Sustainable Management of the Cereal Leaf Beetle, Oulema Melanopus (Coleoptera: Chrysomelidae), a New Invasive Insect Pest of Cereal Crops in Western Canada

Total Page:16

File Type:pdf, Size:1020Kb

Sustainable Management of the Cereal Leaf Beetle, Oulema Melanopus (Coleoptera: Chrysomelidae), a New Invasive Insect Pest of Cereal Crops in Western Canada University of Alberta Sustainable management of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae), a new invasive insect pest of cereal crops in western Canada by Swaroop Vijay Kher A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science Department of Agricultural, Food and Nutritional Science ©Swaroop Vijay Kher Spring 2014 Edmonton, Alberta Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms. The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission. Abstract The cereal leaf beetle, Oulema melanopus (L.) (Coleoptera: Chrysomelidae) is a new invasive insect pest of cereals in western Canada, and has expanded its geographic range significantly throughout the region. Its establishment has economic implications for grain production, trade and export. Biological control with its principal larval parasitoid, Tetrastichus julis (Walker) (Hymenoptera: Eulophidae), introduced from Europe has been the most successful management strategy in North America. In southern Alberta, the parasitoid has established naturally along with the beetle and provides an opportunity for integration of biological control with other management tactics. My investigation focused on tritrophic interactions between the cereal host plants, O. melanopus and T. julis. I investigated life histories and host preferences of O. melanopus and T. julis, their spatio-temporal distribution dynamics, and explored host-plant resistance mechanisms in exotic wheat genotypes to discern interrelations between these species. My studies on developmental patterns of O. melanopus on potential cereal hosts in western Canada (oat, wheat, barley, corn, rye and triticale) indicated that the preferences for these hosts and their utilization differed within the fundamental host range of O. melanopus. Prolonged developmental times and low survivorship on a local cultivar of oat, Waldern, indicated a potential avenue for designing strategies such as trap cropping. My studies on the biology of T. julis indicated that T. julis females prefer advanced larval instars for parasitization; such a selection lead to higher clutch size, and improved fitness. Under field conditions, the relationship of O. melanopus and T. julis indicated a tightly coupled host-natural enemy system. Tetrastichus julis exhibited strong density dependence. Host plant characteristics influenced field dynamics of O. melanopus which in turn influenced T. julis distribution. Three of the six central Asian wheat genotypes tested (NN-100, NN-78 and NN-27) were less attractive for O. melanopus oviposition and feeding and further trials on biology and fitness of the beetle suggested prolonged development and low fitness on these genotypes. This indicated presence of both antixenosis and antibiosis mechanisms. The resistant lines identified can act as effective genotypes for breeding explorations in North America. Acknowledgments I would like to take this opportunity to thank everyone who contributed to the successful completion of my doctoral degree programme. First and foremost, I would like to thank my supervisors, Drs. Lloyd Dosdall and Héctor Cárcamo for providing me the opportunity to work on my graduate research project under their guidance and supervision. I am thankful to Dr. Lloyd Dosdall for accepting me as a graduate student, and for constant support and motivation. I would like to sincerely thank Dr. Héctor Cárcamo for allowing me to work in his laboratory in Lethbridge, and providing me with all the facilities and resources. I thank both of you very sincerely for your expert advice, constructive criticism, invaluable guidance and mentorship. I got every opportunity to explore my research interests under your supervision. I would also like to acknowledge kind gestures of Mrs. Teresa Height Dosdall and Mrs. Rosa Cárcamo. I would also like to thank Dr. Maya Evenden for being a part of my supervisory committee and for her expert advice, helpful comments, and willingness to help. I am grateful for all her contributions to my project that allowed me to complete it timely and successfully. My sincere thanks to Dr. Andrew Keddie and Dr. Edward Evans for acting as external examiners on my PhD committee and for their helpful comments and advice. I am grateful to the technicians and members of the Cárcamo lab at the Agriculture and Agri-Food Canada Research Station in Lethbridge for their timely help and assistance. I would like to thank Carolyn Herle, Cheryl Chelle, and Tracy Larson (former technician) for their technical expertise, help with experiments and great company. Without all the support I received I would not have been able to plan and complete my experiments timely. Several other notable members of Agriculture and Agri-Food Canada and the University of Alberta who provided invaluable support and guidance throughout my graduate studies include Dr. Kevin Floate, Paul Coughlin, Monty Thompson, Dr. Mark Goettel, Dr. Brian Beres, Tom Kveder, Grant Duke, Monty Thomson, Byron Lee, Dr. James Tansey, Dan Stanton and Sunil Rajput. I am thankful to everyone for their expert advices and help. I would also like to thank all the summer students in the Cárcamo lab for their able help and assistance. I would like to thank Dr. Evelyn Merrill for her guidance and expertise in the analysis of spatial data. I want to thank Dr. Ellen McDonald and Dr. Laki Goonewardene for helpful discussions on statistical data analysis. My sincere thanks to all the current and former members of the Dosdall lab with whom I had the opportunity to work with. I would like to thank my parents, Mr. Vijay Kher and Mrs. Saroj Kher, and my brother Shailesh and his family for their love and encouragement. I would like to thank my wife, Sharvari, for her unconditional love, patience and understanding. You all have been an amazing support in my life throughout all the thicks and thins, and I would not have been able to pursue my dreams without your love, sacrifices and prayers. I would also like to thank my in laws, Mr. and Mrs. Kulkarni for their love, prayers and support. I would like to take this opportunity to thank my uncle, Dr. J.S.Sardeshpande (former plant pathologist), for his mentorship. My thanks to you and your entire family. My special thanks to Dr. Chandish Ballal, (Principal Scientist, NBAII, India) for her motivation and support. I would like to thank all my friends, colleagues and teachers who have been a great support. Funding of my graduate research was generously provided by the Canadian Wheat Board, the Natural Sciences and Engineering Research Council of Canada, Western Grains Research Foundation, Ducks unlimited Canada, and Development Initiative-Agri-Food Products of Agriculture and Agri-Food Canada. I am immensely thankful to all the funding agencies for their kind support. I am grateful to the Almighty God, the most compassionate for his blessings and strength throughout my life. Table of Contents Chapter 1: Introduction ...................................................................................................1 1.1. General introduction ............................................................................................1 1.2. Taxonomic status of O. melanopus ......................................................................2 1.3. Diagnostic characters ...........................................................................................4 1.4. Oulema melanopus distribution and range expansion ...........................................5 1.5. Life history and field dynamics of O. melanopus .................................................7 1.6. Host range ......................................................................................................... 10 1.7. Damage potential ............................................................................................... 12 1.8. Plant responses to O. melanopus damage ........................................................... 15 1.9. Overview of O. melanopus control strategies ..................................................... 16 1.10. Objectives of the study ...................................................................................... 31 Figures. ......................................................................................................................... 36 Literature cited .............................................................................................................. 39 Chapter 2: Biology and host preferences of the cereal leaf beetle, Oulema melanopus (Coleoptera: Chrysomelidae), in western Canada........................................................... 57 2.1. Introduction............................................................................................................ 57 2.2. Materials and Methods ........................................................................................... 60 2.3. Results
Recommended publications
  • Insect Management
    C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing.
    [Show full text]
  • The Beetle Fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and Distribution
    INSECTA MUNDI, Vol. 20, No. 3-4, September-December, 2006 165 The beetle fauna of Dominica, Lesser Antilles (Insecta: Coleoptera): Diversity and distribution Stewart B. Peck Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada stewart_peck@carleton. ca Abstract. The beetle fauna of the island of Dominica is summarized. It is presently known to contain 269 genera, and 361 species (in 42 families), of which 347 are named at a species level. Of these, 62 species are endemic to the island. The other naturally occurring species number 262, and another 23 species are of such wide distribution that they have probably been accidentally introduced and distributed, at least in part, by human activities. Undoubtedly, the actual numbers of species on Dominica are many times higher than now reported. This highlights the poor level of knowledge of the beetles of Dominica and the Lesser Antilles in general. Of the species known to occur elsewhere, the largest numbers are shared with neighboring Guadeloupe (201), and then with South America (126), Puerto Rico (113), Cuba (107), and Mexico-Central America (108). The Antillean island chain probably represents the main avenue of natural overwater dispersal via intermediate stepping-stone islands. The distributional patterns of the species shared with Dominica and elsewhere in the Caribbean suggest stages in a dynamic taxon cycle of species origin, range expansion, distribution contraction, and re-speciation. Introduction windward (eastern) side (with an average of 250 mm of rain annually). Rainfall is heavy and varies season- The islands of the West Indies are increasingly ally, with the dry season from mid-January to mid- recognized as a hotspot for species biodiversity June and the rainy season from mid-June to mid- (Myers et al.
    [Show full text]
  • Title Ethnoentomology of the Central Kalahari San Author(S) NONAKA
    Title Ethnoentomology of the Central Kalahari San Author(s) NONAKA, Kenichi African study monographs. Supplementary issue (1996), 22: Citation 29-46 Issue Date 1996-12 URL https://doi.org/10.14989/68378 Right Type Journal Article Textversion publisher Kyoto University African Study Monographs, Supp!. 22: 29 - 46, December 1996 29 ETHNOENTOMOLOGY OF THE CENTRAL KALAHARI SAN Kenichi NONAKA Department of geography, Mie University ABSTRACT The Central Kalahari San use many kinds of insects for daily food and materials and as children's play things. This study describes how several insect species are used, which often follows a series of processes from collecting to consumption and the quite diversified insect utilization based on various skills and knowledge in ethnoento­ mology. Even though insects are not an important subsistence resource, the San have an extensive knowledge and make good use of insects. The insects even spice up the San daily life. Key words: insects, ethnoentomology, diversified utilization, food, material, children's play INTRODUCTION The San are known to use many kinds of natural resources and possess great knowledge of nature (Lee, 1979; Tanaka, 1980; Silberbauer, 1981). The principle objectives of San studies have focused on the hunting and gathering subsistence system. Although these studies detailed the uses of various resources, little atten­ tion has been paid to the uses of marginal resources, which I believe are essential in discussing the San's deep and broad knowledge of nature. This paper will describe their extensive knowledge of insects. Through my research, I found that the San are usually in contact with insects in their daily lives and interact with them in various ways.
    [Show full text]
  • The Cereal Leaf Beetle, Oulema Melanopus
    January 2014 Agdex 622-29 Cereal Leaf Beetle he cereal leaf beetle, Oulema melanopus include edges of crops and woodlots, fence rows, sparse T L. (Coleoptera: Chrysomelidae), is an invasive insect woods and dense woods. After emerging, the adults from Europe that feeds on cereal crops, including wheat, disperse to host crops, feed, mate and lay eggs. Peak egg barley and oats. It was first discovered in North America laying occurs in May. in 1962 in the state of Michigan. The cereal leaf beetle now is found in most cereal production areas of the Eggs United States. Eggs are laid on the upper surfaces of leaves along the margins or close to the leaf mid-rib. Oats and barley are preferred hosts for egg laying, but spring-planted wheat, Background winter wheat and other grasses are also hosts. Cereal leaf beetle was first observed in Alberta in 2005, Eggs are laid singly or in multiple clusters Saskatchewan in 2008 and in Manitoba in of two or three, touching end to end. 2009. Computer modeling based on Newly laid eggs are bright yellow, but current environmental conditions The cereal leaf darken to orange-brown and then black suggests that the cereal leaf beetle could before hatching. Eggs are cylindrical and invade all cereal growing areas of beetle feeds on measure 0.4 by 0.9 mm. Canada. wheat, barley The eggs hatch in about 4 to 6 days, and The beetle is widespread throughout the the most favourable developmental southern part of Alberta, from Pincher and oats. temperature is about 21° C.
    [Show full text]
  • Carl H. Lindroth Und Sein Beitrag Zur Carabidologiethorsten
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Angewandte Carabidologie Jahr/Year: 2007 Band/Volume: 8 Autor(en)/Author(s): Aßmann [Assmann] Thorsten, Drees Claudia, Matern Andrea, Vermeulen Hendrik Artikel/Article: Carl H. Lindroth und sein Beitrag zur Carabidologie 77-83 ©Gesellschaft für Angewandte Carabidologie e.V. download www.laufkaefer.de Carl H. Lindroth und sein Beitrag zur Carabidologie Thorsten ASSMANN, Claudia DREES, Andrea MATERN & Hendrik J. W. VERMEULEN Abstract: Carl H. Lindroth and his contribution to carabidology. – In 2007, the Society for Applied Carabidology (Gesellschaft für Angewandte Carabidologie) awarded the Carl H. Lindroth Prize for the first time. This event was established both to honour the life-work of especially committed present-day carabidologists and to pay tribute to the life-work of Carl H. Lindroth. Due to this occasion we give a brief overview of Lindroth’s research in systematics and taxonomy, morphology, faunistics, biogeo- graphy, ecology, evolutionary biology and genetics of ground beetles. Our account focuses mainly on the pioneer work done by Carl H. Lindroth who is still one of the most cited and recognized carabi- dologists. 1 Einleitung • Systematik und Taxonomie, insbesondere zu Artengruppen der Holarktis mit nördlichem Im Jahre 2007 verlieh die Gesellschaft für Ange- Verbreitungsschwerpunkt, wandte Carabidologie erstmals den Carl H. Lindro- • Bestimmungsschlüssel für Laufkäfer Fenno- th-Preis. Diese Ehrung soll Anlass sein, neben dem skandiens, Nordamerikas und Englands, Werk des ersten Preisträgers David Wrase (vgl. Bei- • Morphologie, vor allem zur Nomenklatur der trag von Müller-Motzfeld in diesem Band) auch das Genitalien bei Coleopteren, Lebenswerk von Carl H.
    [Show full text]
  • 210 – Lanuza-Garay A., Chiru L., Lopez Chon O
    ISSN 1021-0296 REVISTA NICARAGUENSE DE ENTOMOLOGIA N° 210 Septiembre 2020 NEW COUNTRY RECORDS OF LEAF AND LONGHORN BEETLES (COLEOPTERA: CHRYSOMELOIDEA) COLLECTED IN THE TROGON TRAIL, PROVINCE OF COLON, PANAMA. ALFREDO LANUZA-GARAY, LERIDA CHIRÚ, OSCAR LÓPEZ CHONG & ALONSO SANTOS-MURGAS PUBLICACIÓN DEL MUSEO ENTOMOLÓGICO ASOCIACIÓN NICARAGÜENSE DE ENTOMOLOGÍA LEÓN - - - NICARAGUA Revista Nicaragüense de Entomología. Número 210. 2020. La Revista Nicaragüense de Entomología (ISSN 1021-0296) es una publicación reconocida en la Red de Revistas Científicas de América Latina y el Caribe, España y Portugal (Red ALyC). Todos los artículos que en ella se publican son sometidos a un sistema de doble arbitraje por especialistas en el tema. The Revista Nicaragüense de Entomología (ISSN 1021-0296) is a journal listed in the Latin-American Index of Scientific Journals. Two independent specialists referee all published papers. Consejo Editorial Jean Michel Maes Fernando Hernández-Baz Editor General Editor Asociado Museo Entomológico Universidad Veracruzana Nicaragua México José Clavijo Albertos Silvia A. Mazzucconi Universidad Central de Universidad de Buenos Aires Venezuela Argentina Weston Opitz Don Windsor Kansas Wesleyan University Smithsonian Tropical Research United States of America Institute, Panama Fernando Fernández Jack Schuster Universidad Nacional de Universidad del Valle de Colombia Guatemala Julieta Ledezma Olaf Hermann Hendrik Museo de Historia Natural Mielke “Noel Kempf” Universidade Federal do Bolivia Paraná, Brasil _______________ Foto de la portada: Platyphora haroldi Baly, 1877. Panamá, Provincia de Colón, Achiote. 7 septiembre 2017 (foto Alonso Santos-Murgas). Página 2 Revista Nicaragüense de Entomología. Número 210. 2020. NEW COUNTRY RECORDS OF LEAF AND LONGHORN BEETLES (COLEOPTERA: CHRYSOMELOIDEA) COLLECTED IN THE TROGON TRAIL, PROVINCE OF COLON, PANAMA.
    [Show full text]
  • Toxicology in Antiquity
    TOXICOLOGY IN ANTIQUITY Other published books in the History of Toxicology and Environmental Health series Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume I, May 2014, 978-0-12-800045-8 Wexler, History of Toxicology and Environmental Health: Toxicology in Antiquity, Volume II, September 2014, 978-0-12-801506-3 Wexler, Toxicology in the Middle Ages and Renaissance, March 2017, 978-0-12-809554-6 Bobst, History of Risk Assessment in Toxicology, October 2017, 978-0-12-809532-4 Balls, et al., The History of Alternative Test Methods in Toxicology, October 2018, 978-0-12-813697-3 TOXICOLOGY IN ANTIQUITY SECOND EDITION Edited by PHILIP WEXLER Retired, National Library of Medicine’s (NLM) Toxicology and Environmental Health Information Program, Bethesda, MD, USA Academic Press is an imprint of Elsevier 125 London Wall, London EC2Y 5AS, United Kingdom 525 B Street, Suite 1650, San Diego, CA 92101, United States 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom Copyright r 2019 Elsevier Inc. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions. This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).
    [Show full text]
  • Coleoptera: Chrysomelidae: Cassidinae: Leptispini) Kaniyarikkal Divakaran Prathapan1, Caroline S
    Zoological Studies 48(5): 625-631 (2009) Natural History and Leaf Shelter Construction of the Asian Rice Leptispa Beetle Leptispa pygmaea Baly (Coleoptera: Chrysomelidae: Cassidinae: Leptispini) Kaniyarikkal Divakaran Prathapan1, Caroline S. Chaboo2,*, and Kolandaivelu Karthikeyan3 1Department of Entomology, Kerala Agricultural University, Vellayani P.O., Trivandrum 695 522, Kerala, India E-mail:[email protected] 2Division of Entomology, Natural History Museum, and Department of Ecology & Evolutionary Biology, 1501 Crestline Dr., Suite 140, University of Kansas, Lawrence, KS 66049-2811, USA. E-mail:[email protected] 3Regional Agricultural Research Station, Kerala Agricultural University, Pattambi, Palakkad 679 306, Kerala, India E-mail:[email protected] (Accepted January 15, 2009) Kaniyarikkal Divakaran Prathapan, Caroline S. Chaboo, and Kolandaivelu Karthikeyan (2009) Natural history and leaf shelter construction of the Asian rice leptispa beetle, Leptispa pygmaea Baly (Coleoptera: Chrysomelidae: Cassidinae: Leptispini). Zoological Studies 48(5): 625-631. The leaf-roll construction by the Asian rice leptispa beetle Leptispa pygmaea Baly (Cassidinae: Leptispini) was studied. Consistent adult feeding on the adaxial side of tender rice leaves Oryza sativa Linnaeus (Poaceae) induces partial upward rolling of the leaf lamina. Adult leaf rolls are ephemeral and not apparent, and they unfurl once the beetle leaves the leaf. Females oviposit clutches of up to 8 eggs mostly on the adaxial side of the leaf within such rolls. Neonate larvae migrate to the base of the leaf axil and feed by scraping, which induces formation of leaf rolls from the base where the leaf is already curled up. All 5 larval instars feed in this manner, migrating to new leaves and forming new leaf rolls.
    [Show full text]
  • Synchronous Coadaptation in an Ancient Case of Herbivory
    Synchronous coadaptation in an ancient case of herbivory Judith X. Becerra* Department of Entomology, University of Arizona, Tucson, AZ 85721 Edited by William S. Bowers, University of Arizona, Tucson, AZ, and approved August 28, 2003 (received for review May 19, 2003) Coevolution has long been considered a major force leading to the one of the main Blepharida hosts is Commiphora. Diamphidia adaptive radiation and diversification of insects and plants. A from Africa and Podontia from Asia are also very closely related fundamental aspect of coevolution is that adaptations and coun- to Blepharida (14, 16). Diamphidia, the renowned poison-arrow teradaptations interlace in time. A discordant origin of traits long beetle of the !Kung San of South Central Africa, also feeds on before or after the origin of the putative coevolutionary selective Commiphora (16, 17). The hosts of Podontia are not well known, pressure must be attributed to other evolutionary processes. De- although a few species have been found on the Anacardiaceae spite the importance of this distinction to our understanding of genus Rhus (13). Because Blepharida feeds on members of the coevolution, the macroevolutionary tempo of innovation in plant same plant family in both the New and Old World tropics, it has defenses and insect counterdefenses has not been documented. been suggested that the interaction probably started before the Molecular clocks for a lineage of chrysomelid beetles of the genus separation of Africa and South America (15, 18). Blepharida and their Burseraceae hosts were independently cali- Some Bursera and Blepharida species exhibit remarkable brated. Results show that these plants’ defenses and the insect’s defensive and counterdefensive mechanisms that have been counterdefensive feeding traits evolved roughly in synchrony, attributed to their coevolution (19, 20).
    [Show full text]
  • (Coleoptera: Carabidae) As Parasitoids C 719 of Any Race of A
    Carabid Beetles (Coleoptera: Carabidae) as Parasitoids C 719 of any race of A. mellifera. Migratory beekeepers Capsid managing scutellata in the northern part of South Africa have moved bees into the fynbos region of The protein coat or shell of a virus particle; the South Africa where the Cape bee is present (the capsid is a surface crystal, built of structure units. reciprocal also happens). This has allowed Cape workers to drift into and parasitize Apis mellifera Capsids scutellata colonies. This action has been a significant problem for beekeepers because Cape-parasitized Some members of the family Miridae (order colonies often dwindle and die. Furthermore, Cape Hemiptera). bees are specialist foragers in the fynbos region and Plant Bugs they often perform poorly when taken outside of this Bugs region. So Apis mellifera scutellata colonies parasit- ized by Cape bees in the northern part of South Capsomere Africa can become useless to beekeepers. Beekeepers in South Africa often consider A cluster of structure units arranged on the sur- Cape bees more of a serious threat to their colo- face of the nucleocapsid, in viruses possessing nies than varroa mites (Varroa destructor, the most cubic symmetry. prolific pest of honey bees). Because of this, researchers globally have taken notice of Cape Carabidae bees. Many fear that if Cape bees ever spread out- side of South Africa, they may be a significant A family of beetles (order Coleoptera). They com- problem for beekeepers worldwide. monly are known as ground beetles. Beetles References Hepburn HR (2001) The enigmatic Cape honey bee,Apis mel- Carabid Beetles (Coleoptera: lifera capensis.
    [Show full text]
  • Establishment of Parasitoids of the Lily Leaf Beetle in North America
    Environmental Entomology, 2017, 1–11 doi: 10.1093/ee/nvx049 Biological Control - Parasitoids and Predators Research Establishment of Parasitoids of the Lily Leaf Beetle (Coleoptera: Chrysomelidae) in North America Lisa Tewksbury,1,2 Richard A. Casagrande,1 Naomi Cappuccino,3 and Marc Kenis4 1Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Biology, Carleton University, Ottawa, ON K1S 5B6 ([email protected]), and 4CABI, Dele´mont, CH 2800, Switzerland ([email protected]), Subject Editor: James Nechols Received 15 September 2016; Editorial decision 30 January 2017 Abstract Three larval parasitoids were imported from Europe to control the lily leaf beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae), an accidentally introduced herbivore of native and cultivated lilies in North America. Tetrastichus setifer Thomson (Hymenoptera: Eulophidae) was introduced in Massachusetts in 1999, and was found to be established there in 2002. Subsequent releases of T. setifer were made and two additional parasitoids, Lemophagus errabundus Szepligeti (Hymenoptera: Ichneumonidae) and Diaparsis jucunda (Holmgren) (Hymenoptera: Ichneumonidae), were introduced. The establishment and distribution of the three parasitoids was evaluated through 2016. Tetrastichus setifer is now established in Massachusetts, Rhode Island, New Hampshire, Maine, Connecticut, and Ontario, Canada. Lemophagus errabundus is established in Massachusetts and Rhode Island, and D. jucunda is established in Massachusetts, Rhode Island, Connecticut, and Maine. All three parasitoids have spread at least 10 km from release sites. The establishment of T. setifer is associated with a substantial reduction of L. lilii. In time it is likely that the parasitoids will spread throughout the North American range of L.
    [Show full text]
  • (Coleoptera: Chrysomelidae) of Korea, with Comments and New Records
    Number 404: 1-36 ISSN 1026-051X April 2020 https://doi.org/10.25221/fee.404.1 http://zoobank.org/References/C2AC80FF-60B1-48C0-A6D1-9AA4BAE9A927 AN ANNOTATED CHECKLIST OF LEAF BEETLES (COLEOPTERA: CHRYSOMELIDAE) OF KOREA, WITH COMMENTS AND NEW RECORDS H.-W. Cho1, *), S. L. An 2) 1) Animal & Plant Research Team, Nakdonggang National Institute of Biological Resources, 137 Donam 2-gil, Sangju 37242, Republic of Korea. *Corresponding author, E-mail: [email protected] 2) Division of Research, National Science Museum, 481 Daedeok-daero, Yuseong-gu, Daejeon 34143, Republic of Korea. Summary. An updated list of Chrysomelidae of Korea is provided with comments on all taxonomic, nomenclatural, and distributional changes. This paper is the first attempt to divide the distributional records of all Korean Chrysomelidae into records for North and South Korea. In total, 128 genera and 424 species are reported: 293 species in North Korea, 340 in South Korea, and 10 without precise localities in Korea; 22 species are excluded from the Korean fauna; 15 new national records from South Korea are reported, 10 of which are new to Korea. Key words: Chrysomelidae, fauna, new record, taxonomy, North Korea, South Korea. Х. В. Чо, С. Л. Ан. Аннотированный список жуков-листоедов (Coleop- tera: Chrysomelidae) Кореи с замечаниями и новыми указаниями // Дальне- восточный энтомолог. 2020. N 404. С. 1-36. Резюме. Приводится обновленный список жуков-листоедов (Chrysomelidae) Кореи с таксономическим и номенклатурным изменениями и замечаниями по 1 распространению. Предпринята первая попытка разделения фаунистических данных по всем корейским листоедам на указания для северной и южной частей полуострова. Всего приводятся 424 вида из 128 родов, из которых 293 вида отмечены для Северной, 340 видов – для Южной Кореи, а 10 видов – из Кореи без более точного указания; 22 вид искючен из фауны Корейского полу- острова; 15 видов впервые указаны для Республики Корея, из них 10 видов являются новыми для полуострова.
    [Show full text]