033, Japan 2 Department of Geology and Paleontology, National Museum of Nature and Science, 4–1–1 Amakubo, Tsukuba, Ibaraki 305–0005, Japan * Author for correspondence: [email protected] Abstract The lower jaws of two pachydiscid ammonites Menuites soyaensis (Matsumoto and Miyau- chi) and Menuites sp. are described on the basis of two specimens from the middle Campanian (Upper Cretaceous) in the Soya area of northern Hokkaido, Japan. They are preserved in situ in the body cham- ber and characterized by a widely open outer lamella with a nearly flat rostral portion. The outer lamella consists of an inner “chitinous” layer sculptured by a median furrow in the anterior to mid-portions and an outer calcareous layer with prismatic microstructure. The lower jaw features of the two Menuites spe- cies are shared by other species of the Pachydiscidae described in previous works, indicating that they are diagnostic characters of this family. In view of the shovel-like shape without a pointed rostrum, the lower jaws of the two Menuites species were likely used as a scoop to feed on microorganisms. Key words: pachydiscid ammonites, middle Campanian, lower jaw, Soya area (Hokkaido) found together retaining their original life orienta- Introduction tion. Based on such well-preserved specimens and Both modern and extinct cephalopod mollusks their comparison with the jaws of modern cephalo- possess a well-developed jaw apparatus that con- pods, previous authors (e.g.
    [Show full text]
  • Download Full Article in PDF Format
    comptes rendus palevol 2021 20 20 iles — Jean- pt Cl re au d d n e a R s a n g a e i — b i h P p a l a m e a o f b o i o y l h o p g a y r g a o n e d g p o i a l b a o e DIRECTEURS DE LA PUBLICATION / PUBLICATION DIRECTORS : Bruno David, Président du Muséum national d’Histoire naturelle Étienne Ghys, Secrétaire perpétuel de l’Académie des sciences RÉDACTEURS EN CHEF / EDITORS-IN-CHIEF : Michel Laurin (CNRS), Philippe Taquet (Académie des sciences) ASSISTANTE DE RÉDACTION / ASSISTANT EDITOR : Adenise Lopes (Académie des sciences ; [email protected]) MISE EN PAGE / PAGE LAYOUT : Fariza Sissi (Muséum national d’Histoire naturelle ; [email protected]) RÉVISIONS LINGUISTIQUES DES TEXTES ANGLAIS / ENGLISH LANGUAGE REVISIONS : Kevin Padian (University of California at Berkeley) RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS : Micropaléontologie/Micropalaeontology Maria Rose Petrizzo (Università di Milano, Milano) Paléobotanique/Palaeobotany Cyrille Prestianni (Royal Belgian Institute of Natural Sciences, Brussels) Métazoaires/Metazoa Annalisa Ferretti (Università di Modena e Reggio Emilia, Modena) Paléoichthyologie/Palaeoichthyology Philippe Janvier (Muséum national d’Histoire naturelle, Académie des sciences, Paris) Amniotes du Mésozoïque/Mesozoic amniotes Hans-Dieter Sues (Smithsonian National Museum of Natural History, Washington) Tortues/Turtles Juliana Sterli (CONICET, Museo Paleontológico Egidio Feruglio, Trelew) Lépidosauromorphes/Lepidosauromorphs Hussam Zaher (Universidade de São Paulo) Oiseaux/Birds Eric Buffetaut (CNRS, École Normale Supérieure, Paris) Paléomammalogie (mammifères de moyenne et grande taille)/Palaeomammalogy (large and mid-sized mammals) Lorenzo Rook* (Università degli Studi di Firenze, Firenze) Paléomammalogie (petits mammifères sauf Euarchontoglires)/Palaeomammalogy (small mammals except for Euarchontoglires) Robert Asher (Cambridge University, Cambridge) Paléomammalogie (Euarchontoglires)/Palaeomammalogy (Euarchontoglires) K.
    [Show full text]