Theropoda: Spinosauridae) from the Middle Cretaceous of Morocco and Implications for Spinosaur Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Theropoda: Spinosauridae) from the Middle Cretaceous of Morocco and Implications for Spinosaur Ecology Cretaceous Research 93 (2019) 129e142 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Juvenile spinosaurs (Theropoda: Spinosauridae) from the middle Cretaceous of Morocco and implications for spinosaur ecology * Rebecca J. Lakin , Nicholas R. Longrich Department of Biology and Biochemistry, Milner Centre for Evolution, University of Bath, Bath, BA2 7AY, UK article info abstract Article history: The Spinosauridae is a specialised clade of theropod dinosaurs known from the Berriasian to the Cen- Received 29 May 2018 omanian of Africa, South America, Europe and Asia. Spinosaurs were unusual among non-avian di- Received in revised form nosaurs in exploiting a piscivorous niche within riverine and estuarine habitats, and they include the 24 August 2018 largest known theropod. Although fossils of giant spinosaurs are increasingly well-represented in the Accepted in revised form 18 September fossil record, little juvenile material has been described. Here, we describe new examples of juvenile 2018 Available online 19 September 2018 spinosaurines from the middle Cretaceous (Cenomanian) Kem Kem beds of Morocco. The fossils include material from a range of sizes and are relatively common within the Kem Kem deposits, suggesting that Keywords: juveniles exploited the same semiaquatic niche as the adults throughout ontogeny. This implies that the Dinosauria Cenomanian delta habitats supported an age-inclusive population of spinosaurs that was neither Spinosauridae geographically or environmentally separated, though some ecological separation between juveniles and Juvenile adults is likely based on the large variation in size. Bones or teeth of very small (<2 m) spinosaurs have Ontogeny not been found, however. This could represent a taphonomic bias, or potentially an ecological signal that Cretaceous the earliest ontogenetic stages inhabited distinct environments. Skeletal remains include individuals referable to Sigilmassasaurus brevicollis and a second spinosaurine taxon. Consistent with this, we also identify two distinct cranial morphs of Spinosauridae present within the Kem Kem, supporting previous recognition of distinct taxa in the assemblage. © 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 1. Introduction cervical vertebrae (Evers et al., 2015), but also recently from por- tions of the skull (Hendrickx et al., 2016). These are Sigilmassasaurus The Spinosauridae is a diverse family of theropod dinosaurs brevicollis (¼Spinosaurus maroccanus; Evers et al., 2015) and a including ten described genera (Taquet & Russell, 1998; Buffetaut & second spinosaurid taxon, possibly Spinosaurus (Hendrickx et al., Ouaja, 2002; Kellner et al., 2011; Allain et al., 2012; Buffetaut, 2012; 2016) or a relative (Evers et al., 2015). Malafaia et al., 2013; Evers et al., 2015) found across five continents Spinosaurs are thought to have been piscivorous on the basis of (Ruiz-Omenaca~ et al., 2005; Keller et al., 2011; Barrett et al., 2011; their elongated, crocodile-like skulls and their conical, spearing Buffetaut, 2012; Allain et al., 2012; Candeiro et al. 2017; Gasca teeth (Sues et al., 2002; Buffetaut, 2007; Hasegawa et al., 2010; et al., 2018). Spinosaurs are known from the Berriasian (Sales Richter et al., 2013). Furthermore, an intricate series of canals et al., 2017) to the Cenomanian (Buffetaut & Ouaja, 2002), and are across the distal parts of the upper and lower jaws, interpreted as a particularly common in the middle Cretaceous (Cenomanian) aged system of pressure receptors, have been cited as an adaptation for deposits of North Africa, including Egypt (Stromer, 1915), Algeria hunting aquatic prey (Ibrahim et al., 2014b; Vullo et al., 2016; Arden (Taquet & Russell, 1998; Benyoucef et al., 2015), and Morocco et al., 2018), though this is disputed (Leich & Catania, 2012; Barker (Buffetaut, 1989; Ibrahim et al., 2014a, 2014b). Within the Kem Kem et al., 2017; Henderson, 2018). The skeletal morphology of spino- region are two distinct morphologies, originally assigned only from saurines suggest a semiaquatic lifestyle, similar to extant croco- dilians (Amiot et al., 2010; Ibrahim et al., 2014b; Goedert et al., 2016; Aureliano et al., 2018). Adaptations for aquatic locomotion include retracted nares (Dal Sasso et al., 2005), a reduced pelvis and * Corresponding author. E-mail addresses: [email protected] (R.J. Lakin), [email protected] hindlimbs, and pachyostotic long bones (Ibrahim et al., 2014b; (N.R. Longrich). Aureliano et al., 2018). https://doi.org/10.1016/j.cretres.2018.09.012 0195-6671/© 2018 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 130 R.J. Lakin, N.R. Longrich / Cretaceous Research 93 (2019) 129e142 Spinosaurs are the largest known theropod dinosaurs (Dal Sasso 3. Materials & methods et al., 2005; Therrien & Henderson, 2007; Gimsa et al., 2016). The largest specimen currently known is MSNM V4047 referred to The material presented here consists of three cervical vertebrae Spinosaurus aegyptiacus (Dal Sasso et al., 2005), which has an (FSAC-KK-7280, FSAC-KK-18119, FSAC-KK-18122), two dorsal verte- estimated skull length of 175 cm and an estimated body length of brae (FSAC-KK-18118, FSAC-KK-18121), a right premaxilla (FSAC-KK- 12e15 m (Therrien & Henderson, 2007). Other specimens, 7281) and a right quadrate (FSAC-KK-18120). We describe our including the holotype of S. aegyptiacus, have estimated total body vertebrae using the laminar nomenclature laid out in Wilson (1999). lengths of 10e14 m (Therrien & Henderson, 2007; Ibrahim et al., Specimens were acquired from commercial sources in the region of 2014b). Like all dinosaurs, however, giant spinosaurs would have Erfoud and Begaa (Fig. 1C) between October 2017 and March 2018 hatched from relatively small eggs before ultimately growing to (Fig.1B) Of the numerous Kem Kem outcrops in the region (Fig.1C), it adult size. Fossils of juvenile dinosaurs are generally very rare is difficult to know from which locality any of our isolated specimens (Lockley, 1994; Hone & Rauhut, 2010), and juvenile spinosaurs have originated, and given that the material is likely to have been only recently been described for the first time (Maganuco & Dal reworked, it is also difficult to know where in the environment these Sasso, 2018). However, little is still known about the growth and specimens may have originally been deposited post-mortem. How- life histories of giant spinosaurs. Small spinosaurine teeth are ever, the horizon can be verified from the taphonomic differences common from Kem Kem deposits (Richter et al., 2013), however, between the Ifezouane and Aoufous Formations. In the Ifezouane these cannot be reliably used for size or age estimations because of Formation, preservation is generally good, with bones preserved as the variation in spinosaur teeth within regions of the jaw (Monfroy, white, red fossils, or dark colored fossils in sandy matrix, often with 2017), and the polyphyodonts nature of all theropods (Erickson, bright red clays (Krassilov & Bacchia, 2013). In the Aoufous Forma- 1996; Therrien et al., 2005). tion, preservation is generally poorer, with specimens preserved in Here, we describe new material of juvenile spinosaurs. These more powdery yellow to tan coloured matrix (Krassilov & Bacchia, include a quadrate, cervical and dorsal vertebrae, and a premaxilla, 2013). These differences provide an independent means of veri- all found in the Kem Kem beds of eastern Morocco near the towns fying provenance and mean that fossils can typically be assigned to of Begaa and Erfoud. one of the two Kem Kem subunits with some confidence. We estimated body length by isometrically scaling from the proportions of the spinosaur reconstruction published in Ibrahim 2. Geological & palaeoecological setting et al. (2014b). Due to the controversial nature of this reconstruc- tion at the time of publication (Scott & Currie, 2017), and ongoing The Kem Kem beds represent the upper part of the informally- research into the locomotory and lifestyle adaptations of Spinosau- named ‘Continental Intercalaire’ (Rodriguez et al., 2011; rus, we also reconstruct body length estimations from the bipedal Benyoucef et al., 2015). The Kem Kem beds were originally reconstruction by Dal Sasso et al. (2005). This was done by cali- thought to be early Cretaceous in age, but the current consensus is brating the length, width and height of our juvenile specimens that this geological unit is Cenomanian in age based on both the (Table 1) with the corresponding known adult specimens from the shark fauna and faunal similarities with the Cenomanian aged literature (Stromer,1915; Dal Sasso et al., 2005; Ibrahim et al., 2014b) Bahariya Formation of Egypt (Sereno et al., 1996; Cavin et al., 2010). and scaling up by dividing the length, width and height of a juvenile The Kem Kem beds sit unconformably on marine strata of specimen with those of its corresponding adult specimen to calcu- Cambrian-Devonian age (Cavin et al., 2010; Ibrahim et al., 2014a). late a multiplication factor, then multiplying the estimated length of Above, they are overlain by cliff-forming Cenomanian-Turonian the adult model with the multiplicative inverse of the multiplication marine limestones (Martill et al., 2011), reflecting the pattern of factor. Measurements for all specimens are given in Table
Recommended publications
  • Palaeogene Rocks, East Bahariya Concession, Western Desert, Egypt
    Geologia Croatica 65/2 109–138 33 Figs. 1 Tab. Zagreb 2012 109 Mahsoub et al.: Bio- and Sequence Stratigraphy of Upper Cretaceous – Palaeogene rocks, East Bahariya Concession, Western Desert, Egypt Bio- and Sequence Stratigraphy of Upper Cretaceous – Palaeogene rocks, East Bahariya Concession, Western Desert, Egypt Mohamed Mahsoub1, Radwan A.bul-Nasr1, Mohamed Boukhary2, Hamed Abd El Aal1 and Mahmoud Faris3 1 Faculty of Education, Ain Shams University, Cairo, Egypt; ([email protected]; rabulnasr@ yahoo.com; [email protected]) 2 Department of Geology Faculty of Science, Ain Shams University, Cairo, Egypt; ([email protected]) 3 Department of Geology Faculty of Science, Tanta University, Tanta, Egypt; ([email protected]) doi: 104154/gc.2012.09 GeologiaGeologia CroaticaCroatica AB STRA CT This work deals with the plankton stratigraphy of the subsurface Upper Cretaceous-Palaeogene succession of the East Bahariya Concession based on planktonic foraminifera and calcareous nannofossils. The examination of the cuttings from fi ve wells: AQSA-1X, KARMA-E-1X, KARMA-3X, KARMA-NW-1X and KARMA-NW-5X is bi- ostratigraphically evaluated. It is possible to identify the planktonic foraminifera as well as the calcareous nannofos- sil biozones. The analyses of calcareous nannofossils revealed the presence of several hiatuses. Information obtained from well data such as seismic facies analysis for the studied area has enabled classifi cation of the Upper Cretaceous- Palaeogene succession into fi ve major 2nd order depositional sequences, separated by four major depositional sequence boundaries (SB1, SB2, SB3 and SB4). The Upper Cretaceous-Palaeogene succession in the East Bahariya is divided into 17 systems tracts. These systems tracts are: 7 System tracts of probable Cenomanian age, (the sequence strati- graphic framework as well as the cycles and system tracts of the Cenomanian Bahariya Formation match well with those of CATUNEANU et al., 2006); 4 System tracts of Turonian age, 2 System tracts of Campanian-Maastrichtian age and 4 System tracts of Eocene age.
    [Show full text]
  • Constraints on the Timescale of Animal Evolutionary History
    Palaeontologia Electronica palaeo-electronica.org Constraints on the timescale of animal evolutionary history Michael J. Benton, Philip C.J. Donoghue, Robert J. Asher, Matt Friedman, Thomas J. Near, and Jakob Vinther ABSTRACT Dating the tree of life is a core endeavor in evolutionary biology. Rates of evolution are fundamental to nearly every evolutionary model and process. Rates need dates. There is much debate on the most appropriate and reasonable ways in which to date the tree of life, and recent work has highlighted some confusions and complexities that can be avoided. Whether phylogenetic trees are dated after they have been estab- lished, or as part of the process of tree finding, practitioners need to know which cali- brations to use. We emphasize the importance of identifying crown (not stem) fossils, levels of confidence in their attribution to the crown, current chronostratigraphic preci- sion, the primacy of the host geological formation and asymmetric confidence intervals. Here we present calibrations for 88 key nodes across the phylogeny of animals, rang- ing from the root of Metazoa to the last common ancestor of Homo sapiens. Close attention to detail is constantly required: for example, the classic bird-mammal date (base of crown Amniota) has often been given as 310-315 Ma; the 2014 international time scale indicates a minimum age of 318 Ma. Michael J. Benton. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Philip C.J. Donoghue. School of Earth Sciences, University of Bristol, Bristol, BS8 1RJ, U.K. [email protected] Robert J.
    [Show full text]
  • Dinosaurs British Isles
    DINOSAURS of the BRITISH ISLES Dean R. Lomax & Nobumichi Tamura Foreword by Dr Paul M. Barrett (Natural History Museum, London) Skeletal reconstructions by Scott Hartman, Jaime A. Headden & Gregory S. Paul Life and scene reconstructions by Nobumichi Tamura & James McKay CONTENTS Foreword by Dr Paul M. Barrett.............................................................................10 Foreword by the authors........................................................................................11 Acknowledgements................................................................................................12 Museum and institutional abbreviations...............................................................13 Introduction: An age-old interest..........................................................................16 What is a dinosaur?................................................................................................18 The question of birds and the ‘extinction’ of the dinosaurs..................................25 The age of dinosaurs..............................................................................................30 Taxonomy: The naming of species.......................................................................34 Dinosaur classification...........................................................................................37 Saurischian dinosaurs............................................................................................39 Theropoda............................................................................................................39
    [Show full text]
  • Implications for Predatory Dinosaur Macroecology and Ontogeny in Later Late Cretaceous Asiamerica
    Canadian Journal of Earth Sciences Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous Asiamerica Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2020-0174.R1 Manuscript Type: Article Date Submitted by the 04-Jan-2021 Author: Complete List of Authors: Holtz, Thomas; University of Maryland at College Park, Department of Geology; NationalDraft Museum of Natural History, Department of Geology Keyword: Dinosaur, Ontogeny, Theropod, Paleocology, Mesozoic, Tyrannosauridae Is the invited manuscript for consideration in a Special Tribute to Dale Russell Issue? : © The Author(s) or their Institution(s) Page 1 of 91 Canadian Journal of Earth Sciences 1 Theropod Guild Structure and the Tyrannosaurid Niche Assimilation Hypothesis: 2 Implications for Predatory Dinosaur Macroecology and Ontogeny in later Late Cretaceous 3 Asiamerica 4 5 6 Thomas R. Holtz, Jr. 7 8 Department of Geology, University of Maryland, College Park, MD 20742 USA 9 Department of Paleobiology, National Museum of Natural History, Washington, DC 20013 USA 10 Email address: [email protected] 11 ORCID: 0000-0002-2906-4900 Draft 12 13 Thomas R. Holtz, Jr. 14 Department of Geology 15 8000 Regents Drive 16 University of Maryland 17 College Park, MD 20742 18 USA 19 Phone: 1-301-405-4084 20 Fax: 1-301-314-9661 21 Email address: [email protected] 22 23 1 © The Author(s) or their Institution(s) Canadian Journal of Earth Sciences Page 2 of 91 24 ABSTRACT 25 Well-sampled dinosaur communities from the Jurassic through the early Late Cretaceous show 26 greater taxonomic diversity among larger (>50kg) theropod taxa than communities of the 27 Campano-Maastrichtian, particularly to those of eastern/central Asia and Laramidia.
    [Show full text]
  • Our Museum Dinosaurs
    Our Museum Dinosaurs Coelophysis Tyrannosaurus Means: ‘hollow form’ Means: ‘tyrant lizard’ Say it: seel-oh-FIE-sis Say it: tie-ran-oh-SORE-us Where found: USA Where found: USA, Canada Type: Theropod Type: Theropod Length: 3m Length: 12m Height: 2m Height: 3.6m Weight: 27kg Weight: 8,300kg How it moved: walked on two legs, may have run How it moved: swiftly on two legs Teeth: 60 saw-edged, bone-crushing, pointed Teeth: small and sharp teeth in immensely strong jaws Type of feeder: CARNIVORE Type of feeder: CARNIVORE + SCAVENGER Food: small reptiles and insects Food: all other animals When it lived: 225-220 million years ago When it lived: 68-66 million years ago In the museum In the museum Models of Coelophysis Full size replica of its skull REAL fossil footprints Polacanthus Edmontosaurus Means: ‘many prickles’ Means: ‘Edmonton lizard’ Say it: pole-a-CAN-thus Say it: ed-mon-toe-SORE-us Where found: England Where found: North America Type: Ankylosaur Type: Hadrosaur Length: 5m Length: 13m Height: 1m Height: 3.5m Weight: 2 tonnes Weight: 3,400kg How it moved: walked on four legs How it moved: on two or four legs Teeth: small Teeth: horny beak, 200 grinding cheek teeth Type of feeder: HERBIVORE Type of feeder: HERBIVORE Food: plants Food: pine needles, seeds, twigs and leaves When it lived: 130-125 million years ago When it lived: 73-66 million years ago In the museum In the museum Partial skeleton of A REAL Edmontosaurus skeleton Polacanthus (in rock) Fossil Edmontosaurus skin imprint Hypsilophodon Dracoraptor Means: ‘high-crested tooth’ Means: ‘dragon robber’ Say it: hip-sih-LOW-foh-don Say it: DRAY-co-RAP-tor Where found: Isle of Wight, England Where found: Wales Type: Ornithiscian (orn-i-thi-SHE-an) Type: Theropod Length: around 3m Length: 1.8m Height: around 1m Height: 0.8m (80cm) Weight: around 25kg Weight: 20kg How it moved: walked or ran on two legs How it moved: swiftly on two legs Teeth: small pointed serrated teeth Teeth: horny beak, c.
    [Show full text]
  • Cranial Anatomy of Allosaurus Jimmadseni, a New Species from the Lower Part of the Morrison Formation (Upper Jurassic) of Western North America
    Cranial anatomy of Allosaurus jimmadseni, a new species from the lower part of the Morrison Formation (Upper Jurassic) of Western North America Daniel J. Chure1,2,* and Mark A. Loewen3,4,* 1 Dinosaur National Monument (retired), Jensen, UT, USA 2 Independent Researcher, Jensen, UT, USA 3 Natural History Museum of Utah, University of Utah, Salt Lake City, UT, USA 4 Department of Geology and Geophysics, University of Utah, Salt Lake City, UT, USA * These authors contributed equally to this work. ABSTRACT Allosaurus is one of the best known theropod dinosaurs from the Jurassic and a crucial taxon in phylogenetic analyses. On the basis of an in-depth, firsthand study of the bulk of Allosaurus specimens housed in North American institutions, we describe here a new theropod dinosaur from the Upper Jurassic Morrison Formation of Western North America, Allosaurus jimmadseni sp. nov., based upon a remarkably complete articulated skeleton and skull and a second specimen with an articulated skull and associated skeleton. The present study also assigns several other specimens to this new species, Allosaurus jimmadseni, which is characterized by a number of autapomorphies present on the dermal skull roof and additional characters present in the postcrania. In particular, whereas the ventral margin of the jugal of Allosaurus fragilis has pronounced sigmoidal convexity, the ventral margin is virtually straight in Allosaurus jimmadseni. The paired nasals of Allosaurus jimmadseni possess bilateral, blade-like crests along the lateral margin, forming a pronounced nasolacrimal crest that is absent in Allosaurus fragilis. Submitted 20 July 2018 Accepted 31 August 2019 Subjects Paleontology, Taxonomy Published 24 January 2020 Keywords Allosaurus, Allosaurus jimmadseni, Dinosaur, Theropod, Morrison Formation, Jurassic, Corresponding author Cranial anatomy Mark A.
    [Show full text]
  • Gary T. Madden, Ibne Mohammed Naqvi, Frank C. Whitmore, Jr., Dwight L
    U. S. GEOLOGICAL SURVEY SAUDI ARABIAN PROJECT REPORT 269 PALEOCENE VERTEBRATES FROM COASTAL DEPOSITS IN THE HARRAT HADAN AREA, AT TAIF REGION, KINGDOM OF SAUDI ARABIA by Gary T. Madden, Ibne Mohammed Naqvi, Frank C. Whitmore, Jr., Dwight L. Schmidt, Wann Langston, Jr., and Roger C. Wood nas U.S. Geological Survey Jiddah, Saudi Arabia The work on which this report is based was performed in accordance with a cooperative agreement between the U. S. Geological Survey and the Ministry of Petroleum and Mineral Resources, Kingdom of Saudi Arabia. This report is preliminary and has not been edited or reviewed for conformity with U. S. Geological Survey standards and nomenclature. CONTENTS Page ABSTRACT.................................................... 1 INTRODUCTION................................................ 2 Previous investigations................................ 2 Acknowledgments........................................ 2 STRATIGRAPHY................................................ 6 Khurma formation....................................... 6 Umm Himar formation.................................... 8 Chert.................................................. 13 Laterite............................................... 13 Harrat Hadan basalt.................................... 14 FAUNA. ...................................................... 15 AGE......................................................... 18 PALEOENVIRONMENT............................................ 19 OTHER VERTEBRATE FOSSILS FROM ARABIA........................ 22 GEOLOGIC HISTORY...........................................
    [Show full text]
  • A Century of Spinosaurs - a Review and Revision of the Spinosauridae
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Queen Mary Research Online A century of spinosaurs - a review and revision of the Spinosauridae with comments on their ecology HONE David William Elliott1, * HOLTZ Thomas Richard Jnr2 1 School of Biological and Chemical Sciences, Queen Mary University of London, London, E1 4NS, UK 2 Department of Geology, University of Maryland, College Park, MD 20742 USA Abstract: The spinosaurids represent an enigmatic and highly unusual form of large tetanuran theropods that were first identified in 1915. A recent flurry of discoveries and taxonomic revisions of this important and interesting clade had added greatly to our knowledge, however, spinosaur body fossils are generally rare and most species are known from only limited skeletal remains. Their unusual anatomical adaptations to the skull, limbs and axial column all differ from other large theropods and point to an unusual ecological niche and a lifestyle intimately linked to water. Keywords: Theropoda, Megalosauroidea, Baryonychinae, Spinosaurinae, palaeoecology E-mail: [email protected] 1 Introduction The Spinosauridae is an enigmatic clade of large and carnivorous theropods from the Jurassic and Cretaceous that are known from both Gondwana and Laurasia (Holtz et al., 2004). Despite their wide temporal and geographic distribution, the clade is known primarily from teeth and the body fossil record is extremely limited (Bertin, 2010). As such, relatively little is known about this group of animals, although their unusual morphology with regard to skull shape, dentition, dorsal neural spines and other features mark them out as divergent from the essential bauplan of other non-tetanuran theropods (Fig 1).
    [Show full text]
  • A New Clade of Archaic Large-Bodied Predatory Dinosaurs (Theropoda: Allosauroidea) That Survived to the Latest Mesozoic
    Naturwissenschaften (2010) 97:71–78 DOI 10.1007/s00114-009-0614-x ORIGINAL PAPER A new clade of archaic large-bodied predatory dinosaurs (Theropoda: Allosauroidea) that survived to the latest Mesozoic Roger B. J. Benson & Matthew T. Carrano & Stephen L. Brusatte Received: 26 August 2009 /Revised: 27 September 2009 /Accepted: 29 September 2009 /Published online: 14 October 2009 # Springer-Verlag 2009 Abstract Non-avian theropod dinosaurs attained large Neovenatoridae includes a derived group (Megaraptora, body sizes, monopolising terrestrial apex predator niches new clade) that developed long, raptorial forelimbs, in the Jurassic–Cretaceous. From the Middle Jurassic cursorial hind limbs, appendicular pneumaticity and small onwards, Allosauroidea and Megalosauroidea comprised size, features acquired convergently in bird-line theropods. almost all large-bodied predators for 85 million years. Neovenatorids thus occupied a 14-fold adult size range Despite their enormous success, however, they are usually from 175 kg (Fukuiraptor) to approximately 2,500 kg considered absent from terminal Cretaceous ecosystems, (Chilantaisaurus). Recognition of this major allosauroid replaced by tyrannosaurids and abelisaurids. We demon- radiation has implications for Gondwanan paleobiogeog- strate that the problematic allosauroids Aerosteon, Austral- raphy: The distribution of early Cretaceous allosauroids ovenator, Fukuiraptor and Neovenator form a previously does not strongly support the vicariant hypothesis of unrecognised but ecologically diverse and globally distrib- southern dinosaur evolution or any particular continental uted clade (Neovenatoridae, new clade) with the hitherto breakup sequence or dispersal scenario. Instead, clades enigmatic theropods Chilantaisaurus, Megaraptor and the were nearly cosmopolitan in their early history, and later Maastrichtian Orkoraptor. This refutes the notion that distributions are explained by sampling failure or local allosauroid extinction pre-dated the end of the Mesozoic.
    [Show full text]
  • Abstracts (Pdf)
    63RD SYMPOSIUM FOR VERTEBRATE PALAEONTOLOGY AND COMPARATIVE ANATOMY & 24TH SYMPOSIUM OF PALAEONTOLOGICAL PREPARATION AND CONSERVATION WITH THE GEOLOGICAL CURATORS’ GROUP 1 CONTENTS Meeting Schedule 4 Abstracts SPPC talks 10 SVPCA talks 14 SVPCA posters 78 Delegate List 112 2 ACKNOWLEDGEMENTS The organisers would like to thank the Palaeontological Association for their support of this meeting, and also for their continued management of the Jones Fenleigh Memorial Fund. A huge amount of the work putting the meeting together was co-ordinated by Mark Young, including editing this Abstract volume, handling abstract submissions and overall organisation. We also thank Stu Pond and Jessica Lawrence Wujek for designing this year's SVPCA logo. Liz Martin-Silverstone and Jessica Lawrence Wujek co-ordinated most of the behind-the- scenes management for this meeting while Stu Pond designed this year’s Conference circulars. Our logo represents a local fossil, Polacanthus from the Isle of Wight (based on a fossil collected by Martin Simpson and Lyn Spearpoint). Finally, we thank Richard Forrest for working on the website and providing general information and support. This year’s meetings are supported by the Hampshire Cultural Trust, Dinosaur Isle, Geological Curators Group, Siri Scientific Press, Palaeocast and Frontiers in Earth Science. HOST COMMITTEE Ocean and Earth Science, University of Southampton, National Oceanography Centre Gareth Dyke John Marshall Darren Naish Mark Young Jessica Lawrence Wujek Liz Martin-Silverstone Stu Pond Aubrey Roberts James Hansford Hampshire Cultural Trust Christine Taylor Dinosaur Isle Gary Blackwell Geological Curator's Group Kathryn Riddington 3 MEETING SCHEDULE Monday 31st August 9:00-9:45 SPPC/GCG registration at NOC Security desk (4th floor) Session — SPPC Chair — Mark Young 10:00-10:20 Mark Graham Fossils, Footprints & Fakes 10:20-10:40 Emma Bernard A brief history of the best collection of fossil fish in the world – probably… 10:40-11:00 Jeff Liston et al.
    [Show full text]
  • The Paleoenvironments of Azhdarchid Pterosaurs Localities in the Late Cretaceous of Kazakhstan
    A peer-reviewed open-access journal ZooKeys 483:The 59–80 paleoenvironments (2015) of azhdarchid pterosaurs localities in the Late Cretaceous... 59 doi: 10.3897/zookeys.483.9058 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The paleoenvironments of azhdarchid pterosaurs localities in the Late Cretaceous of Kazakhstan Alexander Averianov1,2, Gareth Dyke3,4, Igor Danilov5, Pavel Skutschas6 1 Zoological Institute of the Russian Academy of Sciences, Universitetskaya nab. 1, 199034 Saint Petersburg, Russia 2 Department of Sedimentary Geology, Geological Faculty, Saint Petersburg State University, 16 liniya VO 29, 199178 Saint Petersburg, Russia 3 Ocean and Earth Science, National Oceanography Centre, Sou- thampton, University of Southampton, Southampton SO14 3ZH, UK 4 MTA-DE Lendület Behavioural Ecology Research Group, Department of Evolutionary Zoology and Human Biology, University of Debrecen, 4032 Debrecen, Egyetem tér 1, Hungary 5 Zoological Institute of the Russian Academy of Sciences, Universi- tetskaya nab. 1, 199034 Saint Petersburg, Russia 6 Department of Vertebrate Zoology, Biological Faculty, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034 Saint Petersburg, Russia Corresponding author: Alexander Averianov ([email protected]) Academic editor: Hans-Dieter Sues | Received 3 December 2014 | Accepted 30 January 2015 | Published 20 February 2015 http://zoobank.org/C4AC8D70-1BC3-4928-8ABA-DD6B51DABA29 Citation: Averianov A, Dyke G, Danilov I, Skutschas P (2015) The paleoenvironments of azhdarchid pterosaurs localities in the Late Cretaceous of Kazakhstan. ZooKeys 483: 59–80. doi: 10.3897/zookeys.483.9058 Abstract Five pterosaur localities are currently known from the Late Cretaceous in the northeastern Aral Sea region of Kazakhstan. Of these, one is Turonian-Coniacian in age, the Zhirkindek Formation (Tyulkili), and four are Santonian in age, all from the early Campanian Bostobe Formation (Baibishe, Akkurgan, Buroinak, and Shakh Shakh).
    [Show full text]
  • Repeated Occurrence of Palaeo-Wildfires During Deposition
    El Atfy et al. Journal of Palaeogeography (2019) 8:28 https://doi.org/10.1186/s42501-019-0042-6 Journal of Palaeogeography ORIGINALARTICLE Open Access Repeated occurrence of palaeo-wildfires during deposition of the Bahariya Formation (early Cenomanian) of Egypt Haytham El Atfy1, Tarek Anan1, André Jasper2,3 and Dieter Uhl3,4* Abstract The Upper Cretaceous (early Cenomanian) Bahariya Formation of Egypt has an outstanding reputation for its wealth of vertebrate remains, including a variety of iconic dinosaurs, like the carnivorous Spinosaurus and Carcharodontosaurus,as well as the herbivorous Aegyptosaurus and Paralititan. Besides these dinosaur fossils, the Bahariya Formation yielded also a wealth of invertebrate and plant remains, but even today many aspects concerning the continental palaeoenvironments reflected in these deposits (including the occurrence of palaeo-wildfires) have not been studied in detail. So far six distinct macro-charcoal bearing levels could be identified within the type section of the Bahariya Formation at Gabal El Dist profile, one of the most prolific outcrops of this formation in terms of fossil occurrence located in the north of the Bahariya Oasis, Western Desert, Egypt. Most of the charcoal investigated by means of SEM originates from ferns, pointing to a considerable proportion of this plant group within the palaeo-ecosystems that experienced fires. Gymnosperms and (putative) angiosperms have less frequently been identified. The collected data present evidence that the landscapes at the northern shores of Gondwana repeatedly experienced palaeo-wildfires, adding extra proof to previous statements that the Late Cretaceous was a fiery world on a global scale. Keywords: Bahariya Oasis, Gabal El Dist, Charcoal, Wildfire, Dinosaurs, Upper Cretaceous, Early Cenomanian, Egypt 1 Introduction et al.
    [Show full text]