A New Gall-Inducing Shining Leaf Beetle (Coleoptera: Chrysomelidae) from Thailand and Its Relevance to the Evolution of Herbivory in Leaf Beetles

Total Page:16

File Type:pdf, Size:1020Kb

A New Gall-Inducing Shining Leaf Beetle (Coleoptera: Chrysomelidae) from Thailand and Its Relevance to the Evolution of Herbivory in Leaf Beetles A new gall-inducing shining leaf beetle (Coleoptera: Chrysomelidae) from Thailand and its relevance to the evolution of herbivory in leaf beetles Fredric V. Vencl1 and Kenji Nishida2 Abstract. Extremely few gall-inducing Coleoptera attack Monocotyledonae. We de- scribe and report on a new species of true shining leaf beetle, whose larvae form complex, multilayered galls on the host plant. During a field survey in Western Thai- land, a galling member of the genus Oulema (Criocerinae) was discovered in a pre- montane rainforest attacking Commelina paludosa, a member of the monocotyle- donous dayflowers (Commelinaceae). Our report is the first instance of a galling member of the genus Oulema and is described herein O. reclusa. The galler’s adult habitus exhibits the general traits typical of the genus Oulema: front of the head be- tween the eyes narrow, with the sides forming an angle of more than 90°; emarginate pronotum, moderately constricted below the middle; antennae filiform, longer than half the body length; two small protuberances on the vertex, almost touching; claws connate; 9th elytral stria with a complete row of punctures. The larva is extremely reduced, lacking discernable setae, a dorsal anus, ambulatory warts and ocelli. Our observation of a coleopterous gall-inducer may be the first on a monocot. Despite the fact that the putative sister taxa of the Criocerinae are the Sagrinae and the Bruchidae, gall-inducers and seed feeders respectively, we believe that gall-induction, as well as leaf mining in Oulema, are derived trophic habits within the Criocerinae. We discuss the relevance of this discovery to the evolution of ecto- and endophagy in the Criocerinae, a very basal subfamily within the broad Chrysomelidae radiation. Keywords. gall, Oulema, Commelina, Monocotyledonae, Chrysomelidae, Criocerinae. 1 Ecology and Evolution, Stony Brook University, Stony Brook, ny, 11794-5245 and The Smithsonian Tropical Research Institute, P.O. Box 2072, Balboa, Ancon, Republic of Panama (from U.S.A.) unit 0948, apo aa 34002. [email protected] 2 Sistema de Estudios de Posgrado en Biología, Escuela de Biología, Universidad de Costa Rica, 2060 San José, Costa Rica. [email protected] A new gall-inducing shining leaf beetle (Coleoptera: Chrysomelidae) from Thailand 247 1. Introduction Extremely few gall-inducing Coleoptera attack the Monocotyledonae. Here we re- port on a true shining leaf beetle, whose larvae form complex, multilayered galls on its monocotyledonous host plant. During a field survey in Thailand, the second author discovered a galling member of the chrysomelid subfamily Criocerinae as- sociated with a monocot in the dayflower genus Commelina (Commelinaceae). The Criocerinae are a cosmopolitan group of nearly 2000 species distinguished by their brilliant, often colorful appearance, narrow, sometimes hour-glass shaped pronotum, and excrement-covered, folivorous larvae. Subsequent inspection sug- gested that this is the first instance of a galling member of the genus Oulema De Gozis, and is described herein. With the exception of the mining Oulema pumilo Vencl and Aiello, and Lema quadrivittata Boheman, the putatively galling Orthole- ma samalkotensis Heinze and O. abnormis Heinze, and several stem bores (Schmitt pers. com.; Vencl and Aiello 1997;Venclet al. 2004), the larvae of the vast majority of shining leaf beetles are external grazers on leaf surfaces of both Monocotyle- donae and Dicotyledonae (Monrós 1960; Schmitt 1988; Jolivet and Hawkswood 1995;Venclet al. 2004). The present case represents a notable exception and as such, an interesting problem for our understanding of the selective factors that influ- enced the evolution of trophic modes in larval Criocerinae in particular, and in exophytic phytophagous insects in general. Here we ask if internal foraging behav- iors, such as galling, boring and mining, were the progenitors of the leaf surface trophic mode, which now predominates within the Criocerinae, or, alternatively, whether internal feeding represents a highly derived habit, perhaps reflecting a re- treat from the high costs associated with the invasion of the leaf-surface adaptive zone (sensu Simpson 1953). We present below our understanding of this remark- able discovery. 2. Study site and habitat Galls were found on a dayflower Commelina paludosa Blume (Commelinaceae), at 962 m at Thong Pha Phum National Park (14°41´29.7N, 098°24´04.5˝E). The Park is located in Kanchanaburi Province, Thailand, which borders Myanmar (Fig. 1). The study site, a large bamboo thicket at bottom of a hill, was shaded, very humid and the ground was moist at the time of the investigation (Plate 29 A). The climate in this area is tropical pre-montane rain forest, with a southeastern monsoon rainy season lasting from May to July, and a northeastern monsoon with a distinct dry season lasting from November to January (Thong Pha Phum National Park 2004). 3. The host plant A perennial, C. paludosa Blume has erect, sometimes smooth, distally branched stems, which grow to 1 m. The leaves are lanceolate to ovate-lanceolate, sessile, 248 Fredric V. Vencl and Kenji Nishida Figure 1. Collection site of Oulema reclusa, sp. nov., Thong Pha Phum National Park, located in Kanchanaburi Province, Western Thailand (14°41´29.7˝N, 98°24´4.5˝E). generally glabrous, with sheathing petioles, reaching a length of 6 cm. The chief characteristics of C. paludosa are a three stamen-three staminoid configuration, two blue enlarged upper petals, and connate, spath-like involucral bracts (Plate 29 B). Galls may induce branching as they were frequently found at stem junctions. Growing in well-drained areas at mid-elevations, C. paludosa is distributed broadly from South Central China, Nepal to Malaysia (Shu 2000). 4. The gall Galls were collected at the beginning of the dry season in late October and early November 2005. Galls occurred on the host’s stems and induced stem branch points at leaf bases of the sheathing petioles and axillary shoots, possibly causing forma- tion of a new shoot. Although the host plants were common along the bamboo thicket, galls were uncommon and no plants had more than one gall. Of the seven at our disposal, mature galls were globose to spindle shaped, with an average (± se) length × width of 22.19 ± 2.44 × 15.79 ± 0.083 mm (Plate 29 C, D). The un-galled part of the stem (normal stems) averaged 2.5 to 3.0 mm in diameter. The outer sur- face was reddish in color and cracked in some galls (Plate 29 C). Each gall contained a single, narrow chamber with an average (± se) chamber length of 8.06 ± 0.71 mm, containing a single larva, pupa or adult. A relatively irregular margin of large, A new gall-inducing shining leaf beetle (Coleoptera: Chrysomelidae) from Thailand 249 succulent white to translucent ‘nutritive’ tissue surrounded the chamber, which appears to be modified parenchyma (Plate 29 E, F). The mature gall which con- tained a pupa or an adult had a brown (dried) circular, thin layer of the plant epidermis at the exit orifice. It is most likely that the mature larva constructs this circular exit orifice prior to pupation. 5. The adult Oulema reclusa Vencl and Nishida, new species Plate 29 G Diagnosis The adult habitus is 5.26 mm in length and of a uniform, pale yellow- ish-tan. The head is divided and distinctly bituberculate at the vertex. The head and pronotum are narrower than elytra; front of the head between the eyes nar- row, with the sides forming an angle of more than 90°; the claws are connate; the elytra lack any color patterning; and the 9th stria of elytral punctation is complete. Description: Form sub-cylindrical. Head: yellowish tan, shiny, moderately con- stricted behind the eyes and head much narrower than the width of the pronotum; clypeus, labrum and mouth parts with pale tannish-yellow ground color and finely setose; frons separated from the vertex by deep grooves forming an ‘X’ with the angle between them less than 90°; front of head between the eyes narrow, with sides forming an angle of more than 90°; the antennal tubercles almost touching and much closer together than the vertex-frons intersection; vertex weakly divided by a broad, longitudinal depression; antennae are of a uniform tan color, filiform, with 11 segments and longer than 1/2 the body length; segments 5 and 6 equal in length; eyes black, deeply notched to 1/3 their diameter; mandibles black at apices. Pronotum: Pale yellowish-tan, shiny, glabrous and emarginate, with a shallow, sub- medial constriction, 96% of apical width, near base; disc with a long, curved lat- eral seta projecting from each corner; a fine median pit in sulcus. Elytra: Shiny, uniformly yellowish-tan, with a pronounced basal depression; punctation coarse and uniformly spaced, becoming somewhat irregular to obsolete toward the apex; punctation of the 9th stria complete; scutellum tan. Venter: Uniformly yellowish- tan, evenly setose; minutely and evenly punctose; legs uniformly pale yellowish- tan; metafemora slightly swollen; two apical metatibial spurs; tibiae and tarsi very finely setose; claws connate and black. Holotype Female: Reared from a stem gall on Commelina paludosa, Thong Pha Phum National Park (14°41´29.7˝N, 098°24´04.5˝E), 962 m, Thailand, 2005. The pinned holotype is deposited in the U.S. National Museum with its gall voucher (dried). Emergence phenology The single gall to produce an adult was collected on 21 October 2004 and eclosed 25 days later. Host plant Commelina paludosa Blume (Commelinaceae). Distribution The only location known so far is the holotype locality, a mid- elevation, pre-montane rainforest above 500 m. 250 Fredric V. Vencl and Kenji Nishida Etymology Derived from Middle English, from Old French reclus, meaning hid- den or secretive from the world; originally from the Latin reclasus, past participle of recludare, to shut up or to close.
Recommended publications
  • Subfamily Criocerinae
    Subfamily Criocerinae Checklist From the Checklist of Beetles of the British Isles, 2008 edition, edited by A. G. Duff (available from www.coleopterist.org.uk/checklist.htm). Currently accepted names are written in bold italics, synonyms used by Joy in italics. CRIOCERIS Geoffroy, 1762 asparagi (Linnaeus, 1758) LEMA Fabricius, 1798 cyanella (Linnaeus, 1758) (= puncticollis Curtis, 1830) LILIOCERIS Reitter, 1912 lilii (Scopoli, 1763) OULEMA des Gozis, 1886 erichsoni (Suffrian, 1841) melanopus (Linnaeus, 1758) (= melanopa). obscura (Stephens, 1831) (= lichenis) rufocyanea (Suffrian, 1847) (= melanopa; rufocyanea and melanopus separated later) septentrionis (Weise, 1880) Image Credits The illustrations in this key are reproduced from the Iconographia Coleopterorum Poloniae, with permission kindly granted by Lech Borowiec. © Mike Hackston (2009) Subfamily Criocerinae Key to British genera and species adapted from Joy (1932) by Mike Hackston 1 Elytra green or blue with the sides reddish and with three yellow marks on each elytron which sometimes run together. ........................................ .......... Crioceris asparagi England northwards to Derbyshire on Asparagus officinalis. Length 5-6.5 mm. Elytra more or less uniformly reddish. ....................................... .......... Lilioceris lilii First recorded in 1940 this species has spread rapidly through England and south Wales, reaching central Scotland and Northern Ireland by 2002. It is a pest of Lilium species Elytra uniformly green or blue to bluish black. .....................................................2
    [Show full text]
  • Crop Colonization by Pests and Specialist Enemies
    insects Article Dispersal in Host–Parasitoid Interactions: Crop Colonization by Pests and Specialist Enemies Edward W. Evans Department of Biology, Utah State University, Logan, UT 84322-5305, USA; [email protected]; Tel.: +01-435-797-2552 Received: 7 September 2018; Accepted: 2 October 2018; Published: 5 October 2018 Abstract: Interactions of insect pests and their natural enemies increasingly are being considered from a metapopulation perspective, with focus on movements of individuals among habitat patches (e.g., individual crop fields). Biological control may be undercut in short-lived crops as natural enemies lag behind the pests in colonizing newly created habitat. This hypothesis was tested by assessing parasitism of cereal leaf beetle (Oulema melanopus) and alfalfa weevil (Hypera postica) larvae at varying distances along transects into newly planted fields of small grains and alfalfa in northern Utah. The rate of parasitism of cereal leaf beetles and alfalfa weevils by their host-specific parasitoids (Tetrastichus julis (Eulophidae) and Bathyplectes curculionis (Ichneumonidae), respectively) was determined for earliest maturing first generation host larvae. Rates of parasitism did not vary significantly with increasing distance into a newly planted field (up to 250–700 m in individual experiments) from the nearest source field from which pest and parasitoid adults may have immigrated. These results indicate strong, rapid dispersal of the parasitoids in pursuing their prey into new habitat. Thus, across the fragmented agricultural landscape of northern Utah, neither the cereal leaf beetle nor the alfalfa weevil initially gained substantial spatial refuge from parasitism by more strongly dispersing than their natural enemies into newly created habitat.
    [Show full text]
  • The Cereal Leaf Beetle, Oulema Melanopus
    January 2014 Agdex 622-29 Cereal Leaf Beetle he cereal leaf beetle, Oulema melanopus include edges of crops and woodlots, fence rows, sparse T L. (Coleoptera: Chrysomelidae), is an invasive insect woods and dense woods. After emerging, the adults from Europe that feeds on cereal crops, including wheat, disperse to host crops, feed, mate and lay eggs. Peak egg barley and oats. It was first discovered in North America laying occurs in May. in 1962 in the state of Michigan. The cereal leaf beetle now is found in most cereal production areas of the Eggs United States. Eggs are laid on the upper surfaces of leaves along the margins or close to the leaf mid-rib. Oats and barley are preferred hosts for egg laying, but spring-planted wheat, Background winter wheat and other grasses are also hosts. Cereal leaf beetle was first observed in Alberta in 2005, Eggs are laid singly or in multiple clusters Saskatchewan in 2008 and in Manitoba in of two or three, touching end to end. 2009. Computer modeling based on Newly laid eggs are bright yellow, but current environmental conditions The cereal leaf darken to orange-brown and then black suggests that the cereal leaf beetle could before hatching. Eggs are cylindrical and invade all cereal growing areas of beetle feeds on measure 0.4 by 0.9 mm. Canada. wheat, barley The eggs hatch in about 4 to 6 days, and The beetle is widespread throughout the the most favourable developmental southern part of Alberta, from Pincher and oats. temperature is about 21° C.
    [Show full text]
  • Revision of Western Palaearctic Species of the Oulema Melanopus Group, with Description of Two New Species from Europe (Coleoptera: Chrysomelidae: Criocerinae)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 1.vi.2015 Volume 55(1), pp. 273–304 ISSN 0374-1036 http://zoobank.org/urn:lsid:zoobank.org:pub:597F0FC8-27B7-4A94-ABF4-EA245B6EF06E Revision of western Palaearctic species of the Oulema melanopus group, with description of two new species from Europe (Coleoptera: Chrysomelidae: Criocerinae) Jan BEZDĚK1) & Andrés BASELGA2) 1) Mendel University, Department of Zoology, Zemědělská 1, 613 00 Brno, Czech Republic; e-mail: [email protected] 2) Departamento de Zoología, Facultad de Biología, Universidad de Santiago de Compostela, Rúa Lope Gómez de Marzoa s/n, 15782 Santiago de Compostela, Spain; e-mail: [email protected] Abstract. Five species of the Oulema melanopus group are recognized in the western Palaearctic Region: O. melanopus (Linnaeus, 1758), O. rufocyanea (Suffrian, 1847), O. duftschmidi (Redtenbacher, 1874), O. mauroi sp. nov. (nor- thern Italy), and O. verae sp. nov. (Spain and Portugal). The two new species are described and illustrated. The nomenclature of the group is discussed in detail. Oulema rufocyanea is proved to be a validly described species different to O. duftschmidi. To fi x the nomenclatural stability of the whole group and avoid sub- sequent misintepretations, neotypes are designated for Crioceris melanopoda O. F. Müller, 1776; Crioceris hordei Geoffroy, 1785; and Lema cyanella var. atrata Waltl, 1835 (all conspecifi c with O. melanopus). The primary type specimens or their photographs were examined if they exist. The spelling Oulema melanopus is fi xed as correct and explained. Variation in the cytochrome c oxidase (cox1) gene across specimens of all the species has been analysed. All species in the group had extremely similar haplotypes, with interspecifi c sequence similarities between 90.5–99.5 %, compared to intraspecifi c sequence similarities between 91.6–100 %.
    [Show full text]
  • Newsletter Dedicated to Information About the Chrysomelidae Report No
    CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 55 March 2017 ICE LEAF BEETLE SYMPOSIUM, 2016 Fig. 1. Chrysomelid colleagues at meeting, from left: Vivian Flinte, Adelita Linzmeier, Caroline Chaboo, Margarete Macedo and Vivian Sandoval (Story, page 15). LIFE WITH PACHYBRACHIS Inside This Issue 2- Editor’s page, submissions 3- 2nd European Leaf Beetle Meeting 4- Intromittant organ &spermathecal duct in Cassidinae 6- In Memoriam: Krishna K. Verma 7- Horst Kippenberg 14- Central European Leaf Beetle Meeting 11- Life with Pachybrachis 13- Ophraella communa in Italy 16- 2014 European leaf beetle symposium 17- 2016 ICE Leaf beetle symposium 18- In Memoriam: Manfred Doberl 19- In Memoriam: Walter Steinhausen 22- 2015 European leaf beetle symposium 23- E-mail list Fig. 1. Edward Riley (left), Robert Barney (center) and Shawn Clark 25- Questionnaire (right) in Dunbar Barrens, Wisconsin, USA. Story, page 11 International Date Book The Editor’s Page Chrysomela is back! 2017 Entomological Society of America Dear Chrysomelid Colleagues: November annual meeting, Denver, Colorado The absence pf Chrysomela was the usual combina- tion of too few submissions, then a flood of articles in fall 2018 European Congress of Entomology, 2016, but my mix of personal and professional changes at July, Naples, Italy the moment distracted my attention. As usual, please consider writing about your research, updates, and other 2020 International Congress of Entomology topics in leaf beetles. I encourage new members to July, Helsinki, Finland participate in the newsletter. A major development in our community was the initiation of a Facebook group, Chrysomelidae Forum, by Michael Geiser. It is popular and connections grow daily.
    [Show full text]
  • Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230
    Curriculum Vitae Fredric Vincent Vencl Research Associate Professor Department of Ecology and Evolution Stony Brook University Stony Brook, NY, 11794-5230 Research Associate The Smithsonian Tropical Research Institute Box 2072, Balboa, Ancon Republic of Panamá Education Ph. D., State University of New York at Stony Brook (1977) M.A., State University of New York at Stony Brook (1975) B.A., Hiram College, Hiram, Ohio (1972) Honors, Awards and Grants National Science Foundation DEB 0108213 (2001-2005) $533,895 Andrew W. Mellon Foundation Grant for Exploratory Research (1996) $3000 Chapman Memorial Fund Grant, American Museum of Natural History (1977) $1000 Invited Participant. Organization for Tropical Studies Field Ecology Course. Costa Rica (1976) Graduate Council Fellow. S.U.N.Y. at Stony Brook (1972-1974) Magna Cum Laude, Dept. Honors in Art and Biology. Hiram College (1972) Phi Beta Kappa Professional experience 1999-present Research Associate Professor. Department of Ecology and Evolution. Stony Brook University. 1997-present Research Associate. The Smithsonian Tropical Research Institute, Panamá. 1996-1998 Research Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. 1992-1996 Adjunct Assistant Professor. Department of Neurobiology and Behavior. The State University of New York at Stony Brook. Publications Vencl FV & Srygley RB (2013) Proximate effects of maternal oviposition preferences on defense efficacy and larval survival in a diet-specialized tortoise beetle: who knows best - mothers or their progeny? Ecol. Entomol DOI: 10.1111/een.12052 Vencl FV & Srygley RB (2013) Enemy targeting, trade-offs, and the evolutionary assembly of a tortoise beetle defense arsenal. Evo. Ecol.
    [Show full text]
  • Distinct Barcodes for the Cereal Leaf Beetles Oulema Melanopus and Oulema Duftschmidi (Coleoptera: Chrysomelidae), Two Syntopical Sibling Species
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 117: 490–503, 2020 http://www.eje.cz doi: 10.14411/eje.2020.052 ORIGINAL ARTICLE Distinct barcodes for the Cereal leaf beetles Oulema melanopus and Oulema duftschmidi (Coleoptera: Chrysomelidae), two syntopical sibling species JULIE LEROY 1, JEAN-DAVID CHAPELIN-VISCARDI 1, GUÉNAËLLE GENSON 2, JULIEN HARAN 2, ÉRIC PIERRE 2 and JEAN-CLAUDE STREITO 2 1 Laboratoire d’Éco-Entomologie, 5 rue Antoine Mariotte, 45000 Orléans, France; e-mails: [email protected], [email protected] 2 CBGP, INRAE, CIRAD, IRD, Institut Agro, Univ Montpellier, Montpellier, France; e-mails: [email protected], [email protected], [email protected], [email protected] Key words. Coleoptera, Chrysomelidae, Oulema, cereal leaf beetles, DNA barcode, COI, identifi cation, crop pests, Europe Abstract. Oulema melanopus (Linnaeus, 1758) and Oulema duftschmidi (Redtenbacher, 1874) (Coleoptera: Chrysomelidae) are two native West Palaearctic species developing on various cultivated and wild grasses. Along with O. obscura they are considered to be secondary pests of cereal crops. However, local outbreaks have been recorded recently and their status as secondary pests may evolve, especially as the use of broad-spectrum insecticides is now greatly reduced. Oulema melanopus and O. duftschmidi are considered to be sibling species. They are morphologically very close and diffi cult to distinguish from each other, which makes it diffi cult to study them. We tested the reliability of the standard barcode fragment (COI) for distinguishing between these spe- cies. A total of 92 samples of the two species, covering the majority of their natural range, was sequenced for the barcode frag- ment and inter- and intraspecifi c genetic distances were estimated.
    [Show full text]
  • An Annotated Checklist of Criocerinae (Coleoptera: Chrysomelidae) of Iran
    Acta entomologica serbica, 20 19, 24(2) : 1-10 UDC : 595.768.1(55) DOI: 10.5281/zenodo.3541681 AN ANNOTATED CHECKLIST OF CRIOCERINAE (COLEOPTERA: CHRYSOMELIDAE) OF IRAN EBRU GÜL ASLAN 1* and HASSAN GHAHARI 2 1 Süleyman Demirel University, Faculty of Arts and Science, Biology Department, 32260, Isparta, Turkey *E-mail: [email protected] (corresponding author) 2 Department of Plant Protection, Yadegar-e- Imam Khomeini (RAH) Shahre Rey Branch, Islamic Azad University, Tehran, Iran E-mail: [email protected] Abstract A checklist for Iranian Criocerinae Latreille (Coleoptera: Chrysomelidae) is proposed. Based on a literature review, a total of 13 species within four genera, Crioceris Geoffroy (five species), Lilioceris Reitter (four species), Lema Fabricius (one species) and Oulema Des Gozis (three species), are given. Among the listed species, Lema (Lema ) cyanella Linnaeus, 1758 is a new record for the fauna of Iran. KEY WORDS : Fauna, species diversity, catalogue, Criocerinae, Palaearctic, Iran Introduction The subfamily Criocerinae (Coleoptera: Chrysomelidae), known as shining leaf beetles, includes 22 genera and about 1500 described species worldwide, of which more than 200 occur in the Palaearctic region (Schmitt, 2010; Bezděk & Schmitt, 2017). The majority of the taxa inhabit subtropical and tropical habitats and are arranged in five well-known genera; Crioceris Müller, 1764, Lilioceris Reitter, 1913, Lema Fabricius, 1798, Oulema Gozis, 1886, and lastly Neolema Monrós, 1951, which is known only from the New World (Matsumura et al. , 2014). Among these genera, Lema constitutes the largest group (about 900 species) with nearly 60% of the subfamily’s identified species (Warchałowski, 2011; Vencl & Leschen, 2014). Members of the subfamily are characterized by their glabrous, shiny appearance with a distinctly narrowed and constricted pronotum (Schmitt, 1988; White, 1993).
    [Show full text]
  • Coleoptera, Chrysomelidae) in Azerbaijan
    Turk J Zool 25 (2001) 41-52 © T†BÜTAK A Study of the Ecofaunal Complexes of the Leaf-Eating Beetles (Coleoptera, Chrysomelidae) in Azerbaijan Nailya MIRZOEVA Institute of Zoology, Azerbaijan Academy of Sciences, pr. 1128, kv. 504, Baku 370073-AZERBAIJAN Received: 01.10.1999 Abstract: A total of 377 leaf-eating beetle species from 69 genera and 11 subfamilies (Coleoptera, Chrysomelidae) were revealed in Azerbaijan, some of which are important pests of agriculture and forestry. The leaf-eating beetle distribution among different areas of Azerbaijan is presented. In the Great Caucasus 263 species are noted, in the Small Caucasus 206, in Kura - Araks lowland 174, and in Lenkoran zone 262. The distribution of the leaf-eating beetles among different sites is also described and the results of zoogeographic analysis of the leaf-eating beetle fauna are presented as well. Eleven zoogeographic groups of the leaf-eating beetles were revealed in Azerbaijan, which are not very specific. The fauna consists mainly of the common species; the number of endemic species is small. Key Words: leaf-eating beetle, larva, pest, biotope, zoogeography. AzerbaycanÕda Yaprak Bšcekleri (Coleoptera, Chrysomelidae) FaunasÝ †zerinde AraßtÝrmalar …zet: AzerbeycanÕda 11 altfamilyadan 69 cinse ait 377 YaprakbšceÛi (Col.: Chrysomelidae) tŸrŸ belirlenmißtir. Bu bšceklerden bazÝlarÝ tarÝm ve orman alanlarÝnda zararlÝ durumundadÝr. Bu •alÝßmada YaprakbšcekleriÕnin AzerbeycanÕÝn deÛißik bšlgelerindeki daÛÝlÝßlarÝ a•ÝklanmÝßtÝr. BŸyŸk KafkasyaÕda 263, KŸ•Ÿk KafkasyaÕda 206, KŸr-Aras ovasÝnda 174, Lenkaran BšlgesiÕnde ise 262 tŸr bulunmußtur. Bu tŸrlerin farklÝ biotoplardaki durumu ve daÛÝlÝßlarÝ ile ilgili zoocografik analizleride bu •alÝßmada yer almaktadÝr. AzerbeycanÕda belirlenen Yaprakbšcekleri 11 zoocografik grupda incelenmißtir. YapÝlan bu fauna •alÝßmasÝnda belirlenen tŸrlerin bir•oÛu yaygÝn olarak bulunan tŸrlerdir, endemik tŸr sayÝsÝ olduk•a azdÝr.
    [Show full text]
  • Cereal Leaf Beetle, Oulema Melanopus
    e1230 (revised) North Dakota Small-grain Insects Cereal Leaf Beetle Oulema melanopus (L.) (Coleoptera: Chrysomelidae) Revised by Janet J. Knodel, Extension Entomologist Lesley Lubenow, Area Extension Specialist / Cropping Systems The cereal leaf beetle Description (CLB) is an imported Adult — The adult beetle is ¼ inch long with a brightly insect pest from Europe. colored orange-red thorax, yellow legs and metallic blue It first was detected in head and wing covers (Figure 1). Michigan in 1962. Cereal Eggs — Newly laid eggs are bright yellow, darkening leaf beetle spread into all to orange brown and finally to black before they hatch (Figure 2). states east of the Great Plains and into Idaho, Figure 1. Adult CLB. Larva — The larva has a light yellow body with brown (Photo by J. Knodel, NDSU) head and legs (Figure 3). They have three pairs of legs Montana, Utah, Wyoming close to the head end. The body is protected by a layer of and Washington. black, slimy fecal material, which makes them look like a Cereal leaf beetle first slug (Figure 4). When working or walking in an infested field, the slimy covering will rub off on your clothing. was detected in Williams and McKenzie counties Life Cycle of North Dakota in June Cereal leaf beetle has one generation per year. Beetles 2000. Since then, CLB overwinter in shelterbelts and wooded areas in the leaf was identified in Burke, litter and debris. In the spring, CLB becomes active when Renville and Ward Figure 2. CLB eggs on wheat leaf. temperatures warm to 50 F and feeds on winter or spring counties in 2013 in the (Photo by J.
    [Show full text]
  • LUNDY CABBAGE: PAST, PRESENT, FUTURE by STEPHEN G
    Extract from J George, 'Lundy Studies' (2007). Copyright Lundy Field Society and the authors. Content may be (re)used for non-profit purposes provided source is acknowledged. LUNDY CABBAGE: PAST, PRESENT, FUTURE by STEPHEN G. COMPTON1,JENNY C. CRAVEN1,ROGER S. KEY2 and ROSEMARY J.D. KEY2 1 Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT 2 Natural England, Northminster House, Peterborough, PE1 1UA Corresponding author, e-mail: [email protected] ABSTRACT Lundy is unique amongst British islands in having plants and insects that are known from nowhere else. How the ancestors of Lundy cabbage and its beetles may have come to be on Lundy is largely a mystery. They must have colonised Lundy sometime after the last Ice Age, at which time rising sea levels may not yet have turned it into an island. Lundy cabbage appears to have common ancestry with a closely related species including population(s) around the Bristol Channel, but the origins of the beetles are so far unclear and subject to current research. In recent times, numbers of Lundy cabbage have fluctuated greatly, probably in response to changes in rabbit abundance, but its range on Lundy is much less variable. Careful management, particularly of grazing animals and invasive rhododendron, is needed to ensure that this unique community continues to flourish. Keywords: Lundy cabbage, BAP, endemic, phylogeography, rabbit, rhododendron, sea-levels INTRODUCTION Lundy is Britain's only offshore island that has its own endemic plant species with endemic insects feeding on it (Compton et al., 2002). Reflecting this, the plant and its insects are listed on the United Kingdom Biodiversity Action Plan and have conservation action plans (UK BAP, 2001, Compton and Key, 1998), and have been the subject of conservation-related studies supported by Natural England (previously called English Nature) and others (Key et al., 2000).
    [Show full text]
  • Coleoptera: Chrysomelidae
    Travaux du Muséum National d’Histoire Naturelle «Grigore Antipa» Vol. 59 (2) pp. 179–194 DOI: 10.1515/travmu-2016-0025 Research paper The Catalogue of Donaciinae and Criocerinae Species (Coleoptera: Chrysomelidae) from the New Leaf Beetle Collection from “Grigore Antipa” National Museum of Natural History (Bucharest) (Part I) Sanda MAICAN1, *, Rodica SERAFIM2 1Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independenţei, 060031 Bucharest, P.O. Box 56–53, Romania. 2“Grigore Antipa” National Museum of Natural History, Kiseleff 1, 011341 Bucharest, Romania. *corresponding author, e-mail: [email protected] Received: August 23, 2016; Accepted: November 22, 2016; Available online: December 23, 2016; Printed: December 30, 2016 Abstract. The paper presents data on 33 palaearctic species of the Donaciinae (Donaciini, Haemoniini and Plateumarini tribes) and Criocerinae preserved in the new Chrysomelidae collection of “Grigore Antipa” National Museum of Natural History (Bucharest). Among the valuable species preserved in this collection, Macroplea appendiculata (Panzer) and M. mutica (Fabricius) – two very rare European Donaciinae beetles, should be mentioned. Key words: Chrysomelidae, Donaciinae, Criocerinae, collections, “Grigore Antipa” National Museum of Natural History, Bucharest. INTRODUCTION The entomological collections stored in the patrimony of “Grigore Antipa” National Museum of Natural History of Bucharest have a historical and documentary scientific value, both at national and international level. In “Grigore Antipa” Museum, the Chrysomelidae material is included in the old Collection of Palaearctic Coleopterans (partial data published) and in the Collection of Chrysomelidae, recently formed. The new collection, which we refer in this paper, gathers: – material preserved in the old coleopteran collection from the Palaearctic area, including specimens from Richard Canisius, Deszö Kenderessy, Fridrich Deubel, Arnold Lucien Montandon and Emil Várady collections, acquired between 1883–1923.
    [Show full text]