Survey of Existing Bioeconomic Models Final Report

Total Page:16

File Type:pdf, Size:1020Kb

Survey of Existing Bioeconomic Models Final Report Survey of existing bioeconomic models Final report April 2009 For: The European Commission Directorate-General for Maritime Affairs and Fisheries ii Survey of existing bioeconomic models Final Report Studies and Pilot Projects for Carrying Out the Common Fisheries Policy No FISH/2007/07 Lot 5 Survey of existing bioeconomic models (SI2.507729) Report prepared by, AZTI-Tecnalia: Raúl Prellezo. CEFAS: Alyson Little. DTU-AQUA: Rasmus Nielsen and Bo Sølgaard Andersen. FOI: Jesper Levring Andersen. Wageningen IMARES: Christine Röckmann. IREPA: Paolo Accadia. LEI: Jeff Powell and Erik Buisman. Disclaimer This report has been prepared under contract FISH/2007/07 – Lot 5 – by AZTI-Tecnalia, CEFAS, DTU-Aqua, FOI, Wageningen IMARES, IREPA and LEI. It does not necessarily reflect the view of the European Commission. Citation Prellezo, R., Accadia, P., Andersen J. L, Little, A., Nielsen R., Andersen, B.S., Röckmann C., Powell J. and Buisman, E. (2009) Survey of existing bioeconomic models: Final report. Sukarrieta: AZTI-Tecnalia. 283 pages. Survey of existing bioeconomic models Survey of existing bioeconomic models iii Preparation of this document The sustainability of fisheries in terms of biological conservation and economic viability of the fleets is integrally linked to the approach followed in the management of the fisheries. For this reason, the Commission is seeking to assess different management options with a view to improving the overall effectiveness of fisheries management and so bioeconomic models can play a key role. Under the scope of different research projects, where research has been done to support the introduction of various financial instruments or by personal initiatives, several models have been developed to evaluate options. Each of the models developed has specific tasks with more or less generality in terms of covering the specific characteristics of the fisheries and with more or less flexibility in order to deal with some other questions or other types of management advice. These models are not clearly addressed in term of usability for the assessment of a range of management issues. In that sense it is necessary to explicitly address the advantages and limitations of each model when assessing a management alternative. In that sense several initiatives have been carried out to review bioeconomic models, and of special interest to this tender is the SGECA report (SEC 2006c), where some of the operational bioeconomic models that could be used by the STECF were listed. In the review of that work (SEC 2006a) the STECF recommended the provision of documentation for each model according to the guidelines given in the Report of the Subgroup on bioeconomic models. With these guidelines as a starting point, but also considering the key issues explained above, a full review of the EIAA, TEMAS, MOSES, BEMMFISH, BIRDMOD, MEFISTO, AHF, EMMFID, SRRMCF, COBAS, ECOCORP, ECONMULT and EFIMAS models, has been undertaken. This document presents the final report of this study, funded by the EC project “Survey of existing bioeconomic models”, (SI2.507729), and coordinated by AZTI-Tecnalia in collaboration with CEFAS, DTU-Aqua, FOI, IMARES, IREPA and LEI. Survey of existing bioeconomic models iv Executive summary Executive Summary A bioeconomic model is a theoretical construct that represents a system, with a set of variables and a set of logical and quantitative relationships between them. They are constructed to enable reasoning within an idealized logical framework about these economic processes, integrating biological processes and industry behaviour. They have played an important role in exploring diverse issues in fisheries management for the last 40 years. In fisheries there is an extensive range of models that provide a comprehensive impact assessment of different management alternatives as asked by the CFP. This report presents a review of the existing operating bioeconomic models within the EU. In particular the following models have been reviewed; EIAA, TEMAS, MOSES, BEMMFISH, BIRDMOD (including Aladym), MEFISTO, AHF, EMMFID, SRRMCF, COBAS, ECOCORP, ECONMULT and FLR (EFIMAS). The structure of the report as well as the review performed has focused on giving the reader a reference rather than something to be read cover to cover. The review has been based on the existing literature (reports and scientific papers), communication with model developers, and a feedback process among the project group and two external reviewers. The possible tasks for which bioeconomic models produce advice, range from the general evaluation of the fisheries sector to the evaluation of specific regulations. Within these tasks, we have paid particular attention to the tasks performed within the EU STECF. For each analyzed task some specific issues need to be considered: • Model orientation: If the model is output or input driven. • If it is a simulation (what if) or an optimization model (what’s best). • Characteristics of the economic and biological modules and the links between them. • Data requirements: Biological and economic modules initializations. We have paid particular attention to the model requirements of stocks assessments and also analyzed data requirements in relation to whether the DCR provides sufficient information for each model. • The output format and in particular the bioeconomic indicators that each model produces. Based on the specific issues explained above and some others considered as relevant, a review framework consisting of specific and general tables has been created to facilitate a quick comparison and selection between models. In addition a summary table has been produced with the STECF tasks for which each model could produce advice. Survey of existing bioeconomic models Executive summary v Following the review provided, the next paragraphs summarise the main characteristics of each model, in terms of the objectives for which they were created, the advice they provide, the software used, the data requirements and the main limitations that they face. AHF AHF has been created to simulate the economic behavioural response of fishing fleets to the economic outcome in previous years of the fishery with response to the entry exit or invest- disinvest in the fishery changing fleet capacity. The model contains an economic and biological module. AHF can assess TAC (total allowable catches) and effort regulations (switching between harvest and effort regulations), in addition to HCR (harvest control rules), discards, and cases of non- compliance (assuming that landings are proportional to quotas). Implemented in FLR, AHF has been applied to North Sea Flatfish and Roundfish fisheries, and can be run with data provided by the DCR. In any case it should be taken into account that results are extremely sensitive to the calibration of the model. BEMMFISH BEMMFISH is a simulation model that projects biological and economic variables into the future to test different Mediterranean fisheries management and policies. BEMMFISH can assess; effort regulations, vessel numbers and changes in taxation (by period), where it is possible to adjust effort for each species. Selectivity changes can also be assessed (but not directly). Implemented in Java, the economic and biological models are linked, however the main limitations are that a maximum of 4 species and 3 fleets can be modelled and that BEMMFISH cannot be run only using DCR data. BIRDMOD BIRDMOD is a simulation model to predict effects of different management policies from a biological, economic and social perspective and consists of 4 modules; a biological, an economic, management and a state variation module. BIRDMOD can assess restrictions on fishing effort (in terms of capacity and activity) and also provide advice in relation to changes in selectivity, taxes and subsidies. Survey of existing bioeconomic models vi Executive summary Implemented in R, BIRDMOD has been designed specifically for Mediterranean fisheries management. The applications analyzed use the Aladyn biological module and can be run with data provided by the DCR. COBAS COBAS is an option comparison model in which the effects of a particular policy are compared to the effect of the current management system. COBAS provides assessment for management of the commercial and the recreational sector, changing of effort regulations, TACs, decommissioning schemes, levies, prices of fish, mesh sizes, area closures and post harvest policy options (traceability, ecolabelling,…). Implemented in GAMS it has been used for fisheries in the English Channel, Celtic Sea and Western approaches. The main limitation of COBAS is that is does not include a biological model. Data supplied from the DCR data should be sufficient for running COBAS, excluding the environmental and recreational components. ECOCORP ECOCORP is a simulation model to assess the economic impacts of effort reductions imposed by the North Sea Cod recovery plan of the North Sea fishing fleet segments. It incorporates short-terms impacts and multi-species interactions. ECOCORP provides advice in terms of effort regulation (e.g. decommissioning, cod fishing moratorium). Implemented in a dynamic system framework, the model can be used with the data provided by the DCR given the MSVPA estimates to initialise the biological sub-model. Whilst ECOCORP includes multi-species interactions, the main limitation is that it is very case study specific. ECONMULT ECONMULT is a simulation model for the management of the Barents Sea fisheries using a multi-species and multi-fleet
Recommended publications
  • Fishers and Fish Traders of Lake Victoria: Colonial
    FISHERS AND FISH TRADERS OF LAKE VICTORIA: COLONIAL POLICY AND THE DEVELOPMENT OF FISH PRODUCTION IN KENYA, 1880-1978. by PAUL ABIERO OPONDO Student No. 34872086 submitted in accordance with the requirement for the degree of DOCTOR OF LITERATURE AND PHILOSOPHY in the subject HISTORY at the UNIVERSITY OF SOUTH AFRICA PROMOTER: DR. MUCHAPARARA MUSEMWA, University of the Witwatersrand CO-PROMOTER: PROF. LANCE SITTERT, University of Cape Town 10 February 2011 DECLARATION I declare that ‘Fishers and Fish Traders of Lake Victoria: Colonial Policy and the Development of Fish Production in Kenya, 1895-1978 ’ is my original unaided work and that all the sources that I have used or quoted have been indicated and acknowledged by means of complete references. I further declare that the thesis has never been submitted before for examination for any degree in any other university. Paul Abiero Opondo __________________ _ . 2 DEDICATION This work is dedicated to several fishers and fish traders who continue to wallow in poverty and hopelessness despite their daily fishing voyages, whose sweat and profits end up in the pockets of big fish dealers and agents from Nairobi. It is equally dedicated to my late father, Michael, and mother, Consolata, who guided me with their wisdom early enough. In addition I dedicate it to my loving wife, Millicent who withstood the loneliness caused by my occasional absence from home, and to our children, Nancy, Michael, Bivinz and Barrack for whom all this is done. 3 ABSTRACT The developemnt of fisheries in Lake Victoria is faced with a myriad challenges including overfishing, environmental destruction, disappearance of certain indigenous species and pollution.
    [Show full text]
  • Purification of Glucose 6-Phosphate Dehydrogenase From
    MARINE SCIENCE AND TECHNOLOGY BULLETIN VOLUME: 9 ISSUE: 2 DECEMBER 2020 Editor-in-Chief Adem Yavuz Sönmez Kastamonu University, Turkey Co-Editor Semih Kale Çanakkale Onsekiz Mart University, Turkey Section Editors Soner Bilen Kastamonu University, Turkey Ertuğrul Terzi Kastamonu University, Turkey Ali Eslem Kadak Kastamonu University, Turkey Gökhan Arslan Atatürk University, Turkey Statistics Editor Aycan Mutlu Yağanoğlu Atatürk University, Turkey Foreign Language Editor Muhammet Sinan Alpsoy Kastamonu University, Turkey Editorial Board Agus Oman Sudrajat Institut Pertanian Bogor, Indonesia Anca Nicoleta Şuţan University of Piteşti, Romania Antanas Kontautas Klaipeda University, Lithuania Arya Vazirzadeh Shiraz University, Iran Barış Bayraklı Sinop University, Turkey Derya Güroy Yalova University, Turkey Fazıl Şen Yüzüncü Yıl University, Turkey Gouranga Biswas Kakdwip Research Centre of Central Institute, India Hasan Hüseyin Atar Ankara University, Turkey İlhan Altınok Karadeniz Technical University, Turkey Liliana Török Danube Delta National Institute for Research & Development, Romania Mahmut Elp Kastamonu University, Turkey Marina Alexandrovna Sazykina Southern Federal University, Russia Mehmet Gökoğlu Akdeniz University, Turkey Muhammad Naeem Khan University of the Punjab, Pakistan Sajmir Beqiraj University of Tirana, Albania Sefa Acarlı Çanakkale Onsekiz Mart University, Turkey Sitti Zayda B. Halun Mindanao State University, Philippines Sonya Uzunova Institute of Fishing Resources, Bulgaria Süleyman Özdemir Sinop University, Turkey
    [Show full text]
  • Redacted for Privacy Abstract Approved: I
    AN ABSTRACT OF THE THESIS OF Nilton Eduardo Deza Arroyo for the degree of Master of Science in Fisheries Science presented on November 8. 1996. Title: Mercury Accumulation in Fish from Madre de Dios. a Goidmining Area in the Amazon Basin. Peru Redacted for Privacy Abstract approved: I. Weber Redacted for Privacy Wayne K. Seim In this study mercury contamination from goldmining was measured in tissues of fish from Madre de Dios, Amazonia, Peru.Bioaccumulation, biomagnification, the difference in mercury burden among residential and migratory species, and comparison between fish from Puerto Maldonado (a goidmining area) and Manu (a pristine area) were examined. Samples of dorsal-epaxial muscle of dorado (Brachyplatystoma flavicans); fasaco (Hoplias malabaricus),bothcarnivores;boquichico(Prochilodusnigricans),a detritivore;mojarita (Bryconopsaffmelanurus),an insectivore;and carachama (Hypostomus sp.), an detntivore; were analyzed by using the flameless cold vapor atomic absorption spectrophotometry technique. Dorado, a top predator, displayed the highest values of total mercury (699 ugfKg ± 296).Six out of ten dorados showed an average higher than safe values of 0.5 ug/g (WHO, 1991). Lower values reported in this study in the other species suggest that dorado may have gained its mercury burden downstream of Madre de Dios River, in the Madeira River, where goidmining activities are several times greater than that in the Madre de Dios area. Fasaco from Puerto Maldonado displayed higher levels than fasaco from Manu; however, mercury contamination in Puerto Maldonado is lower than values reported for fish from areas with higher quantities of mercury released into the environment. Positive correlation between mercury content and weight of fish for dorado, fasaco and boquichico served to explain bioaccumulation processes in the area of study.
    [Show full text]
  • Models for an Ecosystem Approach to Fisheries
    ISSN 0429-9345 FAO FISHERIES 477 TECHNICAL PAPER 477 Models for an ecosystem approach to fisheries Models for an ecosystem approach to fisheries This report reviews the methods available for assessing the impacts of interactions between species and fisheries and their implications for marine fisheries management. A brief description of the various modelling approaches currently in existence is provided, highlighting in particular features of these models that have general relevance to the field of ecosystem approach to fisheries (EAF). The report concentrates on the currently available models representative of general types such as bionergetic models, predator-prey models and minimally realistic models. Short descriptions are given of model parameters, assumptions and data requirements. Some of the advantages, disadvantages and limitations of each of the approaches in addressing questions pertaining to EAF are discussed. The report concludes with some recommendations for moving forward in the development of multispecies and ecosystem models and for the prudent use of the currently available models as tools for provision of scientific information on fisheries in an ecosystem context. FAO Cover: Illustration by Elda Longo FAO FISHERIES Models for an ecosystem TECHNICAL PAPER approach to fisheries 477 by Éva E. Plagányi University of Cape Town South Africa FOOD AND AGRICULTURE AND ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Seafood Watch® Standard for Fisheries
    1 Seafood Watch® Standard for Fisheries Table of Contents Table of Contents ............................................................................................................................... 1 Introduction ...................................................................................................................................... 2 Seafood Watch Guiding Principles ...................................................................................................... 3 Seafood Watch Criteria and Scoring Methodology for Fisheries ........................................................... 5 Criterion 1 – Impacts on the Species Under Assessment ...................................................................... 8 Factor 1.1 Abundance .................................................................................................................... 9 Factor 1.2 Fishing Mortality ......................................................................................................... 19 Criterion 2 – Impacts on Other Capture Species ................................................................................ 22 Factor 2.1 Abundance .................................................................................................................. 26 Factor 2.2 Fishing Mortality ......................................................................................................... 27 Factor 2.3 Modifying Factor: Discards and Bait Use .................................................................... 29 Criterion
    [Show full text]
  • Consuming Sustainable Seafood: Guidelines, Recommendations and Realities Anna K
    University of Wollongong Research Online Faculty of Law, Humanities and the Arts - Papers Faculty of Law, Humanities and the Arts 2018 Consuming sustainable seafood: Guidelines, recommendations and realities Anna K. Farmery University of Tasmania, [email protected] Gabrielle M. O'Kane University of Canberra Alexandra McManus Curtin University Bridget S. Green University of Tasmania Publication Details Farmery, A. K., O'Kane, G., McManus, A. & Green, B. S. (2018). Consuming sustainable seafood: Guidelines, recommendations and realities. Public Health Nutrition, 21 (8), 1503-1514. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] Consuming sustainable seafood: Guidelines, recommendations and realities Abstract Objective: Encouraging people to eat more seafood can offer a direct, cost-effective way of improving overall health outcomes. However, dietary recommendations to increase seafood consumption have been criticised following concern over the capacity of the seafood industry to meet increased demand, while maintaining sustainable fish stocks. The current research sought to investigate Australian accredited practising dietitians' (APD) and public health nutritionists' (PHN) views on seafood sustainability and their dietary recommendations, to identify ways to better align nutrition and sustainability goals. Design: A self-administered online questionnaire exploring seafood consumption advice, perceptions of seafood sustainability and information sources of APD and PHN. Qualitative and quantitative data were collected via open and closed questions. Quantitative data were analysed with χ2tests and reported using descriptive statistics. Content analysis was used for qualitative data. Setting: Australia. Subjects: APD and PHN were targeted to participate; the sample includes respondents from urban and regional areas throughout Australia.
    [Show full text]
  • A Guide to Fisheries Stock Assessment from Data to Recommendations
    A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Fish are born, they grow, they reproduce and they die – whether from natural causes or from fishing. That’s it. Modelers just use complicated (or not so complicated) math to iron out the details. A Guide to Fisheries Stock Assessment From Data to Recommendations Andrew B. Cooper Department of Natural Resources University of New Hampshire Edited and designed by Kirsten Weir This publication was supported by the National Sea Grant NH Sea Grant College Program College Program of the US Department of Commerce’s Kingman Farm, University of New Hampshire National Oceanic and Atmospheric Administration under Durham, NH 03824 NOAA grant #NA16RG1035. The views expressed herein do 603.749.1565 not necessarily reflect the views of any of those organizations. www.seagrant.unh.edu Acknowledgements Funding for this publication was provided by New Hampshire Sea Grant (NHSG) and the Northeast Consortium (NEC). Thanks go to Ann Bucklin, Brian Doyle and Jonathan Pennock of NHSG and to Troy Hartley of NEC for guidance, support and patience and to Kirsten Weir of NHSG for edit- ing, graphics and layout. Thanks for reviews, comments and suggestions go to Kenneth Beal, retired assistant director of state, federal & constituent programs, National Marine Fisheries Service; Steve Cadrin, director of the NOAA/UMass Cooperative Marine Education and Research Program; David Goethel, commercial fisherman, Hampton, NH; Vincenzo Russo, commercial fisherman, Gloucester, MA; Domenic Sanfilippo, commercial fisherman, Gloucester, MA; Andy Rosenberg, UNH professor of natural resources; Lorelei Stevens, associate editor of Commercial Fisheries News; and Steve Adams, Rollie Barnaby, Pingguo He, Ken LaValley and Mark Wiley, all of NHSG.
    [Show full text]
  • Wasted Catch: Unsolved Problems in U.S. Fisheries
    © Brian Skerry WASTED CATCH: UNSOLVED PROBLEMS IN U.S. FISHERIES Authors: Amanda Keledjian, Gib Brogan, Beth Lowell, Jon Warrenchuk, Ben Enticknap, Geoff Shester, Michael Hirshfield and Dominique Cano-Stocco CORRECTION: This report referenced a bycatch rate of 40% as determined by Davies et al. 2009, however that calculation used a broader definition of bycatch than is standard. According to bycatch as defined in this report and elsewhere, the most recent analyses show a rate of approximately 10% (Zeller et al. 2017; FAO 2018). © Brian Skerry ACCORDING TO SOME ESTIMATES, GLOBAL BYCATCH MAY AMOUNT TO 40 PERCENT OF THE WORLD’S CATCH, TOTALING 63 BILLION POUNDS PER YEAR CORRECTION: This report referenced a bycatch rate of 40% as determined by Davies et al. 2009, however that calculation used a broader definition of bycatch than is standard. According to bycatch as defined in this report and elsewhere, the most recent analyses show a rate of approximately 10% (Zeller et al. 2017; FAO 2018). CONTENTS 05 Executive Summary 06 Quick Facts 06 What Is Bycatch? 08 Bycatch Is An Undocumented Problem 10 Bycatch Occurs Every Day In The U.S. 15 Notable Progress, But No Solution 26 Nine Dirty Fisheries 37 National Policies To Minimize Bycatch 39 Recommendations 39 Conclusion 40 Oceana Reducing Bycatch: A Timeline 42 References ACKNOWLEDGEMENTS The authors would like to thank Jennifer Hueting and In-House Creative for graphic design and the following individuals for their contributions during the development and review of this report: Eric Bilsky, Dustin Cranor, Mike LeVine, Susan Murray, Jackie Savitz, Amelia Vorpahl, Sara Young and Beckie Zisser.
    [Show full text]
  • Guide to Fisheries Science and Stock Assessments
    ATLANTIC STATES MARINE FISHERIES COMMISSION Guide to Fisheries Science and Stock Assessments von Bertalanffy Growth Curve Maximum 80 Yield 70 60 50 40 Carrying 1/2 Carrying Length (cm) 30 Fishery Yield Fishery Capacity Capacity Observed 20 Estimated 10 0 Low Population Population size High Population 0 1 2 3 4 5 6 7 8 9 10 Age (years) June 2009 Guide to Fisheries Science and Stock Assessments Written by Patrick Kilduff, Atlantic States Marine Fisheries Commission John Carmichael, South Atlantic Fishery Management Council Robert Latour, Ph.D., Virginia Institute of Marine Science Editor, Tina L. Berger June 2009 i Acknowledgements Reviews of this document were provided by Doug Vaughan, Ph.D., Brandon Muffley, Helen Takade, and Kim McKown, as members of the Atlantic States Marine Fisheries Commission’s Assessment Science Committee. Additional reviews and input were provided by ASMFC staff members Melissa Paine, William Most, Joe Grist, Genevieve Nesslage, Ph.D., and Patrick Campfield. Tina Berger, Jessie Thomas-Blate, and Kate Taylor worked on design layout. Special thanks go to those who allowed us use their photographs in this publication. Cover photographs are courtesy of Joseph W. Smith, National Marine Fisheries Service (Atlantic menhaden), Gulf States Marine Fisheries Commission (fish otolith) and the Northeast Area Monitoring and Assessment Program. This report is a publication of the Atlantic States Marine Fisheries Commission pursuant to National Oceanic and Atmospheric Administration Grant No. NA05NMF4741025, under the Atlantic
    [Show full text]
  • An Integrated Study of Economic Effects of and Vulnerabilities to Global Warming on the Barents Sea Cod Fisheries
    Climatic Change (2008) 87:251–262 DOI 10.1007/s10584-007-9338-0 An integrated study of economic effects of and vulnerabilities to global warming on the Barents Sea cod fisheries Arne Eide Received: 6 July 2006 /Accepted: 3 October 2007 / Published online: 27 November 2007 # Springer Science + Business Media B.V. 2007 Abstract The Barents Sea area is characterised by a highly fluctuating physical environment causing substantial variations in the ecosystems and fisheries depending upon this. Simulations assuming different management regimes have been carried out to study how physical and biological effects of global warming influence the Barents Sea cod fisheries. A regional, high-resolution representation of the B2 world region (OECD90) scenario from the Intergovernmental Panel on Climate Change was used to calculate water temperatures and plankton biomasses by hydrodynamic modelling. These results were included in simulations performed by a multi-fleet, multi-species model, by which a fully integrated model linking to the global circulation model to the Barents Sea fisheries through a regional downscaling to the Barents Sea area is constructed. One factor of particular importance for the natural annual biological variations is the occasional inflow of young herring into the Barents Sea area. The herring inflow is difficult to predict and links to dynamical systems outside the Barents Sea area, complex recruitment mechanisms and oceanographic conditions. These processes are in the study represented by a stochastic representation of herring inflow based on historical observations. According to the performed simulations the biomass fluctuations may slightly increase over the next 25 years, possibly caused by changes in temperature patterns.
    [Show full text]
  • Consumer Preferences for Seafood and Applications to Plant-Based and Cultivated Seafood
    Literature Review Consumer Preferences for Seafood and Applications to Plant-Based and Cultivated Seafood June 2020 Jen Lamy Sustainable Seafood Initiative Manager The Good Food Institute Keri Szejda, PhD Founder and Principal Research Scientist North Mountain Consulting Group Executive Summary Plant-based and cultivated seafood can play an essential role in expanding the global supply of fish and shellfish to healthfully and sustainably meet growing global seafood demand. A key step toward accelerating the development and commercialization of these industries is understanding consumers’ relationships with seafood. This paper assesses the available literature on consumer attitudes toward seafood. The results of this review should both inform decisions on how to best serve seafood consumers with plant-based and cultivated options and inform the prioritization of further research to advance these industries. Several key results emerge from the review: Heterogeneity: ​Consumer attitudes toward seafood often vary by species, product type, and consumer segmentation. Effectively developing and marketing seafood products require understanding these variations. Motivations: ​The main motivations for seafood consumption are habit, health, and taste. Barriers: ​The major barriers to seafood consumption are price, the perception that seafood is difficult to prepare, and social settings with others who do not like seafood. Attributes:​ The key product attributes assessed by seafood consumers include freshness and country of origin, but the relative
    [Show full text]
  • Seafood Industry Report
    EverBlu Capital | Research 9 February 2018 Russell Wright | T:+61 2 8249 0008 | E:[email protected] Seafood Industry Report Australian seafood is set to grow due to This report analyses the seafood industry in Australia and Asian premium quality and growing domestic markets. and global demand Companies’ Data Background on Seafood Industry 12-month Company Ticker Market Cap (M) change (%) 1. Australia’s seafood industry is still regarded to be in its infancy stage Angel Seafood Holdings Ltd. AS1 28.6 N/A with production predominately made up of privately-owned, family- Clean Seas Seafood Ltd. CSS 100.0 71.4 run farms. The 2.4% global growth in demand for seafood is likely to Huon Aquaculture Group Ltd. HUO 413.1 6.3 continue driven by population growth of 8.5 billion by 2030, and by Murray Cod Australia Ltd. MCA 24.3 14.8 the rising spending power of the global middle class, which is New Zealand King Salmon Co. Ltd. NZK 281.1 56.2 forecast to increase from 1.8 billion in 2009 to 4.9 billion by 2030. Ocean Grown Abalone Ltd. OGA 39.4 -5.0 Wild catch is at risk of declining due to overfishing and aquaculture Seafarms Group Ltd. SFG 91.4 -31.6 will have to make up the gap in demand and supply. Tassal Group Ltd. TGR 613.4 -19.52. Source: FactSet 3. Australia has a global reputation for sustained high quality product, which allows for producers to sell at a premium in international Ticker Company Target Sectors markets.
    [Show full text]