Dna Diagnosis of Thalassemia from Ancient Italian Skeletons

Total Page:16

File Type:pdf, Size:1020Kb

Dna Diagnosis of Thalassemia from Ancient Italian Skeletons DNA DIAGNOSIS OF ANCIENT THALASSEMIA DNA DIAGNOSIS OF THALASSEMIA FROM ANCIENT ITALIAN SKELETONS By Dongya Yang, B.Sc., M.Sc. A Thesis Submitted to the School of Graduate Studies in Partial Fulfilment of Requirements for the Degree Doctor of Philosophy McMaster University © Copyright by Dongya Yang, December, 1997 Doctor of Philosophy, 1997 McMaster University (Physical Anthropology) Hamilton, Ontario TITLE: DNA Diagnosis of Thalassemia from Ancient Italian Skeletons AUTHOR: Dongya Yang, M.Sc. (Chinese Academy of Sciences, Beijing, China) B.Sc. (Lanzhou University, Lanzhou, China) SUPERVISOR: Professor Shelley R. Saunders NUMBER OF PAGES: xiv, 211 11 ABSTRACT This thesis reports an attempt to extract DNA from the skeletal remains of five young children who died approximately 1,900 years ago and who were recovered from an Italian archaeological site, Isola Sacra. These skeletons have been tentatively diagnosed as thalassemics based on morphological observations, but alternative diagnoses are also possible. DNA diagnosis was used to attempt to identify thalassemia mutations from the human globin genes extracted from these skeletons. Successful extraction of the human globin genes is largely dependent on two factors: retrieving sufficient amounts of ancient DNA without PCR (Polymerase Chain Reaction) inhibitors, and no contamination from modern DNA. To improve the chances of success, a more efficient and rapid method of extracting DNA from ancient skeletons was developed using a silica-based spin column technique to maximize the yield of amplifiable DNA from ancient skeletons and minimize the risk of the contamination with modern DNA. In a single step, the DNA is concentrated and separated from non-DNA substances that could inhibit PCR. This sufficiently removed PCR inhibitors but without an increased risk of contamination. A comparison test proved that this new approach is superior to current commonly used methods. Upon application of the new method, the evidence suggests that ancient human p-globin genes were extracted from three of the five individuals from Isola Sacra. DNA diagnosis for two of the most common Italian thalassemia mutations, IVS 1-11 a and codon 39 (more than 50% of current Italian thalassemia mutations), 111 revealed that these three individuals did not have these two mutations. However, the present results cannot totally exclude the possibility of thalassemia from these specimens since five other untested mutations might occur in these specimens. Precautions were taken to minimize the risk of contamination. Contamination was also monitored by mtDNA analysis of each individual. No systemic contamination took place in this study but a sporadic contamination was identified with one specimen. The further analysis clearly indicated that the contamination came from the author. This thesis has shown that DNA diagnosis of diseases from ancient remains can be a new, powerful approach to the study of health and disease in past human populations. Technical improvements and revised research strategies are expected to advance DNA diagnoses of ancient diseases. IV ACKNOWLEDGEMENTS First and foremost, I would like to thank my supervisor and mentor, Dr. Shelley Saunders for her unending encouragement, support and tolerance throughout my five years at McMaster. It is her vision about ancient DNA research and her faith in my abilities that have really made this thesis possible. I would also like to thank Dr. Ann Herring for her encouragement and help, which have been far beyond that warranted as a member of my supervisory committee. Her positive thinking and optimistic attitude have helped me through many difficult times. Shelley and Ann have played key roles in my graduate career, and I am honoured and privileged to have been treated by them as a colleague. Thank you, Shelley and Ann. I would also like to thank Dr. John Waye of my supervisory committee for his expert critique of ancient DNA studies and of my own project. His expertise in forensic DNA analysis has been a great help always in keeping my project on right track. I am also indebted to Dr. Edward Glanville for his time and effort taken serving as a member of my supervisory committee. Many thanks go to Barry Eng for his help in almost all technical aspects of this project. His unmatched skill and expertise with DNA have helped me to overcome many technical problems. Thank you, Barry for being a great colleague and a good friend. I am grateful to Chris Dudar for sharing his knowledge and experience with ancient DNA with me. I also extend my thanks to Margie Patterson for her help in the DNA analysis. I would like to thank Dr. Anne Keeleyside for her encouragement, VI help and kindness during my first years at McMaster. Thanks also go to Drs. Charles FitzGerald and Rob Hoppa for their help in my preparation of the oral defence. For their friendship and camaraderie, I extend my thanks to Tina Moffat, Todd Garlie, Tracy Prowse, Clare McVeich, Sylvia Abonyi, Tosha Dupras, Debi Truscott, and Cathy Crinnion. I cannot forget to say thank you to Janis, Cookie and Rosita of the Department for their help during my years at McMaster. I am grateful to Drs. Roberto Macchiarelli and Luca Bondioli of the National Prehistoric Ethnographic "L. Pigorini" Museum of Rome for their permission to access the Isola Sacra specimens and the use of their unpublished data on morphological observations of specimens. Thanks are also due to Alexandra Sperduti and Tracy Prowse for their efforts at gathering morphological skeletal data. I would also like to thank Drs. Wu Liu and Zhenbiao Zhang of the IVPP, Beijing for providing some ancient skeletal samples. Special thanks go to Drs. Christopher Justice and Patricia Seymour for their invaluable friendship. Their help and encouragement in my graduate studies are greatly appreciated. Finally, I am most grateful to my parents, brother and sisters for their faith in my ability and their support of my education. Thanks to my mother-in-law for her time taken baby-sitting my son. A very special thanks goes to my wife, Xiaobang for always encouraging me and believing in me, and to my son, Joshua, a little smart boy, who has inspired me with his unique questions. This research was supported in part by the School of Graduate Studies, McMaster University, the Arts Research Board of McMaster University and the Social Sciences and Humanities Research Council of Canada. Vll TABLE OF CONTENTS ABSTRACT .......................................................... iii ACKNOWLEDGMENTS ............................................... vi LIST OF FIGURES . .. xii LIST OF TABLES .................................................... xiv CHAPTER 1. INTRODUCTION .......................................... 1 1.1. The Study of Health and Diseases of Past Human Populations ........... 1 1.2. Problems with the Diagnosis of Ancient Diseases from Skeletal Remains .. 4. 1.3. Diagnosis of Thalassemia from Ancient Italian Skeletons .............. 10 CHAPTER 2. BACKGROUND .......................................... 14 2.1. Ancient DNA ................................................ 14 2.1.1. History of aDNA Studies ................................ 15 2.1.2. DNA Structure and the PCR Technique .................... 17 2.1.3. Mechanisms of aDNA Degradation ........................ 20 2.1.4. aDNA and the PCR Technique ........................... 24 2.1.5. Retrieval of DNA from Ancient Human Remains ............ 26 2.1.6. Summary ............................................ 31 2.2. Thalassemia ................................................. 32 2.2.1. What Is Thalassemia? .................................. 32 2.2.2. Origins and Distribution of Thalassemia .................... 33 2.2.3. Bone Lesions Caused by Thalassemia ...................... 38 2.2.4. Pathogen Load and Porotic Hyperostosis ................... 40 2.2.5. Diagnosis of Thalassemia from Skeletons ................... 43 Vlll 2.2.6. Molecular Pathogenesis of Thalassemia and DNA Diagnosis .... 44 2.2.7. Summary ............................................ 45 CHAPTER 3. MATERIALS AND METHODS ............................. 47 3.1. Materials .................................................... 47 3.1.1. General Information on the Isola Sacra Site ................. 47 3.1.2. Description of the Isola Sacra Specimens .................. 51 3.1.3. Morphological Diagnosis of Thalassemia from the Isola Sacra Skeletons ........................................... 60 3.1.3.1. Age at Death .................................. 61 3.1.3.2. General Pattern of Bone Manifestation .............. 62 3.1.3.3. Cranial Vault Involvement ....................... 63 3.1.3.4. Cortical Bone/Diploe Ratio ....................... 64 3.1.3.5. Orbital Thickness .............................. 65 3.1.3.6. Facial Bone Involvement ....................... 65 3.1.3.7. Postcranial Skeletal Changes ..................... 65 3.1.4. Bone samples for Evaluating the New Extraction Method ...... 68 3.2. Methods ..................................................... 69 3.2.1. Protocols for DNA Extraction from Ancient Bones ........... 69 3.2.1.1. New Procedures for DNA Extraction ............... 71 3.2.1.2. Evaluating the New Extraction Method by PCR Amplification .................................. 72 3.2.2. DNA Extraction from the Isola Sacra Specimens ............. 73 3.2.2.1. Bone Sample Preparation ....................... 73 3.2.2.2. DNA Extraction ............................... 76 3.2.3. PCR Amplification ofa Highly Repetitive Human-Specific Sequence .........................................
Recommended publications
  • Implications for the Evolution of the North Alpine Foreland Basin During the Miocene Climate Optimum
    Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum Authors: Jürg Jost, Daniel Kälin, Saskia Börner, Davit Vasilyan, Daniel Lawver, & Bettina Reichenbacher NOTICE: this is the author’s version of a work that was accepted for publication in Palaeogeography, Palaeoclimatology, Palaeoecology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Palaeogeography, Palaeoclimatology, Palaeoecology, [Vol# 426, (May 15, 2015)] DOI# 10.1016/j.palaeo.2015.02.028 Jost, Jurg, Daniel Kalin, Saskia Borner, Davit Vasilyan, Daniel Lawver, and Bettina Reichenbacher. "Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum." Palaeogeography, Palaeoclimatology, Palaeoecology 426 (May 2015): 22-33. DOI: https://dx.doi.org/10.1016/j.palaeo.2015.02.028. Made available through Montana State University’s ScholarWorks scholarworks.montana.edu Vertebrate microfossils from the Upper Freshwater Molasse in the Swiss Molasse Basin: Implications for the evolution of the North Alpine Foreland Basin during the Miocene Climate Optimum a b c d e c Jürg Jost , Daniel Kälin , Saskia Börner , Davit Vasilyan , Daniel Lawver , Bettina Reichenbacher a Bärenhubelstraße 10, CH-4800 Zofingen, Switzerland b Bundesamt für Landestopographie swisstopo, Geologische Landesaufnahme, Seftigenstrasse 264, 3084 Wabern, Switzerland c Department of Earth and Environmental Sciences, Section on Palaeontology and Geobiology, Ludwig-Maximilians-University, Richard-Wagner Str.
    [Show full text]
  • Abstract Book.Pdf
    Welcome! Welcome to the VI Symposium on Dinosaur Eggs and Babies, the return of this periodic gathering to the Iberian Peninsula, when it hatched eighteen years ago. From the slopes of the Pyrenees, we have followed the first steps of dinosaurs through France, Argentina, the United States and China. Today, we come back and see the coast where the first theropod embryos were discovered twenty years ago. Since the end of the last century, Paleoology, much like other branches of palaeontology, has evolved thanks to the advance of new methodologies and analytical tools, becoming a progressively more interdisciplinary area of knowledge. Dinosaur babies and embryos, rare findings back when these meetings started, seem to be everywhere now that we learn to look for them under the light of the microscope. New astonishing specimens allow us to understand how Mesozoic dinosaurs mate and reproduce. Oology, our parent discipline in the modern world, has made great advances in understanding the form and function of the egg, and its applications on poultry industry are countless. More than thirty contributions evidence that our field remains small but alive and healthy. We hope that you find in this Symposium an opportunity to share knowledge and open new lines of collaboration. And do not forget to enjoy your stay in Portugal. The host committee CONTENTS How to get to the FCT 6 Acknowledgements 10 PROGRAM 11 ABSTRACTS 14 THE FIRST ORNITHOMIMID EMBRYO IN A SHELL WITH A SINGLE STRUCTURAL LAYER: A CHALLENGE TO ORTHODOXY 15 Araújo R., Lamb J., Atkinson P., Martins R. M. S., Polcyn M.J., Fernandez V.
    [Show full text]
  • Strange Tadpoles from the Lower Miocene of Turkey: Is Paedogenesis Possible in Anurans?
    Strange tadpoles from the lower Miocene of Turkey: Is paedogenesis possible in anurans? ALAIN DUBOIS, STÉPHANE GROSJEAN, and JEAN−CLAUDE PAICHELER Dubois, A., Grosjean, S., and Paicheler, J.−C. 2010. Strange tadpoles from the lower Miocene of Turkey: Is paedogenesis possible in anurans? Acta Palaeontologica Polonica 55 (1): 43–55. Fossil material from the lower Miocene collected in the basin lake of Beşkonak (Turkey) included 19 slabs showing 19 amphibian anuran tadpoles of rather large size, at Gosner stages 36–38. These well preserved specimens show many mor− phological and skeletal characters. They are here tentatively referred to the genus Pelobates. Two of these tadpoles show an unusual group of black roundish spots in the abdominal region, and a third similar group of spots is present in another slab but we were unable to state if it was associated with a tadpole or not. Several hypotheses can be proposed to account for these structures: artefacts; intestinal content (seeds; inert, bacterial or fungal aggregations; eggs); internal or external parasites; diseases; eggs produced by the tadpole. The latter hypothesis is discussed in detail and is shown to be unlikely for several reasons. However, in the improbable case where these spots would correspond to eggs, this would be the first reported case of natural paedogenesis in anurans, a phenomenon which has been so far considered impossible mostly for anatomical reasons (e.g., absence of space in the abdominal cavity). Key words: Amphibia, Anura, egg, fossil, paedogenesis, tadpole, Miocene, Turkey. Alain Dubois [[email protected]] and Stéphane Grosjean [[email protected]], Département de Sytématique & Evolu− tion, Muséum National d’Histoire Naturelle, UMR 7205 Origine, Structure et Evolution de la Biodiversité, Reptiles et Amphibiens, Case 30, 25 rue Cuvier, 75005 Paris, France; Jean−Claude Paicheler [[email protected]], Laboratoire de Paléoparasitologie, UFR de Pharmacie, 51 rue Cognacq Jay, 51096 Reims Cedex, France.
    [Show full text]
  • Map 4-7-4 City Planning of Tongling Mun/Ipality , I4-2-5
    E685 Vol. 4 World Bank Financed Project Anhui Expressway Project II Public Disclosure Authorized Public Disclosure Authorized Tongling-Tangkou Expressway Project Environment Assessment Report (Third Edition) Public Disclosure Authorized World Bank Financed Project Office of Anhui Provincial Communications Dzpartment Public Disclosure Authorized Dec. 2002 FILE COPY Tongling-Tangkou highway project EIA CONTENTS Chapter I Introduction ............................................ I 1.1 Project Background ............................................ I 1.2 Progress of EA ........................................... .1 1.3 Purpose of EA ............................................. 2 1.4 Bases of Assessment ........................................... .2 1.5 Technical Process for EA ....... ..................................... 3 1.6 Scope of Assessment ............................................ 5 1.7 Methodology ............................................ 5 1.8 Applicable Standards ............................................ 5 1.8.1 Ambient Air Quality Standards ........................................... 6 1.8.2 Environmental Noise Standards .................. ......................... 6 1.8.3 Surface Water Quality Standards ............................................ 6 Chapter 2 Environmental Assessment Team ......... .................................. 8 Chapter 3 Project Description ............................................ 10 3.1 Direct Project Benefit Area ........................................... 10 3.2 Geographical Location .....
    [Show full text]
  • ISPH-PROGRAM-And-ABSTRACT-BOOK.Pdf
    - ISPH 2015 logo (front cover) designed by Jasmina Wiemann. The logo highlights several aspects well suited for the Bonn, 2015 meeting. The dwarf sauropod dinosaur, Europasaurus, stands in front of a histology-filled silhouette of the main dome of Poppelsdorf Palace, the main venue for ISPH 2015. This Late Jurassic sauropod is a fitting representative, as it was discovered in Lower Saxony, Germany, and its dwarf status was verified with histological investigations. - Cover, program and abstract book designed by Aurore Canoville and Jessica Mitchell. - Program and abstract book editors: Aurore Canoville, Jessica Mitchell, Koen Stein, Dorota Konietzko-Meier, Elzbieta Teschner, Anneke van Heteren, and P. Martin Sander. ISPH 2015 – Bonn, Germany ISPH 2015 – Bonn, Germany Table of Contents TABLE OF CONTENTS Symposium Organizers and Acknowledgements ...................................................... 4 Welcome Address ........................................................................................................ 5 Program ........................................................................................................................ 6 Main Events ........................................................................................................ 6 Venues ................................................................................................................ 8 Scientific Sessions / Oral Presentations ........................................................... 11 Scientific Sessions / List of Posters .................................................................
    [Show full text]
  • Viviparity in a Triassic Marine Archosauromorph Reptile.Pdf
    第55卷 第3期 古 脊 椎 动 物 学 报 pp. 210-217 2017年7月 VERTEBRATA PALASIATICA fig. 1 Viviparity in a Triassic marine archosauromorph reptile LI Chun1 Olivier RIEPPEL2 Nicholas C. FRASER3 (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Palaeontology and Palaeoanthropology, Chinese Academy of Sciences Beijing 100044, China [email protected]) (2 Field Museum of Natural History Chicago IL 60605, USA) (3 National Museums Scotland Edinburgh EH1 1JF, UK) Abstract Eggs or embryos have been reported in various groups of fossil reptiles, where viviparity is a common mode of reproduction in aquatic taxa such as the ichthyopterygians, some groups of sauropterygians, mosasauroids, some taxa of choristoderans and certain protorosaurs. Here, we describe a complete embryo of a marine protorosaur, based on a well-preserved, curled- up skeleton. The new discovery is referred to a taxon closely related to the remarkable long- necked Dinocephalosaurus. It further confirmed viviparity in an archosauromorph group and indicates an increasing taxonomic diversity not only within this group, but of Triassic marine reptiles in general. keywords archosauromorph, protorosaur, embryo, viviparity, marine Citation Li C, Rieppel O, Fraser N C, 2017. Viviparity in a Triassic marine archosauromorph reptile. Vertebrata PalAsiatica, 55(3): 210–217 1 Introduction A number of terms such as oviparity, ovoviviparity and viviparity have been used to describe reproductive strategies in reptiles. However, in the fossil record only oviparity and viviparity can be distinguished, thus allowing a straight-forward definition simply based on the deposition of eggs versus giving birth to live offspring (Guillette, 1993; Blackburn, 1993).
    [Show full text]
  • Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors
    Dictionary of Geotourism Anze Chen • Young Ng • Erkuang Zhang Mingzhong Tian Editors Dictionary of Geotourism With 635 Figures and 12 Tables Editors Anze Chen Young Ng Chinese Academy of Geological Sciences The Geological Society of Australia Beijing, China Sydney, NSW, Australia Erkuang Zhang Mingzhong Tian The Geological Society of China China University of Geosciences Beijing, China Beijing, China ISBN 978-981-13-2537-3 ISBN 978-981-13-2538-0 (eBook) ISBN 978-981-13-2539-7 (print and electronic bundle) https://doi.org/10.1007/978-981-13-2538-0 Jointly published with Science Press, Beijing, China ISBN: 978-7-03-058981-1 Science Press, Beijing, China © Springer Nature Singapore Pte Ltd. 2020 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for gecneral use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • New Dinosaur Egg Material from Yunxian, Hubei Province, China Resolves the Classification of Dendroolithid Eggs
    New dinosaur egg material from Yunxian, Hubei Province, China resolves the classification of dendroolithid eggs SHUKANG ZHANG, TZU-RUEI YANG, ZHENGQI LI, and YONGGUO HU Zhang, S., Yang, T.-R., Li, Z., and Hu, Y. 2018. New dinosaur egg material from Yunxian, Hubei Province, China resolves the classification of dendroolithid eggs. Acta Palaeontologica Polonica 63 (4): 671–678. The oofamily Dendroolithidae is a distinct group of dinosaur eggs reported from China and Mongolia, which is character- ized by branched eggshell units and irregular pore canals. The ootaxonomic inferences, however, were rarely discussed until now. A colonial nesting site was recently uncovered from the Qinglongshan region, Yunxian, Hubei Province, China. More than 30 dendroolithid egg clutches outcrop on the Tumiaoling Hill, including an extremely gigantic clutch containing 77 eggs. All clutches were exposed in the Upper Cretaceous fluvial-deposited Gaogou For mation. In this study, we emend the diagnosis of the oogenus Placoolithus and assign all dendroolithid eggs from the Tumiaoling Hill to a newly emended oospecies Placoolithus tumiaolingensis that shows greatly variable eggshell microstructure. Moreover, our study also disentangles the previous vexing classification of dendroolithid eggs. We conclude that Dendroolithus tumiaolingensis, D. hongzhaiziensis, and Paradendroolithus qinglongshanensis, all of which were previously reported from Yunxian, should be assigned to the newly emended oospecies Placoolithus tumiaolingensis. Key words: Dendroolithidae, Placoolithus, colonial nesting, Cretaceous, China, Yunxian, Tumiaoling Hill. Shukang Zhang [[email protected]], Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Science, 142 Xizhimenwai Street, Beijing, China. Tzu-Ruei Yang [[email protected]], Steinmann-Institut für Geologie, Mineralogie and Paläontologie, Rheinische-Frie- drich-Wilhelms Universitat Bonn, Nussallee 8, Bonn, Germany.
    [Show full text]
  • New Turtle Egg Fossil from the Upper Cretaceous of the Laiyang Basin, Shandong Province, China
    Anais da Academia Brasileira de Ciências (2013) 85(1): 103-111 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 www.scielo.br/aabc New turtle egg fossil from the Upper Cretaceous of the Laiyang Basin, Shandong Province, China 1 1 1 1, 2 1, 2 QIANG WANG , XIAOLIN WANG , ZIKUI ZHAO , JIALIANG ZHANG and SHUNXING JIANG 1Key Laboratory of Vertebrate Evolution and Human Origin of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, 100044, China 2University of Chinese Academy of Sciences, Beijing, 100049, China Manuscript received on June 11, 2012; accepted for publication on November 23, 2012 ABSTRACT A new type of turtle egg fossil was established: Emydoolithus laiyangensis oogen. et oosp. nov.. Based on its elliptical morphological shape, rigid eggshells, and eggshell characteristics, it is different from other types of round chelonian egg fossils. It is the second chelonian egg fossil found in Cretaceous in China. This discovery shows the Laiyang ecosystem in Late Cretaceous is more diversified than previously thought. Key words: Turtle egg fossil, Jingangkou Formation, Late Cretaceous, Laiyang Basin, Shandong Province. INTRODUCTION and Ozaki 1929), they were later recognized Turtle egg fossils are very rare. Even though they as dinosaur eggs based on their macrostructure are found from the Jurassic to the Tertiary age, turtle characteristics (Chow 1954). Recently, we have eggs are known only from a few Cretaceous deposits, restudied the macrostructure and microstructure of from localities in China (Fang et al. 2003, Jackson et these eggs found in Changtu (housed at the Dalian al.
    [Show full text]
  • Review of Historical and Current Research on the Late Cretaceous
    第55卷 第2期 古 脊 椎 动 物 学 报 pp. 187-200 2017年4月 VERTEBRATA PALASIATICA figs. 1-5 Review of historical and current research on the Late Cretaceous dinosaurs and dinosaur eggs from Laiyang, Shandong ZHANG Jia-Liang1,2 WANG Qiang1 JIANG Shun-Xing1 CHENG Xin1 LI Ning1 QIU Rui1,2 ZHANG Xin-Jun1,2 WANG Xiao-Lin1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 University of Chinese Academy of Sciences Beijing 100049) Abstract Here we briefly review the history of research on the Laiyang dinosaur and dinosaur egg faunas, summarize the contributions of C. C. Young and other elder paleontologists to the discoveries of the Late Cretaceous dinosaurs and dinosaur eggs from Laiyang, and introduce the new discoveries and the advances in the research on the Laiyang faunas. The new investigations in Laiyang from 2008 have found a series of valley developed in plain and more than ten new dinosaur or dinosaur egg fossil beds. In 2010, we began the massive excavations at two localities in Jingangkou and collected abundant dinosaurs and other vertebrate fossils, such as a new saurolophine, some theropod material and a new taxon of turtle egg. The bone beds in Locality 2 with the typical sedimentary and burial patterns of mudflow, and these fossil deposits are interpreted as having been carried and deposited by mudflow. The re-observation and the CT scanning data of the crest of Tsintaosaurus spinorhinus (IVPP V 725) show that the crest is fractured and solid.
    [Show full text]
  • Chinaxiv:201711.01905V1
    ChinaXiv合作期刊 第55卷 第2期 古 脊 椎 动 物 学 报 pp. 187-200 2017年4月 VERTEBRATA PALASIATICA figs. 1-5 Review of historical and current research on the Late Cretaceous dinosaurs and dinosaur eggs from Laiyang, Shandong ZHANG Jia-Liang1,2 WANG Qiang1 JIANG Shun-Xing1 CHENG Xin1 LI Ning1 QIU Rui1,2 ZHANG Xin-Jun1,2 WANG Xiao-Lin1,2* (1 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044 * Corresponding author: [email protected]) (2 University of Chinese Academy of Sciences Beijing 100049) Abstract Here we briefly review the history of research on the Laiyang dinosaur and dinosaur egg faunas, summarize the contributions of C. C. Young and other elder paleontologists to the discoveries of the Late Cretaceous dinosaurs and dinosaur eggs from Laiyang, and introduce the new discoveries and the advances in the research on the Laiyang faunas. The new investigations in Laiyang from 2008 have found a series of valley developed in plain and more than ten new dinosaur or dinosaur egg fossil beds. In 2010, we began the massive excavations at two localities in Jingangkou and collected abundant dinosaurs and other vertebrate fossils, such as a new saurolophine, some theropod material and a new taxon of turtle egg. The bone beds in Locality 2 with the typical sedimentary and burial patterns of mudflow, and these fossil deposits are interpreted as having been carried and deposited by mudflow. The re-observation and the CT scanning data of the crest of Tsintaosaurus spinorhinus (IVPP V 725) show that the crest is fractured and solid.
    [Show full text]
  • The Science of Roman History
    The Science of Roman hiSToRy The Science of Roman History Biology, climaTe, and The fuTuRe of The PaST Edited by Walter Scheidel PRinceTon univeRSiTy PReSS PRinceTon & oxfoRd Copyright © 2018 by Princeton University Press Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540 In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire OX20 1TR press.princeton.edu All Rights Reserved ISBN 978- 0- 691- 16256- 0 Library of Congress Control Number 2017963022 British Library Cataloging- in- Publication Data is available This book has been composed in Miller Printed on acid- free paper. ∞ Printed in the United States of America 10 9 8 7 6 5 4 3 2 1 conTenTS List of Illustrations and Tables · vii Notes on Contributors · ix Acknowledgments · xiii Maps · xiv Introduction 1 Walter Scheidel chaPTeR 1. Reconstructing the Roman Climate 11 Kyle Harper & Michael McCormick chaPTeR 2. Archaeobotany: The Archaeology of Human- Plant Interactions 53 Marijke van der Veen chaPTeR 3. Zooarchaeology: Reconstructing the Natural and Cultural Worlds from Archaeological Faunal Remains 95 Michael MacKinnon chaPTeR 4. Bones, Teeth, and History 123 Alessandra Sperduti, Luca Bondioli, Oliver E. Craig, Tracy Prowse, & Peter Garnsey chaPTeR 5. Human Growth and Stature 174 Rebecca Gowland & Lauren Walther chaPTeR 6. Ancient DNA 205 Noreen Tuross & Michael G. Campana chaPTeR 7. Modern DNA and the Ancient Mediterranean 224 Roy J. King & Peter A. Underhill Index · 249 [ v ] illuSTRaTionS and TaBleS Maps 1. Western Mediterranean. xiv 2. Eastern Mediterranean. xv 3. Northwestern Europe. xvi Figures 1.1. TSI (Total Solar Irradiance) from 14C. 19 1.2. TSI from 10Be.
    [Show full text]