Trophic Cascade Modelling in Bathyal Ecosystems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Updated Checklist of Marine Fishes (Chordata: Craniata) from Portugal and the Proposed Extension of the Portuguese Continental Shelf
European Journal of Taxonomy 73: 1-73 ISSN 2118-9773 http://dx.doi.org/10.5852/ejt.2014.73 www.europeanjournaloftaxonomy.eu 2014 · Carneiro M. et al. This work is licensed under a Creative Commons Attribution 3.0 License. Monograph urn:lsid:zoobank.org:pub:9A5F217D-8E7B-448A-9CAB-2CCC9CC6F857 Updated checklist of marine fishes (Chordata: Craniata) from Portugal and the proposed extension of the Portuguese continental shelf Miguel CARNEIRO1,5, Rogélia MARTINS2,6, Monica LANDI*,3,7 & Filipe O. COSTA4,8 1,2 DIV-RP (Modelling and Management Fishery Resources Division), Instituto Português do Mar e da Atmosfera, Av. Brasilia 1449-006 Lisboa, Portugal. E-mail: [email protected], [email protected] 3,4 CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal. E-mail: [email protected], [email protected] * corresponding author: [email protected] 5 urn:lsid:zoobank.org:author:90A98A50-327E-4648-9DCE-75709C7A2472 6 urn:lsid:zoobank.org:author:1EB6DE00-9E91-407C-B7C4-34F31F29FD88 7 urn:lsid:zoobank.org:author:6D3AC760-77F2-4CFA-B5C7-665CB07F4CEB 8 urn:lsid:zoobank.org:author:48E53CF3-71C8-403C-BECD-10B20B3C15B4 Abstract. The study of the Portuguese marine ichthyofauna has a long historical tradition, rooted back in the 18th Century. Here we present an annotated checklist of the marine fishes from Portuguese waters, including the area encompassed by the proposed extension of the Portuguese continental shelf and the Economic Exclusive Zone (EEZ). The list is based on historical literature records and taxon occurrence data obtained from natural history collections, together with new revisions and occurrences. -
Models for an Ecosystem Approach to Fisheries
ISSN 0429-9345 FAO FISHERIES 477 TECHNICAL PAPER 477 Models for an ecosystem approach to fisheries Models for an ecosystem approach to fisheries This report reviews the methods available for assessing the impacts of interactions between species and fisheries and their implications for marine fisheries management. A brief description of the various modelling approaches currently in existence is provided, highlighting in particular features of these models that have general relevance to the field of ecosystem approach to fisheries (EAF). The report concentrates on the currently available models representative of general types such as bionergetic models, predator-prey models and minimally realistic models. Short descriptions are given of model parameters, assumptions and data requirements. Some of the advantages, disadvantages and limitations of each of the approaches in addressing questions pertaining to EAF are discussed. The report concludes with some recommendations for moving forward in the development of multispecies and ecosystem models and for the prudent use of the currently available models as tools for provision of scientific information on fisheries in an ecosystem context. FAO Cover: Illustration by Elda Longo FAO FISHERIES Models for an ecosystem TECHNICAL PAPER approach to fisheries 477 by Éva E. Plagányi University of Cape Town South Africa FOOD AND AGRICULTURE AND ORGANIZATION OF THE UNITED NATIONS Rome, 2007 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
What Happened When Wolves Were Reintroduced to Yellowstone Park?
Trophic Cascades: What Happened When Wolves Were Reintroduced to Yellowstone Park? Lesson Question How did the reintroduction of wolves into Yellowstone Park affect the other animals and plants in the ecosystem? Lesson Tasks Students analyze data to determine the effect of wolves on Yellowstone’s elk population, on the plants that elk graze on, and on the animals that compete with elk for food. They write a report describing how the reintroduction of wolves has created a trophic cascade—not just a few direct changes in one food chain, but a series of indirect changes throughout the food web. Standards • HS-LS2-2 Ecosystems: Interactions, Energy, and Dynamics NGSS Science and Engineering Practices • Constructing Explanations and Designing Solutions • Engaging in Argument from Evidence • Evaluate the claims, evidence, and reasoning behind currently accepted explanations or solutions to determine the merits of arguments. NGSS Disciplinary Core Ideas • LS2.C: Ecosystem Dynamics, Functioning and Resilience • ETS1.B: Developing Possible Solutions Crosscutting Concepts • Stability and Change, Patterns Connections to Nature of Science • Scientific Knowledge is open to revision in light of new evidence. • Most scientific Knowledge is quite durable, but is, in principle, subject to change based on new evidence and/or reinterpretation of existing evidence. Trophic Cascades: What Happened When Wolves Were Reintroduced to Yellowstone Park? TABLE OF CONTENTS OVERVIEW ........................................................... 3 INVESTIGATION ............................................... -
Evidence for Ecosystem-Level Trophic Cascade Effects Involving Gulf Menhaden (Brevoortia Patronus) Triggered by the Deepwater Horizon Blowout
Journal of Marine Science and Engineering Article Evidence for Ecosystem-Level Trophic Cascade Effects Involving Gulf Menhaden (Brevoortia patronus) Triggered by the Deepwater Horizon Blowout Jeffrey W. Short 1,*, Christine M. Voss 2, Maria L. Vozzo 2,3 , Vincent Guillory 4, Harold J. Geiger 5, James C. Haney 6 and Charles H. Peterson 2 1 JWS Consulting LLC, 19315 Glacier Highway, Juneau, AK 99801, USA 2 Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA; [email protected] (C.M.V.); [email protected] (M.L.V.); [email protected] (C.H.P.) 3 Sydney Institute of Marine Science, Mosman, NSW 2088, Australia 4 Independent Researcher, 296 Levillage Drive, Larose, LA 70373, USA; [email protected] 5 St. Hubert Research Group, 222 Seward, Suite 205, Juneau, AK 99801, USA; [email protected] 6 Terra Mar Applied Sciences LLC, 123 W. Nye Lane, Suite 129, Carson City, NV 89706, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-907-209-3321 Abstract: Unprecedented recruitment of Gulf menhaden (Brevoortia patronus) followed the 2010 Deepwater Horizon blowout (DWH). The foregone consumption of Gulf menhaden, after their many predator species were killed by oiling, increased competition among menhaden for food, resulting in poor physiological conditions and low lipid content during 2011 and 2012. Menhaden sampled Citation: Short, J.W.; Voss, C.M.; for length and weight measurements, beginning in 2011, exhibited the poorest condition around Vozzo, M.L.; Guillory, V.; Geiger, H.J.; Barataria Bay, west of the Mississippi River, where recruitment of the 2010 year class was highest. -
CHAPTER 5 Ecopath with Ecosim: Linking Fisheries and Ecology
CHAPTER 5 Ecopath with Ecosim: linking fi sheries and ecology V. Christensen Fisheries Centre, University of British Columbia, Canada. 1 Why ecosystem modeling in fi sheries? Fifty years ago, fi sheries science emerged as a quantitative discipline with the publication of Ray Beverton and Sidney Holt’s [1] seminal volume On the Dynamics of Exploited Fish Populations. This book provided the foundation for how to manage fi sheries and was based on detailed, mathe- matical analyses of the dynamics of individual fi sh populations, of how they grow and how they are affected by fi shing. Fisheries science has developed and matured since then, and remarkably much of what has been achieved are modifi cations and further developments of what Beverton and Holt introduced. Given then that fi sheries science has developed to become one of the most data-rich, quantita- tive fi elds in ecology [2], how well has it fared? We often see fi sheries issues in the headlines and usually in a negative context and there are indeed many threats to the sustainability of ocean resources [3]. Many, judging not the least from newspaper headlines, consider fi sheries manage- ment a usual suspect in connection with fi sheries collapses. This may lead one to suspect that there is a problem with the science, but I hold this to be an erroneous conclusion. It should be stressed that the main problem is not to be found in the computational aspects of the science, but rather in how management advice actually is implemented in praxis [4]. The major force in fi sh- eries throughout the world is excessive fi shing capacity; the days with unexploited resources and untapped oceans are over [5], and the fi shing industry is now relying heavily on subsidies to keep the machinery going [6]. -
Marine Fishes from Galicia (NW Spain): an Updated Checklist
1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful. -
Fauna of Australia 4A Phylum Sipuncula
FAUNA of AUSTRALIA Volume 4A POLYCHAETES & ALLIES The Southern Synthesis 5. PHYLUM SIPUNCULA STANLEY J. EDMONDS (Deceased 16 July 1995) © Commonwealth of Australia 2000. All material CC-BY unless otherwise stated. At night, Eunice Aphroditois emerges from its burrow to feed. Photo by Roger Steene DEFINITION AND GENERAL DESCRIPTION The Sipuncula is a group of soft-bodied, unsegmented, coelomate, worm-like marine invertebrates (Fig. 5.1; Pls 12.1–12.4). The body consists of a muscular trunk and an anteriorly placed, more slender introvert (Fig. 5.2), which bears the mouth at the anterior extremity of an introvert and a long, recurved, spirally wound alimentary canal lies within the spacious body cavity or coelom. The anus lies dorsally, usually on the anterior surface of the trunk near the base of the introvert. Tentacles either surround, or are associated with the mouth. Chaetae or bristles are absent. Two nephridia are present, occasionally only one. The nervous system, although unsegmented, is annelidan-like, consisting of a long ventral nerve cord and an anteriorly placed brain. The sexes are separate, fertilisation is external and cleavage of the zygote is spiral. The larva is a free-swimming trochophore. They are known commonly as peanut worms. AB D 40 mm 10 mm 5 mm C E 5 mm 5 mm Figure 5.1 External appearance of Australian sipunculans. A, SIPUNCULUS ROBUSTUS (Sipunculidae); B, GOLFINGIA VULGARIS HERDMANI (Golfingiidae); C, THEMISTE VARIOSPINOSA (Themistidae); D, PHASCOLOSOMA ANNULATUM (Phascolosomatidae); E, ASPIDOSIPHON LAEVIS (Aspidosiphonidae). (A, B, D, from Edmonds 1982; C, E, from Edmonds 1980) 2 Sipunculans live in burrows, tubes and protected places. -
Checklist of the Marine Fishes from Metropolitan France
Checklist of the marine fishes from metropolitan France by Philippe BÉAREZ* (1, 8), Patrice PRUVOST (2), Éric FEUNTEUN (2, 3, 8), Samuel IGLÉSIAS (2, 4, 8), Patrice FRANCOUR (5), Romain CAUSSE (2, 8), Jeanne DE MAZIERES (6), Sandrine TERCERIE (6) & Nicolas BAILLY (7, 8) Abstract. – A list of the marine fish species occurring in the French EEZ was assembled from more than 200 references. No updated list has been published since the 19th century, although incomplete versions were avail- able in several biodiversity information systems. The list contains 729 species distributed in 185 families. It is a preliminary step for the Atlas of Marine Fishes of France that will be further elaborated within the INPN (the National Inventory of the Natural Heritage: https://inpn.mnhn.fr). Résumé. – Liste des poissons marins de France métropolitaine. Une liste des poissons marins se trouvant dans la Zone Économique Exclusive de France a été constituée à partir de plus de 200 références. Cette liste n’avait pas été mise à jour formellement depuis la fin du 19e siècle, © SFI bien que des versions incomplètes existent dans plusieurs systèmes d’information sur la biodiversité. La liste Received: 4 Jul. 2017 Accepted: 21 Nov. 2017 contient 729 espèces réparties dans 185 familles. C’est une étape préliminaire pour l’Atlas des Poissons marins Editor: G. Duhamel de France qui sera élaboré dans le cadre de l’INPN (Inventaire National du Patrimoine Naturel : https://inpn. mnhn.fr). Key words Marine fishes No recent faunistic work cov- (e.g. Quéro et al., 2003; Louisy, 2015), in which the entire Northeast Atlantic ers the fish species present only in Europe is considered (Atlantic only for the former). -
FBE Tez Yazim Kilavuzu
İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ LEVANT DENİZİ (DOĞU AKDENİZ) KUZEYDOĞUSUNUN ÜST KITA YAMACI BALIKLARININ DAĞILIMLARI Cem DALYAN Biyoloji Anabilim Dalı Hidrobiyoloji Programı Danışman Prof.Dr. Neslihan BALKIS II. Danışman Doç. Dr. Lütfiye ERYILMAZ Haziran, 2012 İSTANBUL İSTANBUL ÜNİVERSİTESİ FEN BİLİMLERİ ENSTİTÜSÜ DOKTORA TEZİ LEVANT DENİZİ (DOĞU AKDENİZ) KUZEYDOĞUSUNUN ÜST KITA YAMACI BALIKLARININ DAĞILIMLARI Cem DALYAN Biyoloji Anabilim Dalı Hidrobiyoloji Programı Danışman Prof.Dr. Neslihan BALKIS II. Danışman Doç. Dr. Lütfiye ERYILMAZ Haziran, 2012 İSTANBUL Bu çalışma İstanbul Üniversitesi Bilimsel Araştırma Projeleri Yürütücü Sekreterliğinin 4378 numaralı projesi ile desteklenmiştir. ÖNSÖZ Doktora öğrenimim sırasında her konuda yardımcı olan danışman hocam Prof. Dr. Neslihan BALKIS’a, tez çalışmalarım boyunca desteğini esirgemeyen her zaman yanımda olduğunu hissetiren yardımcı danışman hocam Doç. Dr. Lütfiye ERYILMAZ’a, Bu çalışmamın uygulama kısmını destekleyen ve üyesi olmaktan gurur duyduğum üniversiteme, Arazi çalışmalarında her hazırlığımıza yardımcı olan, bir buçuk yıl boyunca tüm evi laboratuvar gibi kullanmamıza izin veren annem Emel DALYAN ve babam Cabir DALYAN’a, her zaman desteklerini hissettiğim kardeşlerim Eser DALYAN ve Caner DALYAN’a, Hava şartları, çalışma alanının uzaklığı gibi türlü nedenlerle doğan sıkıntılarda yardımlarını esirgemeyen Hatay Tarım İl Müdürlüğü görevli personellerinden Eray ÖZDEMİR ve Ufuk SAKALLI’ya, İstatistiki analizler ile ilgili yardımlarını esirgemeyen Yrd. Doç. Dr. -
OCN 201 Spring 2011 Exam 3 (75 Pts) True Or False (1 Pt Each)
Name:________________________ Exam: ____A____ ID: ______________________________ OCN 201 Spring 2011 Exam 3 (75 pts) True or False (1 pt each). A = TRUE; B = FALSE 1. According to the “serial endosymbiosis theory”, prokaryotes developed when eukaryotes lost their organelles. 2. The aphotic zone of the ocean is in the epipelagic. 3. Amino acids (one of the building blocks of life) have been found in meteorites. 4. Bioluminescence occurs only in the deep sea. 5. Phytoplankton are photoautotrophs. 6. Marine snow is a source of organic carbon to the deep sea. 7. Tropical oceans have very low productivity for most of the year because they frequently mix below the critical depth year-round. 8. Larger organisms are more abundant than smaller ones in the ocean. 9. Ctenophores (comb jellies) propel themselves by pulsing their bell, just like jellyfish. 10. Corals have only one opening to their digestive cavity. 11. Many animals in the very deep sea are red or black. 12. The “deep scattering layer” moves toward the sea surface during the day. 13. In fisheries, the maximum sustainable yield is the amount of fish that must be caught to keep up with the current rate of inflation. 14. Geological evidence indicates that life on earth began at least 3.5 billion years ago. 15. Light and nutrients are the two main things limiting primary productivity in the ocean. 16. Areas of the ocean with upwelling tend to have high productivity. 17. Some bacteria are photoautotrophs. p. 1 of 6 18. Nudibranchs are a type of flatworm 19. Whales are nekton. 20. -
Chapter 36D. South Pacific Ocean
Chapter 36D. South Pacific Ocean Contributors: Karen Evans (lead author), Nic Bax (convener), Patricio Bernal (Lead member), Marilú Bouchon Corrales, Martin Cryer, Günter Försterra, Carlos F. Gaymer, Vreni Häussermann, and Jake Rice (Co-Lead member and Editor Part VI Biodiversity) 1. Introduction The Pacific Ocean is the Earth’s largest ocean, covering one-third of the world’s surface. This huge expanse of ocean supports the most extensive and diverse coral reefs in the world (Burke et al., 2011), the largest commercial fishery (FAO, 2014), the most and deepest oceanic trenches (General Bathymetric Chart of the Oceans, available at www.gebco.net), the largest upwelling system (Spalding et al., 2012), the healthiest and, in some cases, largest remaining populations of many globally rare and threatened species, including marine mammals, seabirds and marine reptiles (Tittensor et al., 2010). The South Pacific Ocean surrounds and is bordered by 23 countries and territories (for the purpose of this chapter, countries west of Papua New Guinea are not considered to be part of the South Pacific), which range in size from small atolls (e.g., Nauru) to continents (South America, Australia). Associated populations of each of the countries and territories range from less than 10,000 (Tokelau, Nauru, Tuvalu) to nearly 30.5 million (Peru; Population Estimates and Projections, World Bank Group, accessed at http://data.worldbank.org/data-catalog/population-projection-tables, August 2014). Most of the tropical and sub-tropical western and central South Pacific Ocean is contained within exclusive economic zones (EEZs), whereas vast expanses of temperate waters are associated with high seas areas (Figure 1). -
An Integrated Study of Economic Effects of and Vulnerabilities to Global Warming on the Barents Sea Cod Fisheries
Climatic Change (2008) 87:251–262 DOI 10.1007/s10584-007-9338-0 An integrated study of economic effects of and vulnerabilities to global warming on the Barents Sea cod fisheries Arne Eide Received: 6 July 2006 /Accepted: 3 October 2007 / Published online: 27 November 2007 # Springer Science + Business Media B.V. 2007 Abstract The Barents Sea area is characterised by a highly fluctuating physical environment causing substantial variations in the ecosystems and fisheries depending upon this. Simulations assuming different management regimes have been carried out to study how physical and biological effects of global warming influence the Barents Sea cod fisheries. A regional, high-resolution representation of the B2 world region (OECD90) scenario from the Intergovernmental Panel on Climate Change was used to calculate water temperatures and plankton biomasses by hydrodynamic modelling. These results were included in simulations performed by a multi-fleet, multi-species model, by which a fully integrated model linking to the global circulation model to the Barents Sea fisheries through a regional downscaling to the Barents Sea area is constructed. One factor of particular importance for the natural annual biological variations is the occasional inflow of young herring into the Barents Sea area. The herring inflow is difficult to predict and links to dynamical systems outside the Barents Sea area, complex recruitment mechanisms and oceanographic conditions. These processes are in the study represented by a stochastic representation of herring inflow based on historical observations. According to the performed simulations the biomass fluctuations may slightly increase over the next 25 years, possibly caused by changes in temperature patterns.