Cereal Leaf Beetle, Oulema Melanopus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Insect Management
C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing. -
Crop Colonization by Pests and Specialist Enemies
insects Article Dispersal in Host–Parasitoid Interactions: Crop Colonization by Pests and Specialist Enemies Edward W. Evans Department of Biology, Utah State University, Logan, UT 84322-5305, USA; [email protected]; Tel.: +01-435-797-2552 Received: 7 September 2018; Accepted: 2 October 2018; Published: 5 October 2018 Abstract: Interactions of insect pests and their natural enemies increasingly are being considered from a metapopulation perspective, with focus on movements of individuals among habitat patches (e.g., individual crop fields). Biological control may be undercut in short-lived crops as natural enemies lag behind the pests in colonizing newly created habitat. This hypothesis was tested by assessing parasitism of cereal leaf beetle (Oulema melanopus) and alfalfa weevil (Hypera postica) larvae at varying distances along transects into newly planted fields of small grains and alfalfa in northern Utah. The rate of parasitism of cereal leaf beetles and alfalfa weevils by their host-specific parasitoids (Tetrastichus julis (Eulophidae) and Bathyplectes curculionis (Ichneumonidae), respectively) was determined for earliest maturing first generation host larvae. Rates of parasitism did not vary significantly with increasing distance into a newly planted field (up to 250–700 m in individual experiments) from the nearest source field from which pest and parasitoid adults may have immigrated. These results indicate strong, rapid dispersal of the parasitoids in pursuing their prey into new habitat. Thus, across the fragmented agricultural landscape of northern Utah, neither the cereal leaf beetle nor the alfalfa weevil initially gained substantial spatial refuge from parasitism by more strongly dispersing than their natural enemies into newly created habitat. -
The Cereal Leaf Beetle, Oulema Melanopus
January 2014 Agdex 622-29 Cereal Leaf Beetle he cereal leaf beetle, Oulema melanopus include edges of crops and woodlots, fence rows, sparse T L. (Coleoptera: Chrysomelidae), is an invasive insect woods and dense woods. After emerging, the adults from Europe that feeds on cereal crops, including wheat, disperse to host crops, feed, mate and lay eggs. Peak egg barley and oats. It was first discovered in North America laying occurs in May. in 1962 in the state of Michigan. The cereal leaf beetle now is found in most cereal production areas of the Eggs United States. Eggs are laid on the upper surfaces of leaves along the margins or close to the leaf mid-rib. Oats and barley are preferred hosts for egg laying, but spring-planted wheat, Background winter wheat and other grasses are also hosts. Cereal leaf beetle was first observed in Alberta in 2005, Eggs are laid singly or in multiple clusters Saskatchewan in 2008 and in Manitoba in of two or three, touching end to end. 2009. Computer modeling based on Newly laid eggs are bright yellow, but current environmental conditions The cereal leaf darken to orange-brown and then black suggests that the cereal leaf beetle could before hatching. Eggs are cylindrical and invade all cereal growing areas of beetle feeds on measure 0.4 by 0.9 mm. Canada. wheat, barley The eggs hatch in about 4 to 6 days, and The beetle is widespread throughout the the most favourable developmental southern part of Alberta, from Pincher and oats. temperature is about 21° C. -
Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230
Curriculum Vitae Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230 Research Associate The Smithsonian Tropical Research Institute Box 2072, Balboa, Ancon Republic of Panamá Education Ph. D., State University of New York at Stony Brook (1977) M.A., State University of New York at Stony Brook (1975) B.A., Hiram College, Hiram, Ohio (1972) Honors, Awards and Grants National Science Foundation DEB 0108213 (2001-2005) $533,895 Andrew W. Mellon Foundation Grant for Exploratory Research (1996) $3000 Chapman Memorial Fund Grant, American Museum of Natural History (1977) $1000 Invited Participant. Organization for Tropical Studies Field Ecology Course. Costa Rica (1976) Graduate Council Fellow. S.U.N.Y. at Stony Brook (1972-1974) Magna Cum Laude, Dept. Honors in Art and Biology. Hiram College (1972) Phi Beta Kappa Professional experience 1999-present Research Associate Professor. Department of Ecology and Evolution. Stony Brook University. 1997-present Research Associate. The Smithsonian Tropical Research Institute, Panamá. 1996-1998 Research Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. 1992-1996 Adjunct Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. Publications Vencl FV & Srygley RB (2013) Proximate effects of maternal oviposition preferences on defense efficacy and larval survival in a diet-specialized tortoise beetle: who knows best - mothers or their progeny? Ecol. Entomol DOI: 10.1111/een.12052 Vencl FV & Srygley RB (2013) Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal. Evo. Ecol. -
Distinct Barcodes for the Cereal Leaf Beetles Oulema Melanopus and Oulema Duftschmidi (Coleoptera: Chrysomelidae), Two Syntopical Sibling Species
EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 117: 490–503, 2020 http://www.eje.cz doi: 10.14411/eje.2020.052 ORIGINAL ARTICLE Distinct barcodes for the Cereal leaf beetles Oulema melanopus and Oulema duftschmidi (Coleoptera: Chrysomelidae), two syntopical sibling species JULIE LEROY 1, JEAN-DAVID CHAPELIN-VISCARDI 1, GUÉNAËLLE GENSON 2, JULIEN HARAN 2, ÉRIC PIERRE 2 and JEAN-CLAUDE STREITO 2 1 Laboratoire d’Éco-Entomologie, 5 rue Antoine Mariotte, 45000 Orléans, France; e-mails: [email protected], [email protected] 2 CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France; e-mails: [email protected], [email protected], [email protected], [email protected] Key words. Coleoptera, Chrysomelidae, Oulema, cereal leaf beetles, DNA barcode, COI, identifi cation, crop pests, Europe Abstract. Oulema melanopus (Linnaeus, 1758) and Oulema duftschmidi (Redtenbacher, 1874) (Coleoptera: Chrysomelidae) are two native West Palaearctic species developing on various cultivated and wild grasses. Along with O. obscura they are considered to be secondary pests of cereal crops. However, local outbreaks have been recorded recently and their status as secondary pests may evolve, especially as the use of broad-spectrum insecticides is now greatly reduced. Oulema melanopus and O. duftschmidi are considered to be sibling species. They are morphologically very close and diffi cult to distinguish from each other, which makes it diffi cult to study them. We tested the reliability of the standard barcode fragment (COI) for distinguishing between these spe- cies. A total of 92 samples of the two species, covering the majority of their natural range, was sequenced for the barcode frag- ment and inter- and intraspecifi c genetic distances were estimated. -
Coleoptera, Chrysomelidae) in Azerbaijan
Turk J Zool 25 (2001) 41-52 © T†BÜTAK A Study of the Ecofaunal Complexes of the Leaf-Eating Beetles (Coleoptera, Chrysomelidae) in Azerbaijan Nailya MIRZOEVA Institute of Zoology, Azerbaijan Academy of Sciences, pr. 1128, kv. 504, Baku 370073-AZERBAIJAN Received: 01.10.1999 Abstract: A total of 377 leaf-eating beetle species from 69 genera and 11 subfamilies (Coleoptera, Chrysomelidae) were revealed in Azerbaijan, some of which are important pests of agriculture and forestry. The leaf-eating beetle distribution among different areas of Azerbaijan is presented. In the Great Caucasus 263 species are noted, in the Small Caucasus 206, in Kura - Araks lowland 174, and in Lenkoran zone 262. The distribution of the leaf-eating beetles among different sites is also described and the results of zoogeographic analysis of the leaf-eating beetle fauna are presented as well. Eleven zoogeographic groups of the leaf-eating beetles were revealed in Azerbaijan, which are not very specific. The fauna consists mainly of the common species; the number of endemic species is small. Key Words: leaf-eating beetle, larva, pest, biotope, zoogeography. AzerbaycanÕda Yaprak Bšcekleri (Coleoptera, Chrysomelidae) FaunasÝ †zerinde AraßtÝrmalar …zet: AzerbeycanÕda 11 altfamilyadan 69 cinse ait 377 YaprakbšceÛi (Col.: Chrysomelidae) tŸrŸ belirlenmißtir. Bu bšceklerden bazÝlarÝ tarÝm ve orman alanlarÝnda zararlÝ durumundadÝr. Bu •alÝßmada YaprakbšcekleriÕnin AzerbeycanÕÝn deÛißik bšlgelerindeki daÛÝlÝßlarÝ a•ÝklanmÝßtÝr. BŸyŸk KafkasyaÕda 263, KŸ•Ÿk KafkasyaÕda 206, KŸr-Aras ovasÝnda 174, Lenkaran BšlgesiÕnde ise 262 tŸr bulunmußtur. Bu tŸrlerin farklÝ biotoplardaki durumu ve daÛÝlÝßlarÝ ile ilgili zoocografik analizleride bu •alÝßmada yer almaktadÝr. AzerbeycanÕda belirlenen Yaprakbšcekleri 11 zoocografik grupda incelenmißtir. YapÝlan bu fauna •alÝßmasÝnda belirlenen tŸrlerin bir•oÛu yaygÝn olarak bulunan tŸrlerdir, endemik tŸr sayÝsÝ olduk•a azdÝr. -
Establishment of Parasitoids of the Lily Leaf Beetle in North America
Environmental Entomology, 2017, 1–11 doi: 10.1093/ee/nvx049 Biological Control - Parasitoids and Predators Research Establishment of Parasitoids of the Lily Leaf Beetle (Coleoptera: Chrysomelidae) in North America Lisa Tewksbury,1,2 Richard A. Casagrande,1 Naomi Cappuccino,3 and Marc Kenis4 1Department of Plant Sciences and Entomology, University of Rhode Island, Kingston, RI 02881 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], 3Department of Biology, Carleton University, Ottawa, ON K1S 5B6 ([email protected]), and 4CABI, Dele´mont, CH 2800, Switzerland ([email protected]), Subject Editor: James Nechols Received 15 September 2016; Editorial decision 30 January 2017 Abstract Three larval parasitoids were imported from Europe to control the lily leaf beetle, Lilioceris lilii Scopoli (Coleoptera: Chrysomelidae), an accidentally introduced herbivore of native and cultivated lilies in North America. Tetrastichus setifer Thomson (Hymenoptera: Eulophidae) was introduced in Massachusetts in 1999, and was found to be established there in 2002. Subsequent releases of T. setifer were made and two additional parasitoids, Lemophagus errabundus Szepligeti (Hymenoptera: Ichneumonidae) and Diaparsis jucunda (Holmgren) (Hymenoptera: Ichneumonidae), were introduced. The establishment and distribution of the three parasitoids was evaluated through 2016. Tetrastichus setifer is now established in Massachusetts, Rhode Island, New Hampshire, Maine, Connecticut, and Ontario, Canada. Lemophagus errabundus is established in Massachusetts and Rhode Island, and D. jucunda is established in Massachusetts, Rhode Island, Connecticut, and Maine. All three parasitoids have spread at least 10 km from release sites. The establishment of T. setifer is associated with a substantial reduction of L. lilii. In time it is likely that the parasitoids will spread throughout the North American range of L. -
A New Gall-Inducing Shining Leaf Beetle (Coleoptera: Chrysomelidae) from Thailand and Its Relevance to the Evolution of Herbivory in Leaf Beetles
A new gall-inducing shining leaf beetle (Coleoptera: Chrysomelidae) from Thailand and its relevance to the evolution of herbivory in leaf beetles Fredric V. Vencl1 and Kenji Nishida2 Abstract. Extremely few gall-inducing Coleoptera attack Monocotyledonae. We de- scribe and report on a new species of true shining leaf beetle, whose larvae form complex, multilayered galls on the host plant. During a field survey in Western Thai- land, a galling member of the genus Oulema (Criocerinae) was discovered in a pre- montane rainforest attacking Commelina paludosa, a member of the monocotyle- donous dayflowers (Commelinaceae). Our report is the first instance of a galling member of the genus Oulema and is described herein O. reclusa. The galler’s adult habitus exhibits the general traits typical of the genus Oulema: front of the head be- tween the eyes narrow, with the sides forming an angle of more than 90°; emarginate pronotum, moderately constricted below the middle; antennae filiform, longer than half the body length; two small protuberances on the vertex, almost touching; claws connate; 9th elytral stria with a complete row of punctures. The larva is extremely reduced, lacking discernable setae, a dorsal anus, ambulatory warts and ocelli. Our observation of a coleopterous gall-inducer may be the first on a monocot. Despite the fact that the putative sister taxa of the Criocerinae are the Sagrinae and the Bruchidae, gall-inducers and seed feeders respectively, we believe that gall-induction, as well as leaf mining in Oulema, are derived trophic habits within the Criocerinae. We discuss the relevance of this discovery to the evolution of ecto- and endophagy in the Criocerinae, a very basal subfamily within the broad Chrysomelidae radiation. -
MECHEGM STATE UNIVERSE” Marcus Tully Weils, 31'
EVALUATEQN OF METH CD 9' GE CHEMMAL CQE‘éTfiC-L OF THE CEREAL LEAF BEETLE (@ULEMfi MELANCE’US, L.) WtTH MEEEE’CT TO AN [HTEGEATED ELAN must-s for “to Dwm (if M. 5. MECHEGM STATE UNIVERSE” Marcus Tully Weils, 31'. £967 - AA‘A ““‘LJAA L‘AL LIBRARY THESIS Michigan State University ‘ ‘-D~»-dDF~O‘OM-—-fi - ABSTRACT EVALUATION OF METHODS OF CHEMICAL CONTROL OF THE CEREAL LEAF BEETLE (Oulema melanopus, L.) WITH RESPECT TO AN INTEGRATED PLAN By Marcus Tully Wells, Jr. In the spring of 1966, chemical control techniques, with respect to an integrated plan, suitable to reduce and maintain the cereal leaf beetle at a non—economic level were evaluated. Also four insecticides (malathion, Baygon, lindane, dieldrin) were tested to determine their relative effectiveness and to evaluate their potential for the possible use in an integrated control program. Winter wheat fields were selected in a given area of heavy beetle infestation and treated with four known cereal leaf beetle insecticides. This was done early in the spring after the emergence of overwintering adults, but before many eggs had been laid. By treating the fields when the majority of beetles were in the wheat, it was possible to effectively reduce the egg laying population. The premise was that spring grain fields may not need treatments if the beetle is eliminated in the winter grain fields. An experiment was also conducted to evaluate the effectiveness of a single suppression spray of malathion as compared to an eradica— tion oriented application of four malathion treatments. The four Marcus Tully Wells, Jr. -
Transmission of Maize Chlorotic Mottle Virus by Chrysomelid Beetles L
Vector Relations Transmission of Maize Chlorotic Mottle Virus by Chrysomelid Beetles L. R. Nault, W. E. Styer, M. E. Coffey, D. T. Gordon L. S. Negi, and C. L. Niblett First three authors, Department of Entomology, next two authors, Department of Plant Pathology, Ohio Agricultural Research and Development Center (OARDC), Wooster, OH 44691; last author, Department of Plant Pathology, Kansas State University, Manhattan, KS 66506. We gratefully acknowledge the technical assistance of D. Bockelman and F. Buzen. This research was supported financially in part by U.S. Department of Agriculture, Agricultural Research Service, Cooperative Agreement 12-14-3001-581 and a grant from Pioneer Hi-Bred International, Inc. Approved for publication as Journal Series Article 167-77 of the OARDC, and Contribution 78-129, Department of Plant Pathology, Kansas State Agricultural Experiment Station, Manhattan. Accepted for publication 24 January 1978. ABSTRACT NAULT, L. R., W. E. STYER, M. E. COFFEY, D. T. GORDON, L. S. NEGI, and C. L. NIBLETT. 1978. Transmission of maize chlorotic mottle virus by chrysomelid beetles. Phytopathology 68: 1071-1074. Maize chlorotic mottle virus (MCMV) is transmitted by after acquisition. Crushed adult D. virgifera collected from six species of beetles belonging to the family Chrysomelidae: infected fields in Kansas reacted positively with MCMV the cereal leaf beetle (Oulema melanopa), the corn flea beetle antiserum. Two other insects with mandibulate mouth parts, (Chaetocnema pulicaria), the flea beetle (Systenafrontalis), the Japanese beetle (Popillia japonica) and larvae of the the southern corn rootworm (Diabroticaundecimpunctata), black cutworm (Agrotis ipsilon), failed to transmit MCMV the northern corn rootworm (D. longicornis), and the as did three aphid species, and a leafhopper, a planthopper, western corn rootworm (D. -
ELECTRONIC JOURNAL of POLISH AGRICULTURAL UNIVERSITIES 2004 Volume 7 Issue 1 Series AGRONOMY
Electronic Journal of Polish Agricultural Universities is the very first Polish scientific journal published exclusively on the Internet, founded on January 1, 1998 by the following agricultural universities and higher schools of agriculture: University of Technology and Agriculture of Bydgoszcz, Agricultural University of Cracow, Agricultural University of Lublin, Agricultural University of Poznan, Higher School of Agriculture and Teacher Training Siedlce, Agricultural University of Szczecin, and Agricultural University of Wroclaw. ELECTRONIC 2004 JOURNAL Volume 7 OF POLISH Issue 1 AGRICULTURAL Series UNIVERSITIES AGRONOMY Copyright © Wydawnictwo Akademii Rolniczej we Wroclawiu, ISSN 1505-0297 ULRICH W., CZARNECKI A., KRUSZYŃSKI T. 2004. OCCURRENCE OF PEST SPECIES OF THE GENUS Oulema (COLEOPTERA: CHRYSOMELIDAE) IN CEREAL FIELDS IN NORTHERN POLAND Electronic Journal of Polish Agricultural Universities, Agronomy, Volume 7, Issue 1. Available Online http://www.ejpau.media.pl OCCURRENCE OF PEST SPECIES OF THE GENUS Oulema (COLEOPTERA: CHRYSOMELIDAE) IN CEREAL FIELDS IN NORTHERN POLAND Werner Ulrich, Adam Czarnecki, Tomasz Kruszyński Department of Animal Ecology, Nicolaus Copernicus University in Toruń, Poland ABSTRACT INTRODUCTION MATERIAL AND METHODS RESULTS DISCUSSION CONCLUSIONS ACKNOWLEDGMENTS REFERENCES ABSTRACT The cereal leaf beetles Oulema melanopus L. and Oulema gallaeciana Heyden (Chrysomelidae) are common pests in European and North American cereal fields. Here we report infestation rates by Oulema spp. and yield loss of winter wheat and barley in Northern Poland (1995 to 1997) and show that both Oulema species might be of significant economic importance. Oulema melanopus was in all the three study years more abundant than Oulema gallaeciana. Larval densities ranged from 22 to 26 larvae per 100 stalks for winter wheat and 29 to 36 larvae per 100 stalks for barley. -
Quantifing Diversity and Phenology of Cereal Leaf Beetles Oulema Spp
Journal of Bioresource Management Volume 8 Issue 3 Article 2 Quantifing Diversity and Phenology of Cereal Leaf Beetles Oulema Spp. (Chrysomelidae: Criocerinae) in Several Cereal Fields of Semi-Arid Zone, Algeria Chirine Amri Department of Living Beings, Faculty of Exact Sciences and Sciences of Nature and Life, University Larbi Tebessi, 12002 Tebessa, Algeria, [email protected] Follow this and additional works at: https://corescholar.libraries.wright.edu/jbm Part of the Biodiversity Commons, and the Entomology Commons Recommended Citation Amri, C. (2021). Quantifing Diversity and Phenology of Cereal Leaf Beetles Oulema Spp. (Chrysomelidae: Criocerinae) in Several Cereal Fields of Semi-Arid Zone, Algeria, Journal of Bioresource Management, 8 (3). DOI: https://doi.org/10.35691/JBM.1202.0190 ISSN: 2309-3854 online (Received: Apr 3, 2021; Accepted: Apr 26, 2021; Published: Aug 2, 2021) This Article is brought to you for free and open access by CORE Scholar. It has been accepted for inclusion in Journal of Bioresource Management by an authorized editor of CORE Scholar. For more information, please contact [email protected]. Quantifing Diversity and Phenology of Cereal Leaf Beetles Oulema Spp. (Chrysomelidae: Criocerinae) in Several Cereal Fields of Semi-Arid Zone, Algeria Cover Page Footnote The author is grateful to all volunteers who contributed to sampling during study period, and thanks referees who performed the first version of the manuscript. © Copyrights of all the papers published in Journal of Bioresource Management are with its publisher, Center for Bioresource Research (CBR) Islamabad, Pakistan. This permits anyone to copy, redistribute, remix, transmit and adapt the work for non-commercial purposes provided the original work and source is appropriately cited.