Field-Programmable Gate Array
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download the Compiled Program File Onto the Chip
International Journal of Computer Science & Information Technology (IJCSIT) Vol 4, No 2, April 2012 MPP SOCGEN: A FRAMEWORK FOR AUTOMATIC GENERATION OF MPP SOC ARCHITECTURE Emna Kallel, Yassine Aoudni, Mouna Baklouti and Mohamed Abid Electrical department, Computer Embedded System Laboratory, ENIS School, Sfax, Tunisia ABSTRACT Automatic code generation is a standard method in software engineering since it improves the code consistency and reduces the overall development time. In this context, this paper presents a design flow for automatic VHDL code generation of mppSoC (massively parallel processing System-on-Chip) configuration. Indeed, depending on the application requirements, a framework of Netbeans Platform Software Tool named MppSoCGEN was developed in order to accelerate the design process of complex mppSoC. Starting from an architecture parameters design, VHDL code will be automatically generated using parsing method. Configuration rules are proposed to have a correct and valid VHDL syntax configuration. Finally, an automatic generation of Processor Elements and network topologies models of mppSoC architecture will be done for Stratix II device family. Our framework improves its flexibility on Netbeans 5.5 version and centrino duo Core 2GHz with 22 Kbytes and 3 seconds average runtime. Experimental results for reduction algorithm validate our MppSoCGEN design flow and demonstrate the efficiency of generated architectures. KEYWORD MppSoC, Automatic code generation; mppSoC configuration;parsing ; MppSoCGEN; 1. INTRODUCTION Parallel machines are most often used in many modern applications that need regular parallel algorithms and high computing resources, such as image processing and signal processing. Massively parallel architectures, in particular Single Instruction Multiple Data (SIMD) systems, have shown to be powerful executers for data-intensive applications [1]. -
White Paper - Investigate the High-Level HDL Chisel
White Paper - Investigate the high-level HDL Chisel Florian Heilmann, Christian Brugger, Norbert Wehn Microelectronics Research Group, University Kaiserslautern Kaiserslautern, Germany [email protected], [email protected], [email protected] Abstract— Chisel (Constructing Hardware in a Scala designer can simply not use it. Another approach involves embedded language) is a new programming language, which using a language suited for the domain of the target application. embedded in Scala, used for hardware synthesis. It aims to Examples include Esterel [4], which has been modeled for increase productivity when creating hardware by enabling reactive programs and DIL[5], which is an intermediate designers to use features present in higher level programming programming language used to target pipelined reconfigurable languages to build complex hardware blocks. In this paper, the architectures like PipeRench. Moreover, there are languages most advertised features of Chisel are investigated and compared like BlueSpec[6] which is essentially a subset of to their VHDL counterparts, if present. Afterwards, the authors’ SystemVerilog putting emphasis on avoiding race conditions opinion if a switch to Chisel is worth considering is presented. by automatically generating scheduling and arbitration logic Additionally, results from a related case study on Chisel are from a set of “rules” which express synthesizable behavior. briefly summarized. The author concludes that, while Chisel has promising features, it is not yet ready for use in the industry. These languages are usually designed to support a specific design domain. This, however, leads to these approaches performing poorly when used outside the domain they were intended for. Keywords—Hardware design; Chisel; VHDL; HDL III. -
Latticemico8 Soft Core 8-Bit Microcontroller Optimized for Lattice Programmable Devices
O P E N S O U R C E S O F T C O R E M I C R O C ont R O LL E R LatticeMico8 Soft Core 8-Bit Microcontroller Optimized for Lattice Programmable Devices The LatticeMico8™ is an 8-bit “soft” microcontroller core for the LatticeECP™, LatticeEC™ and LatticeXP™ families of Field Programmable Gate Arrays (FPGAs), as well as the MachXO™ family of Crossover Programmable Logic Devices. Combining a full 18-bit wide instruction set with 32 general purpose registers, the LatticeMico8 is a flexible reference design suitable for a wide variety of markets, including com- munications, consumer, computer, medical, industrial, and automotive. The core consumes minimal device resources, less than 200 Look Up Tables (LUTs) in the smallest configu- ration, while maintaining a broad feature set. In order to encourage user experimentation, development and contributions, Lattice is providing a new open intellec- tual property (IP) core license, the first such license offered Key Features and Benefits by any FPGA supplier. The license applies many of the concepts of the successful open source movement to IP cores Optimized for LatticeECP, LatticeEC, LatticeXP, and MachXO Families targeted for programmable logic applications. Efficient Architecture – Utilizes <200 LUTs Broad Feature Set LatticeMico8 Block Diagram • 8-bit data path • 18-bit wide instructions • 32 general purpose registers 16 Deep Call Stack • 32 bytes of internal scratch pad memory Program Interrupt Ack • Input/Output is performed using ports (up to 256 port Address Program Flow Control & PC -
The Hardware Design Toolchain Approaches and State of the Art Fredo Erxleben August 27, 2014
The Hardware Design Toolchain Approaches and State of the Art Fredo Erxleben August 27, 2014 We will hate the tools (FCCM 1996 prediction for 2001) We will still hate the tools (FCCM 1998 prediction for 2003) We will merely dislike the tools (FCCM 2000 prediction for 2005) We [will] hate the tools more (FCCM 2007 prediction for 2012) 1 Motivation used for hardware design will be presented in an attempt to outline where weaknesses in the currently available tool-chains for hardware de- Since the introduction of integrated circuits, sign are found. Due to the sheer amount of hardware complexity has increased rapidly and different approaches made over the years and constantly. This complexity naturally is a hard tools that were developed with the intention of thing for humans to handle once it reaches a helping to improve the design process, it is not certain threshold. As a consequence, the need possible to look at them all or in more detail. for tools arises to enable the people involved in Instead, in the following, an overview over ap- the hardware design process to continue work- proaches made to create tool-chains for hard- ing on, advancing and improving the matter. ware design or single tools to be used in them, While this is a fact for any evolving branch of shall be given. It will also be outlined, what science and production, the speed, by which the their current state in productive use is. tools adapt varies greatly. Taking software de- velopment as a comparison, we find that there are often a lot of tools available for one task, 2 Criteria each one of them filling a niche or being tai- lored with a special use-case in mind. -
FPGA Design Guide
FPGA Design Guide Lattice Semiconductor Corporation 5555 NE Moore Court Hillsboro, OR 97124 (503) 268-8000 September 16, 2008 Copyright Copyright © 2008 Lattice Semiconductor Corporation. This document may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine- readable form without prior written consent from Lattice Semiconductor Corporation. Trademarks Lattice Semiconductor Corporation, L Lattice Semiconductor Corporation (logo), L (stylized), L (design), Lattice (design), LSC, E2CMOS, Extreme Performance, FlashBAK, flexiFlash, flexiMAC, flexiPCS, FreedomChip, GAL, GDX, Generic Array Logic, HDL Explorer, IPexpress, ISP, ispATE, ispClock, ispDOWNLOAD, ispGAL, ispGDS, ispGDX, ispGDXV, ispGDX2, ispGENERATOR, ispJTAG, ispLEVER, ispLeverCORE, ispLSI, ispMACH, ispPAC, ispTRACY, ispTURBO, ispVIRTUAL MACHINE, ispVM, ispXP, ispXPGA, ispXPLD, LatticeEC, LatticeECP, LatticeECP-DSP, LatticeECP2, LatticeECP2M, LatticeMico8, LatticeMico32, LatticeSC, LatticeSCM, LatticeXP, LatticeXP2, MACH, MachXO, MACO, ORCA, PAC, PAC-Designer, PAL, Performance Analyst, PURESPEED, Reveal, Silicon Forest, Speedlocked, Speed Locking, SuperBIG, SuperCOOL, SuperFAST, SuperWIDE, sysCLOCK, sysCONFIG, sysDSP, sysHSI, sysI/O, sysMEM, The Simple Machine for Complex Design, TransFR, UltraMOS, and specific product designations are either registered trademarks or trademarks of Lattice Semiconductor Corporation or its subsidiaries in the United States and/or other countries. ISP, Bringing the Best Together, and More -
Concepmon ( G ~ E Janvier
CONCEPMONET MISE EN CE= D'UN SYST~MEDE RECONFIOURATION DYNAMIQUE PRESENTE EN VUE DE L'OBTENTION DU DIP~MEDE WSERs SCIENCES APPLIQUEES (G~EÉLE~QUE) JANVIER2000 OCynthia Cousineau, 2000. National Library Bibliothèque nationale I*I of Canada du Canada Acquisitions and Acquisitions et Bibliographie Services services bibliographiques 395 Wellington Street 395, rue Wellington OttawaON K1AON4 Ottawa ON K1A ON4 Canada Canada The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sel1 reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/film, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts f?om it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Ce mémoire intitulé: CONCEFMONET MISE EN OEWRE D'UN SYST&MEDE RECONFIGURATION DYNAMIQUE présenté par : COUSINEAU Cvnthia en vue de l'obtention du diplôme de : Maîtrise ès sciences amliauees a été dûment accepté par le jury d'examen constitué de: M. BOIS GUY, Ph.D., président M. SAVARIA Yvon, Ph.D., membre et directeur de recherche M. SAWAN Mohamad , Ph.D., membre et codirecteur de recherche M. -
Review of FPD's Languages, Compilers, Interpreters and Tools
ISSN 2394-7314 International Journal of Novel Research in Computer Science and Software Engineering Vol. 3, Issue 1, pp: (140-158), Month: January-April 2016, Available at: www.noveltyjournals.com Review of FPD'S Languages, Compilers, Interpreters and Tools 1Amr Rashed, 2Bedir Yousif, 3Ahmed Shaban Samra 1Higher studies Deanship, Taif university, Taif, Saudi Arabia 2Communication and Electronics Department, Faculty of engineering, Kafrelsheikh University, Egypt 3Communication and Electronics Department, Faculty of engineering, Mansoura University, Egypt Abstract: FPGAs have achieved quick acceptance, spread and growth over the past years because they can be applied to a variety of applications. Some of these applications includes: random logic, bioinformatics, video and image processing, device controllers, communication encoding, modulation, and filtering, limited size systems with RAM blocks, and many more. For example, for video and image processing application it is very difficult and time consuming to use traditional HDL languages, so it’s obligatory to search for other efficient, synthesis tools to implement your design. The question is what is the best comparable language or tool to implement desired application. Also this research is very helpful for language developers to know strength points, weakness points, ease of use and efficiency of each tool or language. This research faced many challenges one of them is that there is no complete reference of all FPGA languages and tools, also available references and guides are few and almost not good. Searching for a simple example to learn some of these tools or languages would be a time consuming. This paper represents a review study or guide of almost all PLD's languages, interpreters and tools that can be used for programming, simulating and synthesizing PLD's for analog, digital & mixed signals and systems supported with simple examples. -
Machxo Control Development Kit User's Guide
MachXO Control Development Kit User’s Guide October 2009 Revision: EB46_01.2 Lattice Semiconductor MachXO Control Development Kit User’s Guide Introduction Thank you for choosing the Lattice Semiconductor MachXO™ Control Development Kit! This guide describes how to start using the MachXO Control Development Kit, an easy-to-use platform for rapidly prototyping system control designs using MachXO PLDs. Along with the evaluation board and accessories, this kit includes a pre-loaded control system-on-chip (Control SoC) design that demonstrates board diagnostic functions including fan speed control based on temperature monitoring, LCD control, complete power supply monitoring and reset distribution in conjunction with the Power Manager II ispPAC®-POWR1014A and 8-bit LatticeMico8™ micro- controller. Note: Static electricity can severely shorten the lifespan of electronic components. See the MachXO Control Devel- opment Kit QuickSTART Guide for handling and storage tips. Features The MachXO Control Development Kit includes: • MachXO Control Evaluation Board – The MachXO Control Evaluation Board features the following on-board components and circuits: – MachXO LCMXO2280C-4FT256C PLD (www.latticesemi.com/products/cpldspld/machxo) – Power Manager II ispPAC-POWR1014A mixed-signal PLD (www.latticesemi.com/products/powermanager) – 2 Mbit SPI Flash memory – 1 Mbit SRAM • Interface to 16 x 2 LCD Panel* – Secure Digital (SD) and CompactFlash memory card sockets* –I2C temperature sensor – Current and voltage sensor circuits – Voltage ramp circuits – -
High-Speed Soft-Processor Architecture for FPGA Overlays
High-Speed Soft-Processor Architecture for FPGA Overlays by Charles Eric LaForest A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto c Copyright 2015 by Charles Eric LaForest Abstract High-Speed Soft-Processor Architecture for FPGA Overlays Charles Eric LaForest Doctor of Philosophy Graduate Department of Electrical and Computer Engineering University of Toronto 2015 Field-Programmable Gate Arrays (FPGAs) provide an easier path than Application- Specific Integrated Circuits (ASICs) for implementing computing systems, and generally yield higher performance and lower power than optimized software running on high- end CPUs. However, designing hardware with FPGAs remains a difficult and time- consuming process, requiring specialized skills and hours-long CAD processing times. An easier design process abstracts away the FPGA via an \overlay architecture", which implements a computing platform upon which we construct the desired system. Soft- processors represent the base case of overlays, allowing easy software-driven design, but at a large cost in performance and area. This thesis addresses the performance limitations of FPGA soft-processors, as building blocks for overlay architectures. We first aim to maximize the usage of FPGA structures by designing Octavo, a strict round-robin multi-threaded soft-processor architecture tailored to the underlying FPGA and capable of operating at maximal speed. We then scale Octavo to SIMD and MIMD parallelism by replicating its datapath and connecting Octavo cores in a point-to-point mesh. This scaling creates multi-local logic, which we preserve via logical partitioning to avoid artificial critial paths introduced by unnecessary CAD optimizations. -
Small Soft Core up Inventory ©2019 James Brakefield Opencore and Other Soft Core Processors Reverse-U16 A.T
tool pip _uP_all_soft opencores or style / data inst repor com LUTs blk F tool MIPS clks/ KIPS ven src #src fltg max max byte adr # start last secondary web status author FPGA top file chai e note worthy comments doc SOC date LUT? # inst # folder prmary link clone size size ter ents ALUT mults ram max ver /inst inst /LUT dor code files pt Hav'd dat inst adrs mod reg year revis link n len Small soft core uP Inventory ©2019 James Brakefield Opencore and other soft core processors reverse-u16 https://github.com/programmerby/ReVerSE-U16stable A.T. Z80 8 8 cylcone-4 James Brakefield11224 4 60 ## 14.7 0.33 4.0 X Y vhdl 29 zxpoly Y yes N N 64K 64K Y 2015 SOC project using T80, HDMI generatorretro Z80 based on T80 by Daniel Wallner copyblaze https://opencores.org/project,copyblazestable Abdallah ElIbrahimi picoBlaze 8 18 kintex-7-3 James Brakefieldmissing block622 ROM6 217 ## 14.7 0.33 2.0 57.5 IX vhdl 16 cp_copyblazeY asm N 256 2K Y 2011 2016 wishbone extras sap https://opencores.org/project,sapstable Ahmed Shahein accum 8 8 kintex-7-3 James Brakefieldno LUT RAM48 or block6 RAM 200 ## 14.7 0.10 4.0 104.2 X vhdl 15 mp_struct N 16 16 Y 5 2012 2017 https://shirishkoirala.blogspot.com/2017/01/sap-1simple-as-possible-1-computer.htmlSimple as Possible Computer from Malvinohttps://www.youtube.com/watch?v=prpyEFxZCMw & Brown "Digital computer electronics" blue https://opencores.org/project,bluestable Al Williams accum 16 16 spartan-3-5 James Brakefieldremoved clock1025 constraint4 63 ## 14.7 0.67 1.0 41.1 X verilog 16 topbox web N 4K 4K N 16 2 2009 -
PDF Package Information
This version: Apr. 2001 Previous version: Jun. 1997 PACKAGE INFORMATION 1. PACKAGE CLASSIFICATIONS This document is Chapter 1 of the package information document consisting of 8 chapters in total. PACKAGE INFORMATION 1. PACKAGE CLASSIFICATIONS 1. PACKAGE CLASSIFICATIONS 1.1 Packaging Trends In recent years, marked advances have been made in the electronics field. One such advance has been the progression from vacuum tubes to transistors and finally, to ICs. ICs themselves have been more highly integrated into LSIs, VLSIs, and now, ULSIs. With increased functions and pin counts, IC packages have had to change significantly in the last few years in order to keep-up with the advancement in semiconductor development. Functions required for conventional IC packages are as follows: 1) To protect IC chips from the external environment 2) To facilitate the packaging and handling of IC chips 3) To dissipate heat generated by IC chips 4) To protect the electrical characteristics of the IC Standard dual-in-line packages (DIP), which fulfill these basic requirements, have enjoyed wide usage in the electronics industry for a number of years. With increasing integration and higher speed ICs, and with the miniaturization of electronic equipment, newer packages have been requested by the industry which incorporate the functions listed below: 1) Multi-pin I/O 2) Ultra-miniature packages 3) Packages suited to high density ICs 4) Improved heat resistance for use with reflow soldering techniques 5) High throughput speed 6) Improved heat dissipation 7) Lower cost per pin In response to these requests, OKI has developed a diversified family of packages to meet the myriad requirements of today’s burgeoning electronics industry. -
Pymtl As an Open-Source Python-Based Hardware Generation, Simulation, and Verification Framework
Appears in the Proceedings of the First Workshop on Open-Source EDA Technology (WOSET’18), November 2018 An Open-Source Python-Based Hardware Generation, Simulation, and Verification Framework Shunning Jiang Christopher Torng Christopher Batten School of Electrical and Computer Engineering, Cornell University, Ithaca, NY { sj634, clt67, cbatten }@cornell.edu pytest coverage.py hypothesis ABSTRACT Host Language HDL We present an overview of previously published features and work (Python) (Verilog) in progress for PyMTL, an open-source Python-based hardware generation, simulation, and verification framework that brings com- FL DUT CL DUT pelling productivity benefits to hardware design and verification. generate Verilog synth RTL DUT PyMTL provides a natural environment for multi-level modeling DUT' using method-based interfaces, features highly parametrized static Sim FPGA/ elaboration and analysis/transform passes, supports fast simulation cosim ASIC and property-based random testing in pure Python environment, Test Bench Sim and includes seamless SystemVerilog integration. Figure 1: PyMTL’s workflow – The designer iteratively refines the hardware within the host Python language, with the help from 1 INTRODUCTION pytest, coverage.py, and hypothesis. The same test bench is later There have been multiple generations of open-source hardware reused for co-simulating the generated Verilog. FL = functional generation frameworks that attempt to mitigate the increasing level; CL = cycle level; RTL = register-transfer level; DUT = design hardware design and verification complexity. These frameworks under test; DUT’ = generated DUT; Sim = simulation. use a high-level general-purpose programming language to ex- press a hardware-oriented declarative or procedural description level (RTL), along with verification and evaluation using Python- and explicitly generate a low-level HDL implementation.