Anl Argonnenow 2012Summer.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Scanning Transmission Electron Microscope EDITOR-IN-CHIEF PETER W
Advances in IMAGING AND ELECTRON PHYSICS VOLUME 159 Cold Field Emission and the Scanning Transmission Electron Microscope EDITOR-IN-CHIEF PETER W. HAWKES CEMES-CNRS Toulouse, France Advances in IMAGING AND ELECTRON PHYSICS VOLUME 159 Cold Field Emission and the Scanning Transmission Electron Microscope Edited by PETER W. HAWKES CEMES-CNRS, Toulouse, France AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier Radarweg 29, PO Box 211, 1000 AE Amsterdam, The Netherlands 32 Jamestown Road, London NW1 7BY, UK 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA First edition 2009 Copyright # 2009, Elsevier Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means electronic, mechanical, photocopying, recording or otherwise without the prior written permission of the publisher. Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in Oxford, UK: phone (+44) (0) 1865 843830; fax (+44) (0) 1865 853333; email: [email protected]. Alternatively you can submit your request online by visiting the Elsevier web site at http://www.elsevier.com/ locate/permissions, and selecting Obtaining permission to use Elsevier material. Notice No responsibility is assumed by the publisher for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions or ideas contained in the material herein. -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
Guide to the Enrico Fermi Collection 1918-1974
University of Chicago Library Guide to the Enrico Fermi Collection 1918-1974 © 2009 University of Chicago Library Table of Contents Descriptive Summary 4 Information on Use 4 Access 4 Citation 4 Biographical Note 4 Scope Note 7 Related Resources 8 Subject Headings 8 INVENTORY 8 Series I: Personal 8 Subseries 1: Biographical 8 Subseries 2: Personal Papers 11 Subseries 3: Honors 11 Subseries 4: Memorials 19 Series II: Correspondence 22 Subseries 1: Personal 23 Sub-subseries 1: Social 23 Sub-subseries 2: Business and Financial 24 Subseries 2: Professional 25 Sub-subseries 1: Professional Correspondence A-Z 25 Sub-subseries 2: Conferences, Paid Lectures, and Final Trip to Europe 39 Sub-subseries 3: Publications 41 Series III: Academic Papers 43 Subseries 1: Business and Financial 44 Subseries 2: Department and Colleagues 44 Subseries 3: Examinations and Courses 46 Subseries 4: Recommendations 47 Series IV: Professional Organizations 49 Series V: Federal Government 52 Series VI: Research 60 Subseries 1: Research Institutes, Councils, and Foundations 61 Subseries 2: Patents 64 Subseries 3: Artificial Memory 67 Subseries 4: Miscellaneous 82 Series VII: Notebooks and Course Notes 89 Subseries 1: Experimental and Theoretical Physics 90 Subseries 2: Courses 94 Subseries 3: Personal Notes on Physics 96 Subseries 4: Miscellaneous 98 Series VIII: Writings 99 Subseries 1: Published Articles, Lectures, and Addresses 100 Subseries 3: Books 114 Series IX: Audio-Visual Materials 118 Subseries 1: Visual Materials 119 Subseries 2: Audio 121 Descriptive Summary Identifier ICU.SPCL.FERMI Title Fermi, Enrico. Collection Date 1918-1974 Size 35 linear feet (65 boxes) Repository Special Collections Research Center University of Chicago Library 1100 East 57th Street Chicago, Illinois 60637 U.S.A. -
A Study of Self-Sustaining Thin-Films As a Means of Fusion Plasma
A STUDY OF SELF-SUSTAINING THIN-FILMS AS A MEANS OF FUSION PLASMA IMPURITY AND WALL EROSION CONTROL A THESIS Presented to The Faculty of the Division of Graduate Studies By A. Bruce DeWald, Jr. In Partial Fullfillment of the Requirements for the Degree of Doctor of Philosophy in the School of Nuclear Engineering Georgia Institute of Technology November 12, 1984 Copyright (c) 1984 by A. Bruce DeWald, Jr. Thesis 'A Study of Secondary Ion-Emitting, Self-Sustaining Thin Films as a Means of Fusion Plasma Impurity and Wall Erosion Control" Approved: U I \l/\ 9^ //htf£+\ (At 7^^, y Dr. Weston M. Stacey, Jr., Chairman CJ sjjuvki J<5'tfifyfyitlii Dr. R. Glenn Bateman CIS*** Si'• (I)L\^LL^\ Dr. Alan R. Kraus Josejfn D. Clement 1 TABLE OF CONTENTS Page ACKNOWLEDGEMENTS iv LIST OF ILLUSTRATIONS v SUMMARY xi Chapter I. INTRODUCTION 1.1 Impurity/Erosion Mechanism/Control Review 1.2 Thesis Proposal and Scope 1.3 Relevant Mechanics/Kinetics Review II. THE SHEATH MODEL 23 2. 1 Introduction 2.2 Plasma Sheath Geometry 2.3 Particle Trajectory Model 2.4 Particle Density Calculation 2.5 Initial Conditions 2.6 Electric-Field Solution 2.7 Secondary Electron Emission 2.8 Reflected Ions 2.9 Secondary-Ion Emission 2.10 Summarization of Sheath Model Development 2.11 Sheath Model Verification 2.12 Wal1 Impact Angle 2.13 Secondary/Reflective Particle Effects III. THE SPUTTERING MECHANICS 86 3.1 Introduction 3.2 Geometrical Considerations 3.3 Scattering Mechanics 3.4 Interatomic Potential 3.5 Inelastic Energy Loss 3.6 Cascade Atom Energy Requirements Ill 3.7 Planar Potential 3.8 Displacements 3.9 Summarization of Sputtering Mechanics Development 3.10 Verification of the Sputtering Mechanics IV. -
2010 Annual Merit Review Results Cross Reference of Pis And
10. CROSS-REFERENCE OF PROJECT INVESTIGATORS, PROJECTS, AND ORGANIZATIONS Cross-Reference, Sorted by Projject Investiigator Page Number Principal Investigator (Organization) -- Project Title <<Session>> Abas Goodarzi (U.S. Hybrid) -- Bi-directional d2-dc Converter <<Power Electronics & Electrical Machines 3-46 Technologies>> Al Ebron (West Virginia University) -- Advanced Electric Drive Vehicle Education Program <<Technology 8-3 Integration>> Alan Luo (General Motors) -- Magnesium Front End Research and Development - Phase 1 (AMD 604) 6-14 <<Materials Technologies>> 7-60 Ali Erdemir (Argonne National Laboratory) -- Low-Friction Hard Coatings <<Propulsion Materials>> Allen Hefner (NIST) -- Electro-thermal-mechanical Simulation and Reliability for Plug-in Vehicle Converters and 3-56 Inverters <<Power Electronics & Electrical Machines Technologies>> Andrew Jansen (Argonne National Laboratory) -- Fabricate PHEV Type Cells for Testing & Diagnostics 2-76 <<Energy Storage Technologies>> Andrew Jansen (Argonne National Laboratory) -- Improved Methods for Making Intermetallic Anodes <<Energy 2-57 Storage Technologies>> Andrew Klock (National Fire Protection Association) -- U.S. Emergency Responder Safety Training for Advanced 8-18 Electric Drive Vehicles <<Technology Integration>> Andrew Payzant (Oak Ridge National Laboratory) -- Characterization of Materials for Li-ion Batteries: Success 6-56 Stories from the High Temperature Materials Laboratory (HTML) User Program <<Materials Technologies>> Andrew Wereszczak (Oak Ridge National Laboratory) -
Anirudha Sumant Center for Nanoscale Materials Building 440, Room A-127 Materials Scientist Phone: 630-252-4854 Nanofabrication and Devices Group Fax: 630-252-5739
Argonne National Laboratory 9700 S Cass Ave., Argonne, IL 60439 Anirudha Sumant Center for Nanoscale Materials Building 440, Room A-127 Materials Scientist Phone: 630-252-4854 Nanofabrication and Devices Group Fax: 630-252-5739 E-mail: [email protected] LinkedIn Profile: http://www.linkedin.com/in/anisumant Argonne National Laboratory 9700 S Cass Ave., Argonne, IL 60439 Ph.D. Electronic Science, University of Pune, India 1998 Education M.Sc. Electronic Science, University of Pune, India 1993 B.Sc. Physics, University of Pune, India 1991 Awards 2018 National Innovation Award from Techconnect on Portable Ultrananocrystalline Diamond based Field Emission Electron Sources for Linear Accelerators and Honors Pacesetter Award, Argonne National Laboratory, 2018 Top 100 finalist Chicago Innovation Award 2017 Pinnacle of Education Award from Board of Governors for Argonne National Laboratory for teaching youth nanotechnology and developing Next Gen STEM Kit 2017 National Innovation Award from TechConnect on developing wafer-scale method to grow single and multilayer graphene on dielectric substrate in 1 min 2016 National Innovation Award from TechConnect on developing graphene-nanodiamond based solution to achieve superlubricity 2014 R&D 100 Award for the development of NanofabLab…in a Box 2014 NASA Tech Brief Magazine Award for NanofabLab…in a Box. 2013 R&D 100 Award for the development of Miraj Diamond Platform 2013 R&D Award for the development of Nanocrystalline diamond Coating for Microdrill 2011 R&D 100 Award for the development of Integrated RF MEMS Switch/CMOS Device based on Ultrananocrystalline Diamond Senior Editor of IEEE-eNano Listed in Who’s Who in America 62nd edition 2008. -
Development of Ultrananocrystalline Diamond (UNCD) Coatings
Development of Ultrananocrystalline Diamond (UNCD) Coatings Presented by Jeffrey Elam Argonne National Laboratory Materials, Sensors & Automation, and Glass Project Review June 21-24, 2004 Arlington, Virginia A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago Office of Science U.S. Department of Energy Project Summary • Goal: - Use UNCD to achieve significant energy savings in IOF industries - First application – SiC multipurpose mechanical pump seals • Challenge: - Develop technology to take UNCD from laboratory to market application - Need to mass produce UNCD coated parts • Benefits: - Improved wear resistance and corrosion resistance of UNCD coated parts - 20% energy savings of 236 trillion Btu by 2020 in pump applications primarily due to reduced friction losses • FY05 Activities: - Commission and optimize 11-inch IPLAS system (up from 6-inch system) - Demonstrate UNCD coating of multiple seals simultaneously - Demonstrate benefits of UNCD coatings on gas seals - Verify tribological benefits of UNCD coated seals - Perform long-term pump tests 2 Pioneering Science and Technology Project Participants – Laboratory-led project • Argonne National Laboratory - Energy Systems: - Jeff Elam, John Hryn (Project POC), Joe Libera - Energy Technology: - Ali Erdemir, Andriy Kovalchenko - Materials Science: - Orlando Auciello, John Carlisle, Dieter Gruen, Mike Pellin, Alex Zinovev • Industry Partners: - Advanced Diamond Technologies, Inc. (ADT) - Neil Kane (Industry POC) - John Crane, Inc. - IPLAS Innovative -
Office of Basic Energy Sciences
DRAFT Office of Basic Energy Sciences Accomplishments FY 1994 DRAFT Major Facilities Construction Highlights Advanced Photon Source Semiannual Review of Advanced Photon Source Proiect (APS) A Construction Project Management Review of the APS Project was conducted at Argonne National Laboratory on November 15-17, 1994 by the Office of Basic Energy Sciences and the Office of Management. The Review Committee consisted of Mr. James Carney, Construction Management Support Division, Chairman; Robert A. Zich, Acquisition and Assistance Management Division; Office of Basic Energy Sciences' Drs. Albert E. Evans, Frederick A. Koomanoff, William T. Oosterhuis, and Walter M. Polansky, together with eleven peer reviewers from DOE Laboratories. Also present were Mr. Matthew Cole from the Office of Environment, Safety, and Health Technical Support, Dr. Bal Mahajan of the Office of Performance Assessment, and Edward F. Koch from the Office of Field Management. The Committee is pleased to report that the APS Project is meeting budget ($811.9 Million Total Project Cost) and time schedules. Construction of the accelerator should be complete by January 1995. All construction, now mostly office and laboratory space, should be completed by February 1996. Commissioning, now underway, should-be complete well in advance of the December 1996 date scheduled for the start of routine operation. Development of Non-Polluting Process for Cleaning Metal Receives Award by the State of Illinois The Advanced Photon Source (APS) scientists, engineers, and technicians have combined their efforts and ideas to develop an alternate process for chemically cleaning aluminum-alloy vacuum chamber sections prior to their installation into the APS. The result of their efforts was-the elimination of 3,000 gallons of hazardous chemical waste per month and an estimated cost savings for waste removal of $300,000 in the first year. -
History of the Seaborg Institute
HISTORY OF THE SEABORG INSTITUTE ARQ.2_09.cover.indd 1 6/22/09 9:24 AM ContentsContents History of the Seaborg Institute The Seaborg Institute for Transactinium Science Established to educate the next generation of nuclear scientists 1 ITS Advisory Council 5 Seaborg the scientist 7 Naming seaborgium 11 Branching out 13 IGCAR honors Seaborg’s contributions to actinide science 16 Seaborg Institute for Transactinium Science/Los Alamos National Laboratory Actinide Research Quarterly The Seaborg Institute for Transactinium Science Established to educate the next generation of nuclear scientists In the late 1970s and early 1980s, research opportunities in heavy element This article was contributed by science and engineering were seldom found in university settings, and the supply Darleane C. Hoffman, professor emerita, of professionals in those fields was diminishing to the detriment of national Graduate School, Department of goals. In response to these concerns, national studies were conducted and panels Chemistry, UC Berkeley, faculty senior and committees were formed to assess the status of training and education in the scientist, Lawrence Berkeley National nuclear sciences. The studies in particular addressed the future need for scientists Laboratory, and charter director, Seaborg trained in the areas of nuclear waste management and disposal, environmental Institute, Lawrence Livermore National remediation, nuclear fuel processing, and nuclear safety analysis. Laboratory; and Christopher Gatrousis, Unfortunately, with the exception of the American Chemical Society’s former associate director of Chemistry Division of Nuclear Chemistry and Technology summer schools for undergradu- and Materials Science, Lawrence ates in nuclear and radiochemistry established in 1984, the studies did not lead Livermore National Laboratory. -
Chronology of Illinois History 20,000 B.C.E.-8,000 B.C.E
CHRONOLOGY OF ILLINOIS HISTORY 20,000 B.C.E.-8,000 B.C.E. — Paleo-Indians migrate into Illinois. They gather wild plants and hunt animals, including the giant bison, wooly mammoth and mastodon. 8,000-1,000 B.C.E. — During the Archaic Period, Illinois inhabitants cultivate plants and create specialized tools for hunting and fishing. 700-1500 — Mississippian Native American culture builds large planned towns with flat- topped temple mounds along rivers. Near present-day Collinsville, 120 mounds are built in a city with a population of more than 20,000. Monks Mound is the largest prehistoric earthen construction in North America. Extraction of salt from Saline County begins. 1655 — The Iroquois invade Illinois and defeat the Illini. Native American wars continue sporadically for 120 years. 1673 — The Illiniwek (tribe of men), a Native American confederation consisting of Cahokias, Kaskaskias, Mitchagamies, Peorias and Tamaroas, encounter French ex plor - ers who refer to the people and country as “Illinois.” Frenchmen Jacques Marquette and Louis Jolliet descend the Mississippi to Arkansas and return to Lake Michigan by way of the Illinois River. 1680 — La Salle builds Fort Creve coeur on the Illinois River near pres ent Peoria. SEPTEMBER — The Iroquois chase the Illini from Illinois. Twelve hundred Tamaroas are tortured and killed. 1682 — La Salle builds Fort St. Louis on Starved Rock. 1691-92 — Tonti and La Forest build the second Fort St. Louis, better known as Fort Pimitoui, on Lake Peoria. 1696 — Jesuit priest Francois Pinet organizes the Mission of the Guardian Angel, the first permanent place of worship in the pre-Chicago wilderness. -
Mhairi Gass & Andrew Bleloch
"If, in some cataclysm, all scientific knowledge were to be destroyed, and only one sentence passed on to the next generation of creatures, what statement would contain the most information in the fewest words? I believe it is the atomic hypothesis (or atomic fact; or whatever you wish to call it) that all things are made seeing atoms of atoms." Mhairi Gass & Andrew Bleloch It is not an unreasonable paraphrase of this famous statement by Richard Feynman (1964) to say that "to understand the properties of all material things we need only to know which atoms are where". Electron microscopy is a technique that in the last decade has been able to image and analyse the atomic structure of a range of materials with atom by atom sensitivity and has led to a greater understanding of materials properties, from nanotubes and nanowires through to grain boundaries in metal alloys and ferritin particles in cells. The specimen is a 70 nm thick ultra-microtomed section of lung cell from a mouse. The specimen was osmicated and the section poststained with uranyl acetate and lead citrate. The Z-contrast STEM image shows detailed cross sections of a number of cilia consisting of an outer ring of nine microtubial doublets and two central microtubial doublets. The primary function of cilia is to sweep dirt and mucus out of the lung and they are found in the lining of the trachea. The field of view for the image is 3 microns. 70 Issue 18 JuNe 2010 71 Forty years ago, Albert Crewe (Crewe et al. -
Nanostructures: Physics and Technology
NANOSTRUCTURES: PHYSICS AND TECHNOLOGY 20th International Symposium Nizhny Novgorod, Russia, June 24–30, 2012 Academic University Publishing St Petersburg, 2012 Copyright © 2012 by St Petersburg Academic University and individual contributors. All rights reserved. No part of this publication may be multiple copied, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the written permission of the publisher. Single photocopies of single articles may be made for private study or research. ISBN 978-5-91326-179-3 The International Symposium ”Nanostructures: Physics and Technology” is held annually since 1993. The first Symposium was initiated by Prof. Zh. Alferov and Prof. L. Esaki who are its permanent co-chairs. More detailed information on the Symposium is presented on the World Wide Web http://www.ioffe.ru/NANO2012/ The Proceedings include extended abstracts of invited talks and contributed papers to be presented at the Symposium. By tradition this book is published before the beginning of the meeting. The volume was composed at the St Petersburg Academic University from electronic files submitted by the authors. When necessary these files were converted into the Symposium style. Only minor technical corrections were made by the composers. Design and layout: N. Vsesvetskii Desk editor: E. Savostyanova Published by St Petersburg Academic University Khlopin str. 8/3, 194021, St Petersburg, Russia http://www.spbau.ru/ Printed in Russian Federation The Symposium