Glaciers and Climate Change – Spatio-Temporal Analysis of Glacier Fluctuations in the European Alps After 1850

Total Page:16

File Type:pdf, Size:1020Kb

Glaciers and Climate Change – Spatio-Temporal Analysis of Glacier Fluctuations in the European Alps After 1850 Glaciers and Climate Change – Spatio-temporal Analysis of Glacier Fluctuations in the European Alps after 1850 Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Michael Zemp von Romoos LU Promotionskomitee Prof. Dr. Wilfried Haeberli (Vorsitz) Dr. Martin Hoelzle Zürich, 2006 Glaciers and Climate Change – Spatio-temporal Analysis of Glacier Fluctuations in the European Alps after 1850 Michael Zemp 2006 Cover picture: Calderas Glacier in the Upper Engadine, eastern Switzerland on August 9, 2003 (aerial photo kindly provided by C. Rothenbühler), overlaid with mean 6-month summer temperature anomalies in degree Celsius (single years and 10-years lowpass) to the 20th century mean of Alpine weather station above 1,500 m a.s.l. (provided by the Central Institute for Meteorology and Geodynamics in Vienna, Austria). Summary In densely populated high mountain regions such as the European Alps, glaciers are an inherent component of the Alpine culture, landscape and environment. They represent a unique resource of fresh water for agriculture and industry, an important economic component of tourism and hydro-power production, and a potential source of serious natural hazards. Due to their proximity to the melting point, glaciers are considered among the best natural indicators of global climate change. Mountain glaciers have become the leading icon in the current debate on climate change and on the uniqueness of present-day changes as compared to the variations which occurred during the Holocene period. Although numerous studies have investigated the relationship between glaciers and climate change, glacier-climate studies that focus on an entire mountain range and integrate in-situ measurements, remote sensing data and modelling approaches, as proposed by modern monitoring strategies, have for the most part been lacking. It is to fill this gap in our understanding that this study undertakes to investigate glacier fluctuations in the European Alps after 1850. Glacier inventories, in-situ measurements and a numerical model (based on an empirical relationship between precipitation and temperature at the glacier steady-state equilibrium line altitude) are used in combination with a digital elevation model and GIS techniques to analyse the glacier fluctuations between 1850 and the end of the 21st century of the entire Alpine mountain range. Overall area loss after 1850 is calculated using different methods as being about 35% until the 1970s, when the approximately 5,150 Alpine glaciers covered a total area of 2,909 km2. This loss reached almost 50% by 2000. Rapidly shrinking glacier areas, spectacular tongue retreats and increasing mass losses are clear signs of the atmospheric warming observed in the Alps during the last 150 years and its acceleration over the past two decades, culminating in an ice loss of another 5–10% of the remaining ice volume during the extraordinary warm year of 2003. From the model experiment it is found that for Alpine glaciers, a change of ±1 °C in 6-month summer temperatures would be compensated by an annual precipitation increase/decrease of about 25%. A summer temperature rise of 3 °C would reduce the glacier cover of the reference period (1971–1990) by some 80%, or up to 10% of the glacier extent of 1850. In the event of a 5 °C summer temperature increase, the Alps would become almost completely ice-free. Annual precipitation changes of ±20% would modify such estimated percentages of remaining ice by a factor of less than two. The presented study demonstrates how modern monitoring strategies can be applied for the investigation of glaciers of an entire mountain range, and that the probability of glaciers in the European Alps disappearing within the coming decades is far from slight. The thesis consists of a collection of five papers; the studies reported on were carried out within the framework of the EU-funded ALP-IMP project and of the World Glacier Monitoring Service. i Zusammenfassung Gletscher sind in dicht besiedelten Hochgebirgsregionen, wie den Europäischen Alpen, ein fester Bestandteil der alpinen Kultur, Landschaft und Umwelt. Sie sind eine bedeutende Süsswasserressource für die Landwirtschaft und die Industrie, eine wichtige wirtschaftliche Komponente für den Tourismus und die Produktion von Wasser- kraftenergie und eine potentielle Ursache für Naturgefahren. Innerhalb der globalen Klimabeobachtungssysteme zählen Gletscher, durch ihre physikalische Nähe zum Schmelzpunkt, zu den besten natürlichen Klimaindikatoren. Gebirgsgletscher wurden zum Leitsymbol der gegenwärtigen Diskussion zum Klimawandel und zur Einzigartigkeit der aktuellen Veränderungen im Vergleich zur Holozänen Variabilität. Zahlreiche Studien haben die Beziehung zwischen Gletscher und Klimaänderung untersucht. Gleichwohl existieren nur wenige Gletscher-Klima Studien, die sich auf eine gesamten Gebirgskette konzentrieren und in einem integrativen Ansatz Feldmessungen, Fernerkundungsdaten und Computermodelle anwenden, wie es in internationalen Monitoring-Strategien vorgeschlagen wird. Die vorliegende Dissertation untersucht daher Gletscheränderungen nach 1850 in den gesamten Alpen. Gletscherinventare, Feldmessungen und ein numerisches Model (basierend auf einer empirischen Beziehung zwischen Niederschlag und Temperatur auf der Höhe der Gleichgewichtslinie) werden verwendet, in Kombination mit einem digitalen Höhenmodel und GIS-Technologie, für die Analyse der Gletscheränderungen der Gesamtalpen zwischen 1850 und dem Ende des 21. Jahrhunderts. Der gesamte Flächenverlust seit 1850, berechnet mit verschiedenen Methoden, beläuft sich auf etwa 35% bis in den 1970er Jahren, als ca. 5'150 Alpengletscher eine Fläche von 2'909 km2 bedeckten, und auf fast 50% bis im Jahre 2000. Rapide schwindende Gletscherflächen, spektakuläre Rückzüge der Gletscherzungen und zunehmende Massenverluste sind klare Zeichen der atmosphärischen Erwärmung in den Alpen während den vergangenen 150 Jahren und deren Beschleunigung in den letzten zwei Jahrzehnten, die in einem Verlust von weiteren 5–10% des verbleibenden Eisvolumens im ausserordentlich warmen Jahr 2003 gipfelte. Aus dem Modellierungsexperiment wurde ersichtlich, dass es für die Kompensation einer Änderung der 6-Monats- Sommertemperatur um ±1 °C eine Zu-/Abnahme des jährlichen Niederschlages von etwa 25% benötigt. Ein Anstieg der Sommertemperatur um 3 °C würde die Alpine Gletscherbedeckung der Referenzperiode (1971–1990) um ungefähr 80% reduzieren, oder auf ca. 10% der Gletscherausdehnung um 1850. Im Falle eines Anstieges der Sommertemperatur um 5 °C würden die Alpen praktisch eisfrei werden. Jährliche Niederschlagsänderungen um ±20% modifizieren solche geschätzte Prozentwerte des verbleibenden Eises um weniger als ein Faktor Zwei. Die vorliegende Studie demonstriert die mögliche Anwendung von modernen Monitoring-Strategien zur Untersuchung von Gletschern einer gesamten Gebirgskette und zeigt, dass die Möglichkeit des Verschwindens der Alpengletscher in den kommenden Jahrzehnten in Betracht gezogen werden muss. iii Contents Part A: Overview Summary i Zusammenfassung iii Contents v List of Figures ix List of Abbreviations xi 1 Introduction 1 1.1 Motivation ........................................................................................................1 1.2 Research objectives ........................................................................................2 1.3 Outline of the thesis.........................................................................................2 2 The European Alps 5 3 Thematic and scientific background 7 3.1 Climate ............................................................................................................7 3.1.1 Pleistocene and Lateglacial ................................................................................ 7 3.1.2 Holocene ............................................................................................................. 8 3.1.3 The last millennium ............................................................................................. 9 3.1.4 Future scenarios ............................................................................................... 11 3.2 Glaciers and climate change .........................................................................13 3.2.1 The cryosphere model ...................................................................................... 13 3.2.2 Energy balance at the glacier surface............................................................... 15 3.2.3 Glacier mass balance........................................................................................ 16 3.2.4 Glacier reaction to changing climate................................................................. 17 3.2.5 Modelling approaches ....................................................................................... 18 3.3 International glacier monitoring .....................................................................20 3.4 Alpine glacier fluctuations before 1850 .........................................................23 v Contents 4 Summary of research 27 4.1 Paper I .......................................................................................................... 28 4.2 Paper II ......................................................................................................... 29 4.3 Paper III .......................................................................................................
Recommended publications
  • Gamsgrube Trail High Alpine Road
    GROSSGLOCKNER GAMSGRUBE TRAIL HIGH ALPINE ROAD 44 Gamsgrubenweg 44 Gamsgrubenweg Von der Franz-Josefs-Höhe zum Wasserfallwinkel ²²² Von der Franz-Josefs-Höhe zum Wasserfallwinkel ²²² The adventure tour at the National Park’s Gamsgrube Trail puts a spotlight on UNESCO World the Johannisberg as the mountain is lit by the midday sun. Heritage Site Nominee. Gamsgrube Trail FROM KAISER-FRANZ-JOSEFS-HÖHE TO THE WASSERFALLWINKEL We start the enjoyable walking tour along the before continuing on the informative nature trail. Gamsgrube Trail at the large entrance (Visitors’ National Park information boards help to expand Centre)Oben: of Diethe Kaiser-Franz-Josefs-Höhe Erlebniswanderung am Unten:our knowledge Nur den along Steinböcken, the way, always nicht revealing overlookNationalpark (1) before Gamsgrubenweg delving into the ‘Treasure lenkt seltensomething in stattlicher surprising. Anzahl, ist es er- Oben: Die Erlebniswanderung am Unten:Tunnel’auf Nur den andden mittagshellenits Steinböcken, world of myths Johannisbergnicht and legends. You laubt,The experience die streng opens geschützte up an incredible Gams world- of Nationalpark Gamsgrubenweg lenkt seltenwill inzu. learnstattlicher of mining, Anzahl, gold, quartzist es erand- water, and grubeadventure zu betreten. and freedom, during which you are auf den mittagshellen Johannisberg laubt,hear die thestreng Myth geschützteof the Pasterze Gams Glacier- along the kindly asked to stay on the trail (caution: Alpine zu. grubeway. zu betreten.After the sixth tunnel, we step out into the footpath, use at own risk). The Wasserfallwinkel open, perhapsKURZINFO dazzled for an instant by the light (2) lookout spot is hailed as Austria’s ‘most KURZINFO reflecting from8C the Grossglockner massif’s ice, beautiful snack stop’.
    [Show full text]
  • Changes in the Pastene and the Kleines Fleiskees Glaciers, Austria, As Measured from the Ground and Space
    Changes in the Pastene and the Kleines FleiSkees glaciers, Austria, as Measured from the Ground and Space Dorothy K. Hall', Klaus J. Bay?, Wolfgang Schone4, Robert A. Bindschadler4, Janet Y. L. Chien' 'Code 974, NASNGoddard Space Flight Center, Greenbelt, MD 20771 USA d hall@,glacier.gsfc.nasa. gov 2Department of Geography, Keene State College, Keene, NH 03435-2001 USA 3Klimaabteilung ,Zentralanstalt fdr Meteorologie und Geodynamik - ZAMG (Central Institute of Meteorology and Geodynamics - ZAMG), A-1 190 Wien, Hohe Warte 38 (A- 1190 Vienna, Hohe Warte 38) Austria 4Code 97 1, NASNGoddard Space Flight Center, Greenbelt, MD 2077 1 USA 'General Sciences Corporation, Laurel, MD 20707 USA ABSTRACT The tongue of the Pasterze Glacier in the eastern Alps of Austria receded more than 1 152 m from 1880 to 200 1. Landsat and Ikonos satellite data from 1976 to 200 1, topographic maps beginning in 1893 and ground measurements were studied. Results show that though satellite images significantly underestimate the width of the Pasterze Glacier tongue due to the presence of morainal material on the surface, they provide an excellent way to measure the recession of the exposed-ice part of the glacier tongue. The rate of change of the terminus as determined using satellite data is found to compare well with ground measurements. Between 1976 and 200 1, Landsat-derived measurements show a recession of the terminus of the Pasterze Glacier of 479 +113 rn (at an average rate of 18.4 m a-') while measurements from the ground showed a recession of 428 m (at an average recession of 17.1 m a-I).
    [Show full text]
  • Decadal Sediment Yield from an Alpine Proglacial Zone Inferred from Reservoir Sedimentation (Pasterze, Hohe Tauern, Austria)
    Erosion and Sediment Yields in the Changing Environment (Proceedings of a symposium held at the 161 Institute of Mountain Hazards and Environment, CAS-Chengdu, China, 11–15 October 2012) (IAHS Publ. 356, 2012). Decadal sediment yield from an Alpine proglacial zone inferred from reservoir sedimentation (Pasterze, Hohe Tauern, Austria) MARTIN GEILHAUSEN1, JAN-CHRISTOPH OTTO1, DAVID MORCHE2 & LOTHAR SCHROTT1 1 Department of Geography and Geology, University of Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg, Austria [email protected] 2 University of Halle-Wittenberg, Institute of Geosciences and Geography; Von-Seckendorff-Platz 4, D-06120 Halle, Germany Abstract Reservoir sedimentation over more than five decades enabled the quantification of subrecent sediment yield from the glacierized Pasterze catchment, a 40-km2 basin located in the Hohe Tauern Mountain range in Austria. Sediment yield is highly variable over an order of magnitude (1.5 to 16.7 × 104 t/year) with an average of ~ 6.3 ± 0.5 × 104 t/year resulting in a total sediment export of approx. 340 × 4 10 t of mainly fine grained sediment (D50 Ø coarse silt). This is equal to specific sediment yields (SSY) ranging from 0.4 to 4.2 × 103 t/km2/year (Ø 1.6 ± 0.1 × 10³ t/km²/year) at a total of 85.6 × 10³ t/km² in the 54 years studied. No significant correlation is found between annual data sets of sediment yield, discharge, glacial retreat and hydro-climate. Based on multi-temporal geomorphological mapping, a sandur (former proglacial lake) and a braid plain are identified as key landforms within the proglacial zone modulating sediment yield.
    [Show full text]
  • Die Entwicklung Von Supraglazialen Spaltenstrukturen Und Entwässerungssystemen an Der Gletscherzunge Der Pasterze Zwischen
    Die Entwicklung von supraglazialen Spaltenstrukturen und Entwässerungssystemen an der Gletscherzunge der Pasterze zwischen 1998 und 2012 Diplomarbeit zur Erlangung des Akademischen Grades eines Magisters der Naturwissenschaften an der Karl-Franzens-Universität Graz vorgelegt von KULMER Bernd Karl, Bsc am Institut für Geographie und Raumforschung Betreuer: MMag. Dr. Andreas KELLERER-PIRKLBAUER-EULENSTEIN Graz, Mai 2015 Eidesstattliche Erklärung Eidesstattliche Erklärung Hiermit erkläre ich, diese Arbeit selbstständig und ohne unerlaubte Beihilfe verfasst zu haben. Ich versichere keine weiteren, außer den genannten Hilfsmitteln verwendet zu haben und sämtliche, inhaltlich oder dem Wortlaut nach, anderen Werken entsprechenden Inhalte, durch Angabe der Quelle gekennzeichnet zu haben. Datum Unterschrift 2 Vorwort Vorwort Bereits als kleines Kind war meine Faszination für Schnee und Eis für kaum jemanden in meiner Umgebung zu übersehen. Als ich dann im Jahr 2000 das erste Mal auf der Franz-Josefs Höhe war und den spektakulären Blick auf den Großglockner und die Pasterze genießen durfte, wurde tieferes Interesse, das über die Beschäftigung mit Wintersport und Bergsport hinaus geht, in mir geweckt. So war es wenig verwunderlich, dass einige Zeit später die Reaktion von Gletschern auf die Klimaerwärmung, Thema meines Maturaspezialgebietes in Geographie und Wirtschaftskunde wurde. Im Zuge meines darauf folgenden Bachelorstudiums in Erdwissenschaften lernte ich viele begeisterte BergsteigerInnen kennen, mit denen ich meine Freizeit in und auf den Bergen verbrachte und immer wieder Touren in vergletscherten Gebieten unternahm. Seit dieser Zeit war für mich eigentlich immer klar, dass meine Abschlussarbeit etwas mit Glaziologie zu tun haben wird. Mein Interesse für diese Thematik vertiefte sich im Laufe meines aktuellen Lehramtsstudiums in Geographie und Wirtschaftskunde mit Bewegung und Sport.
    [Show full text]
  • Trieste, Italy 2014
    ISTITUTO NAZIONALE DI OCEANOGRAFIA E DI GEOFISICA SPERIMENTALE Trieste, 19-23 May, 2014 ISTITUTO NAZIONALE DI OCEANOGRAFIA E DI GEOFISICA SPERIMENTALE Proceedings of the II PAST Gateways International Conference and Workshop Trieste, May 19-23, 2014 Editors: Renata G. Lucchi (OGS, Trieste) Colm O’Cofaigh (University of Durham) Michele Rebesco (OGS, Trieste) Carlo Barbante (CNR-IDPA Venice and University of Venice) Layout and cover photo: Renata G. Lucchi Organizers: Renata G. Lucchi (OGS, Trieste) Colm O’Cofaigh (University of Durham, PAST Gateways chairman) Michele Rebesco (OGS, Trieste) Michele Zennaro (OGS, Trieste) Franca Petronio (OGS, Trieste) Ivana Apigalli (OGS, Trieste) Paolo Giurco (OGS, Trieste) Field excursions: Roberto Colucci (CNR-ISMAR Trieste) Giovanni Monegato (CNR-IGG, Turin) Monika Dragosics (University of Island) PAST Gateways Steering Committee O'Cofaigh, C. (chairman); Alexanderson, H.; Andresen, C.; Bjarnadottir, L.; Briner, J.; de Vernal, A.; Fedorov, G.; Henriksen, M.; Kirchner, N.; Lucchi, R.G.; Meyer, H.; Noormets, R.; Strand, K.; and Urgeles, R. ISBN 978-88-902101-4-3 Conference and Workshop 2014 sponsored by: International Arctic Science Committee (IASC) through ICERP III action OGS (Istituto Nazionale di Oceanografia e di Geofisica Sperimentale) Kongsberg Maritime S.r.l. The second PAST-Gateways Conference, Trieste, Italy, 2014 Table of Contents Scientific program .................................................................................................................................... 5 List of
    [Show full text]
  • Europe's Battery: the Making of the Alpine Energy Landscape, 1870- 1955
    EUROPE'S BATTERY: THE MAKING OF THE ALPINE ENERGY LANDSCAPE, 1870- 1955 A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History By Marc D. Landry II, M.A. Washington, DC April 2, 2013 Copyright 2013 by Marc D. Landry II All Rights Reserved ii EUROPE'S BATTERY: THE MAKING OF THE ALPINE ENERGY LANDSCAPE, 1870- 1955 Marc D. Landry II, M.A. Thesis Advisor: John R. McNeill, Ph.D. ABSTRACT This study examines the environmental history of hydropower development in the Alps from the mid-nineteenth to the mid-twentieth centuries. Analyzing government archival files, associational journals, conference proceedings, and published contemporary material from several Alpine countries, it seeks to determine how and why Europeans modified the Alpine landscape to generate hydropower, and to explore the consequences of these decisions. I argue that during this time period, Europeans thoroughly transformed the Alpine environment, creating what I call "Europe's Battery": a gigantic system for storing hydropower and distributing it on a continental scale. This study shows how nineteenth-century innovations in energy technology contributed to a dramatic shift in the perception of the Alps as a landscape of "white coal." It demonstrates how at the outset of electrification, Europeans modified Alpine waterways on an unprecedented scale in order to tap into the power of flowing Alpine water. I show how after the turn of the twentieth century, Europeans took advantage of the unique mountain environment to store water, first by converting existing lakes into reservoirs.
    [Show full text]
  • Verhalten Und Eisvolumen Der Pasterze (Glocknergruppe) in Beziehung Zu Den Klimatischen Bedingungen* Von G
    Verhalten und Eisvolumen der Pasterze (Glocknergruppe) in Beziehung zu den klimatischen Bedingungen* Von G. Gangl, G. Skoda und F. J. Wallner" Zusammenfassung: Für den Pasterzengletscher (Glocknergruppe) wird auf Grund der Daten des nahegelege­ n en meteorologischen Observatoriums am Hohen Sonnblick ein Witterungsparameter erstellt, welcher mit Angaben der maximalen Fließgesdnvindigkeit an der Seelandlinie der Pasterze seit 1887 verglichen wird. Die Kreuzkorrele tlon zeigt einen negativen Zusammenhang von Sommertemperatur und Fließgeschwindigkeit, der erst mit einer zeitlichen Verzögerung von 3 bis 10 Jahren aufgezeigt wird. Der Eisverlust der Pasterze, welcher an Hand der Moränen des Hochstandes um 1850 abgeschätzt werden kann, ergibt seither einen größeren Massenverlust als das heutige Eisvolumen von 1,24.10 9 m", Aus den Kar­ tenangaben von 1924, 1964 und 1969 kann der durchschnittliche jährliche Massenverlust ermittelt und inlolge der verzögerten Reaktion des Gletschers auf die Sommertemperaturen der Vorjahre auf einen weiteren Rückgang für die Folgejahre geschlossen werden. Summary: An index Ior the annual ablation of iee of the gIeatest glacier in thc Eastern Alpine region, the Pasterze Glacier (Glockncrgruppe), is constructed with thc help of temperature records fram the meteorolo­ gieal observatory Hoher Sonnblick (3.106 m). The authors correlate the ci ted temperature-parameter with the maximum ice-velocity at thc s o-celled "Seelandlinie" fo r the time 1887 up to now. The cross-correlation shows significant negative coefficients for thc elements summer-temperature and ice-velocity considering a time lag of 3-10 vears. Th e lass of iee of the Pasterze .Glecter during thc lastone hundred years, estimated from the morain es of 1850, was greater than the total volume of ice of 1,24.109 m- today.
    [Show full text]
  • Terricolous Lichens in the Glacier Forefield of the Pasterze (Eastern Alps, Carinthia, Austria)
    Author’s personal copy Phyton (Horn, Austria) Vol. 55 Fasc. 2 201–214 15. 12. 2015 DOI: 10.12905/0380.phyton55(2)2015-0201 Terricolous Lichens in the Glacier Forefield of the Pasterze (Eastern Alps, Carinthia, Austria) By Peter O. BILOVITZ*), Anja WALLNER, Veronika TUTZER, Juri NASCIMBENE**) and Helmut MAYRHOFER*) With 1 Figure Received April 30, 2015 Key words: Lichenized Ascomycetes, Lichenes. – Biodiversity, ecology, flora, floristics. – Alps, glacier forefield, glacier retreat. Summary BILOVITZ P. O., WALLNER A., TUTZER V. , NASCIMBENE J. & MAYRHOFER H. 2015. Ter- ricolous lichens in the glacier forefield of the Pasterze (Eastern Alps, Carinthia, Austria). – Phyton (Horn, Austria) 55 (2): 201–214, with 1 figure. The investigation of lichens on soil, plant debris and terricolous mosses in the glacier forefield of the Pasterze yielded 35 lichen species. Placidiopsis oreades BREUSS (Verrucariales) is new to Austria. Three sampling sites were established at increasing distance from the glacier, in order to compare species diversity, abun- dance and composition within the forefield and with four other glacier forefields of the Eastern Alps. Zusammenfassung BILOVITZ P. O., WALLNER A., TUTZER V. , NASCIMBENE J. & MAYRHOFER H. 2015. Ter- ricolous lichens in the glacier forefield of the Pasterze (Eastern Alps, Carinthia, Austria). [Terricole Flechten im Gletschervorfeld der Pasterze (Ostalpen, Kärnten, Österreich)]. – Phyton (Horn, Austria) 55 (2): 201–214, mit 1 Abbildung. *) Mag. Dr. Peter O. BILOVITZ (corresponding author), Ao. Univ.-Prof. Mag. Dr. Helmut MAYRHOFER, Institute of Plant Sciences, NAWI Graz, University of Graz, Holteigasse 6, 8010 Graz, Austria, Europe; e-mail: [email protected], helmut. [email protected] **) Dr.
    [Show full text]
  • INTRODUCTION to SPECIAL ISSUE Matija Zorn, Blaž Komac, Anne Carey, Mauro Hrvatin, Rok Ciglič, Berry Lyons E V I H C R A
    Acta geographica Slovenica, 60-2, 2020, 109–124 THE DISAPPEARING CRYOSPHERE IN THE SOUTHEASTERN ALPS: INTRODUCTION TO SPECIAL ISSUE Matija Zorn, Blaž Komac, Anne Carey, Mauro Hrvatin, Rok Ciglič, Berry Lyons E v I h C R A E T U T I T S N I l A C I h P A R G o E G k I l E M N o T N A U Z A S C R Z , N I P R T C J E N The cryosphere in the southeastern Alps is melting away. Sampling meltwater from the Triglav Glacier in 2017. Matija Zorn, Blaž Komac, Anne Carey, Mauro Hrvatin, Rok Ciglič, Berry Lyons, The disappearing cryosphere in the … DOI: https: //doi.org/10.3986/AGS.9396 UDC: 911.2:551.32(234.3) COBISS: 1.02 Matija Zorn 1, Blaž Komac 1, Anne Carey 2, Mauro Hrvatin 1, Rok Ciglič 1, Berry Lyons 2 The disappearing cryosphere in the southeastern Alps: Introduction to special issue ABSTRACT: Various ice bodies are an important source of paleoenvironmental data, and their study improves the understanding of present and future environmental conditions. Their changes are an important indi - cator of climate change. This special issue of Acta geographica Slovenica draws attention to the changing and disappearing cryosphere across the globe, with an emphasis on the southeastern Alps, and the neces - sity to conduct research in this field before the ice disappears forever. This paper briefly summarizes the current body of knowledge on glaciers, permafrost, cave ice, lake and river ice, and snow in the south - eastern Alps, and it presents the contribution of Acta geographica Slovenica to this research and the main highlights of all five papers included in this special issue.
    [Show full text]
  • Glocknerrunde-Außenteil [Konvertiert] Blau
    3.798 m The Grossglockner Summit ascents Dangers Planning trips The highest mountain in Austria acts as a magnet for domestic and GROSSGLOCKNER Rock falls Weather report international mountain hikers. Starting with the most common GROSSGLOCKNER As a result of climate change (e.g. melting of permafrost, glacier GROSSGLOCKNER Erzherzog- The “Alpine Association weather service” oers a recorded ascents via Salm Hut and Stüdl Hut, and continuing over Stüdlgrat Großglockner Erzherzog- Johann-Hut loss), the risk of rock falls is increasing. Rock falls may also come announcement and personal advice on the telephone. Local mountain Erzherzog- (“Stüdl Ridge”) and extreme icy ascents (such as Palavicinirinne Johann-Hut Johann-Hut o the mountainsides and onto the adjacent glacier. Late spring, guides and hut landlords are also happy to provide information on Feeling safe on the [“Palavicini Gorge”]), it oers tempting goals to all mountain hikers. Hofmannskees or autumn, constitute the best times for trips onto the ice. weather and conditions on the mountain. The Grossglockner is repeatedly underestimated by mountain highest point in hikers. Even the supposedly simplest of ascents from Salm Hut Thunderstorms /sudden falls in temperature Personal advice: +43/(0)512/291600 (Mon-Sat 13.00-18.00) or Stüdl Hut up to Erzherzog-Johann Hut and the Grossglockner Such events are related to ice oods, snowfall and poor visibility. Recorded service in Austria Luisen Ridge Austria demand that mountain hikers have alpine experience and the Meletzkigrat The degree of diculty on rocky ascents suddenly increases. - Overall alpine weather: 0900 91156680 Breakfast Square Orientation becomes almost impossible in “white out” on - Eastern Alps: 0900 91156682 correct methods for roping and securing techniques.
    [Show full text]
  • Austria's Highest
    GROSSGLOCKNER 3.798 m GROSSES WIESBACHHORN 3.564 m JOHANNISBERG 3.453 m EDELWEISSSPITZE 2.571 m PASSHÖHE HOCHTOR 2.504 m FUSCHER TÖRL 2.428 m KAISER-FRANZ-JOSEFS-HÖHE 2.369 m PIFFKAR 1.620 m HEILIGENBLUT AM GROSSGLOCKNER 1.301 m GROSSGLOCKNER 3.798 m GROSSES WIESBACHHORN 3.564 m JOHANNISBERG 3.453 m FUSCH AN DER GROSSGLOCKNERSTRASSE 815 m EDELWEISSSPITZE 2.571 m PASSHÖHE HOCHTOR 2.504 m FUSCHER TÖRL 2.428 m KAISER-FRANZ-JOSEFS-HÖHE 2.369 m PIFFKAR GROSSGLOCKNER 1.620 m HOCHALPENSTRASSE HEILIGENBLUT AM GROSSGLOCKNER 1.301 m INFORMATION FOR COACH OPERATORS TOUR OPERATORS HOSTS Discount for regular FUSCH AN DER GROSSGLOCKNERSTRASSE customers! 815 m grossglockner.at AUSTRIA’S HIGHEST vista! GROSSGLOCKNER 3.798 m GROSSES WIESBACHHORN 3.564 m JOHANNISBERG 3.453 m EDELWEISSSPITZE 2.571 m PASSHÖHE HOCHTOR 2.504 m FUSCHER TÖRL 2.428 m KAISER-FRANZ-JOSEFS-HÖHE 2.369 m PIFFKAR 1.620 m HEILIGENBLUT AM GROSSGLOCKNER 1.301 m FUSCH AN DER GROSSGLOCKNERSTRASSE 815 m GroßglocknerWIFI GROSSGLOCKNER.AT 1 grossglockner.at Join us GROSSGLOCKNER 3.798 m GROSSES WIESBACHHORN 3.564 m JOHANNISBERG 3.453 m EDELWEISSSPITZE 2.571 m PASSHÖHE HOCHTOR 2.504 m FUSCHER TÖRL 2.428 m KAISER-FRANZ-JOSEFS-HÖHE 2.369 m PIFFKAR 1.620 m The Grossglockner High Alpine Road is one of the most fascinating panoramic roads in the world and has been a HEILIGENBLUT AM protected monument since 2015. The road leads you 48 GROSSGLOCKNER WHERE THE 1.301 m kilometres to the heart of the Hohe Tauern National Park up to 2,571 meters above sea level, to the foot of the hig- hest mountain in Austria and ends at the longest glacier FREE ADMISSION JOURNEY BECOMES in the Eastern Alps, the Pasterze.
    [Show full text]
  • Landscape Evolution of the Alps: a Review of the State of Knowledge and New Results from Morphometric Analysis
    Landscape Evolution of the Alps: A Review of the State of Knowledge and New Results from Morphometric Analysis Master Thesis zur Erlangung des akademischen Grades Master of Science der Studienrichtung Geosciences an der Universität Graz verfasst von Gerit Albert Gradwohl 01213183 betreut von Kurt Stüwe Graz, Februar 2020 2 Gerit Albert Gradwohl Abstract The European Alps are one of the most famous mountain ranges on Earth. Being one of the best studied orogens in the world, surprisingly little is known about the exact formation of its landscapes or the age of its topography. This thesis summarizes the state of knowledge on topography, uplift history and landscape formation of the range. Different approaches and techniques are used to showcase and date these aspects. For example, (i) morphometric analysis show disequilibrium features of major drainages and that the Alps are characterized by decreasing slopes at high elevations with no difference between Eastern and Western Alps. (ii) Sediment fluxes to the surrounding basins started about 35 Ma and show a substantial increase since the Pliocene. (iii) Thermochronometric data yield strongly accelerated exhumation since the Pleistocene. (iv) Surface dating via 10Be and 26Al records a young incision history for the last 4 to 5 Myr. Integrating these different datasets into a model for the geological uplift history shows that topographic evolution for the last 45 Ma was happening rather slowly until about 5 Ma and accelerated thereafter. Neither tectonics nor climate can be made responsible to be the sole reason for the young uplift, but rather a combination of both. For example, for the Western Alps some 50 % of the surface uplift may be attributed to climatic driven erosion in the Pliocene.
    [Show full text]